

Pro ADO.NET 2.0

Sahil Malik

5122chFM.qxd 8/23/05 3:44 PM Page i

Pro ADO.NET 2.0

Copyright © 2005 by Sahil Malik

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN: 1-59059-512-2

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Hassell
Technical Reviewers: Frans Bouma and Erick Sgarbi
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Associate Publisher: Grace Wong
Project Manager: Emily K. Wolman
Copy Edit Manager: Nicole LeClerc
Copy Editor: Linda Marousek
Assistant Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Kinetic Publishing Services, LLC
Proofreader: April Eddy
Indexer: Carol Burbo
Artist: Kinetic Publishing Services, LLC
Interior Designer: Van Winkle Design Group
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liabil-
ity to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

5122chFM.qxd 8/23/05 3:44 PM Page ii

I would like to dedicate this book to my parents.
Mom, for being extremely strict with me when I was a kid

and always very loving in all my years.
Pop, for saving me from Mom ;-),

and being the neverending source of inspiration and strength.
I love you both very much.

5122chFM.qxd 8/23/05 3:44 PM Page iii

5122chFM.qxd 8/23/05 3:44 PM Page iv

Contents at a Glance

About the Author . xv

About the Technical Reviewers. xvii

Acknowledgments . xix

Introduction. xxi

■CHAPTER 1 An Introduction to ADO.NET . 1

■CHAPTER 2 The ADO.NET Object Model . 15

■CHAPTER 3 ADO.NET Hello World! . 31

■CHAPTER 4 Connecting to a Data Source . 53

■CHAPTER 5 Retrieving Data in a Connected Fashion . 77

■CHAPTER 6 DataSets . 109

■CHAPTER 7 Fetching Data: The DataAdapter . 177

■CHAPTER 8 Sorting, Searching, and Filtering . 213

■CHAPTER 9 Updating Data . 247

■CHAPTER 10 Updating Data: Advanced Scenarios . 321

■CHAPTER 11 Transactions. 355

■CHAPTER 12 XML and ADO.NET . 413

■CHAPTER 13 The CLR in SQL Server . 461

■CHAPTER 14 ADO.NET Best Practices . 513

■INDEX . 529

v

5122chFM.qxd 8/23/05 3:44 PM Page v

5122chFM.qxd 8/23/05 3:44 PM Page vi

Contents

About the Author . xv

About the Technical Reviewers. xvii

Acknowledgments . xix

Introduction. xxi

■CHAPTER 1 An Introduction to ADO.NET . 1

What Is ADO.NET? . 2

What Is Wrong with ADO? . 3

Meeting the Players: Important Objects in ADO.NET 4

The Connected Objects. 4

The Disconnected Objects . 5

.NET Data Providers . 7

Using the ProviderBase Model. 9
Third-Party .NET Data Providers . 12

The System.Data.Design Namespace . 14

Summary . 14

■CHAPTER 2 The ADO.NET Object Model . 15

This Is a Reference Chapter. 15

10,000-Ft. View of ADO.NET . 16

Establishing a Connection: DbConnection. 17

Executing a Command: DbCommand and DbTransaction 19

Creating Parameterized Commands: DbParameter 20

Holding Disconnected Data: DataSet . 22

Fetching Data: Data Reader and Data Adapter. 24

The Connected Way to Fetch Data: DbDataReader 24

The Bridge Between Connected and Disconnected:
DbDataAdapter . 25

Exceptions in ADO.NET . 26

Summary . 30

vii

5122chFM.qxd 8/23/05 3:44 PM Page vii

■CHAPTER 3 ADO.NET Hello World! . 31

Setting Up the Hello World Data Source . 31

Creating a Data-Driven Application: The Drag-and-Drop Approach 32

Drag and Drop in ASP.NET 2.0. 33

Drag and Drop in a Windows Forms Application 39

Hybrid Approach: Write Some Code, Do Some Drag and Drop 45

Data-Driven Application: The “Write Code Yourself” Approach 48

Summary . 51

■CHAPTER 4 Connecting to a Data Source . 53

The Ability to Connect . 53

Creating Connection Objects . 54

Generating Provider-Specific Connection Strings 57

The Easy Way to Any Connection String. 60

Securing Connection Strings . 62

The Common Behavior: IDbConnection . 66

The Common Logic: DbConnection . 68

High-Demand Applications . 68

Connection Pooling . 69

So How Does It All Work? . 71

Deciding on the Right Pool Size. 72

Corrupt Connection Pools . 73

Closing Connections: Good Application Design . 74

Summary . 75

■CHAPTER 5 Retrieving Data in a Connected Fashion 77

Communicating with the Data Source . 77

Retrieving a Scalar Value . 78

Which Database to Execute Against . 79

What to Execute . 81

Executing a Command to Retrieve Results . 82

Retrieving a Result Set . 83

Querying a Result Set for Storage . 88

Querying Large Result Sets Asynchronously . 91

Querying the Database for Multiple Result Sets . 96

Object-Oriented vs. Relational Representation. 99

Storing Objects in the Database . 100

Querying for UDT Data Using SQL. 105

■CONTENTSviii

5122chFM.qxd 8/23/05 3:44 PM Page viii

Retrieving UDT Data in a Connected Fashion 105

Pragmatic Use of UDTs . 106

Summary . 107

■CHAPTER 6 DataSets . 109

The Case for the Disconnected Model . 109

The DataSet Object Model . 111

DataTable . 112

DataColumn . 113

DataRow . 114

Constraints . 115

Setting a Primary Key: PrimaryKey Property 116

Dynamically Constructing a DataTable. 116

DataTable Events . 120

Practical Usage of DataTable Events . 121

Relational Data. 125

The Relations Collection . 125

Putting It All Together . 128

DataSets As Data Transfer Objects . 134

Strongly Typed DataSets: An Introduction . 140

Overview of XSD . 141

DataSet Schemas . 151

Building Strongly Typed DataSets . 159

Typed DataSet Performance . 168

Annotating Typed DataSets . 168

Summary . 174

■CHAPTER 7 Fetching Data: The DataAdapter . 177

What Is a DataAdapter? . 177

Structure of a DataAdapter . 178

Putting DataAdapters to Use . 179

Setting Up the Data Source . 179

Querying One Table: Point and Click. 180

Querying One Table: Writing Code. 185

Filling DataSets: More Than One Table. 190

Querying Database Schema . 196

■CONTENTS ix

5122chFM.qxd 8/23/05 3:44 PM Page ix

Mapping . 204

Using the SQL AS Keyword. 204

The ADO.NET Mapping Mechanism . 206

Summary . 212

■CHAPTER 8 Sorting, Searching, and Filtering. 213

Setting Up the Data Source . 214

Working in a DataTable. 216

Finding a Row. 217

Selecting a Number of Rows . 219

Expressions: Calculating Columns on the Fly 222

Performing Aggregate Calculations . 224

Working with the DataRelation Object . 226

Working with the DataView Object . 232

Creating a DataView . 232

Leveraging XML to Work with Disconnected Data. 240

XmlDataDocument. 241

Summary . 245

■CHAPTER 9 Updating Data . 247

Updating a Table: The Easy Drag-and-Drop Approach 248

How Does It All Work? . 254

Using the Command Builder Object . 262

State Management in a DataRow and Its Use in Updating Data 266

Moving Large Amounts of Data: SqlBulkCopy . 276

Editing Disconnected Data. 278

Add New Rows . 278

Modify Existing Rows . 279

Delete Existing Rows. 281

A Real-World Example . 283

Writing This Application in Oracle . 293

Optimizing Your Application: GetChanges and Merge 294

Merge Case 1: Same Table Structures, No Primary Key 302

Merge Case 2: Same Table Structures, with Primary Key. 303

Merge Case 3: Common Column, No Primary Key. 305

Merge Case 4: Common Column, with Primary Key 306

Merge Case 5: Absolutely Different Table Structures. 308

Merging Two DataSets/DataTables with Different Schemas 310

Updating Records Using Mapped Names . 311

■CONTENTSx

5122chFM.qxd 8/23/05 3:44 PM Page x

■CHAPTER 10 Updating Data: Advanced Scenarios. 321

Conflict Detection and Concurrency Resolution . 322

Preventing Conflicts: Traffic Lights . 322

Handling Conflicts: Going to the Hospital After an Accident 323

Implementing Concurrency: Practical Concerns . 331

Null Values. 331

Number of Rows Affected and Triggers . 332

Multiple Rows Being Updated . 333

Working with Hierarchical Data. 334

Inserting Hierarchical Data. 338

Updating Hierarchical Data . 347

Deleting Hierarchical Data . 347

Putting It All Together: Saving Hierarchical Data 347

This Code Just Won’t Work! . 351

Hierarchical Updates: Conclusion . 352

Summary . 352

■CHAPTER 11 Transactions. 355

What Is a Transaction? . 356

ACID Properties . 356

Database Transactions . 357

Transaction Vocabulary . 358

ADO.NET Transaction Support . 359

Transaction Class. 361

Writing Transactional Database Applications . 363

Implementing Transactions . 363

Examining the Effect of Isolation Levels . 370

Multiple Active Resultsets . 378

MARS and Transactions . 382

Advanced Single Database Techniques . 385

Savepoints . 386

Nested Transactions . 389

Using Transactions with a DataSet and Data Adapter 389

Distributed Transactions. 392

Important Players in Distributed Transactions:
RMs and DTCs. 392

Two-Phase Commits . 393

Implementing a Distributed Transaction: The .NET 1.1 Way. 393

Implementing a Distributed Transaction: The .NET 2.0 Way. 397

■CONTENTS xi

5122chFM.qxd 8/23/05 3:44 PM Page xi

Promotable Enlistment: A Quick Primer . 401

System.Transactions: Manually Enlisting and
Multithreaded Environments. 403

Judicious Use of Transactions . 408

Transactions and Performance . 409

Default Behavior for Transactions . 410

Transactions and User Confirmation. 410

Simultaneous ADO.NET and RDBMS Transactions. 410

Summary . 411

■CHAPTER 12 XML and ADO.NET . 413

SQL Server Native XML Support . 413

FOR XML . 415

FOR XML Queries: A Quick Overview . 415

FOR XML’s Optional Arguments . 419

FOR XML RAW . 420

FOR XML AUTO. 420

FOR XML EXPLICIT. 422

SQL Server 2005 and FOR XML PATH . 433

Using FOR XML Queries with ADO.NET . 434

OPENXML . 437

OPENXML Stored Procedures: Deletes and Updates 440

The XML Data Type: SQL Server 2005 Only . 443

Reading XML Columns in ADO.NET . 444

Working with SQL Server XML Features: SQLXML 446

SQLXML and ADO.NET . 447

The SQLXML Object Model. 447

Summary . 459

■CHAPTER 13 The CLR in SQL Server . 461

Appropriate Use of SQLCLR . 462

SQLCLR in Comparison with Extended Stored Procedures 464

Software Requirements to Run the Examples in This Chapter 465

Handwritten UDF . 465

SQL Server Project UDF . 468

Debugging SQLCLR Code. 472

Writing a TVF: Table-Valued Function. 475

Enumerating Files in a Directory Using a TVF 485

Creating Aggregate Functions . 487

■CONTENTSxii

5122chFM.qxd 8/23/05 3:44 PM Page xii

Writing a SQLCLR Stored Procedure . 494

The Context Connection . 494

SqlTransaction in SQLCLR . 504

Using Transactions in SQLCLR Triggers . 504

Using Non-Context Connections Inside SQLCLR . 508

Summary . 511

■CHAPTER 14 ADO.NET Best Practices . 513

Know Your System Requirements. 513

Picking the Right Tool for the Right Job. 514

Data Reader or DataSet/Data Adapter? . 515

DataSet or Strongly Typed DataSets. 517

Strongly Typed or Not? DataSet vs. Business Object. 517

T-SQL vs. SQLCLR vs. Extended Stored Procedures (XP) 520

Transactions, Transactions Everywhere: Which Transaction
to Pick. 521

Picking the Right Tools: The Clearly Darker Shades of Gray 522

Implementing a Data Layer . 523

Closing Connections . 523

Network Latency . 524

Complicated Hierarchical DataSets . 525

Caching Data . 526

Summary . 526

■INDEX . 529

■CONTENTS xiii

5122chFM.qxd 8/23/05 3:44 PM Page xiii

5122chFM.qxd 8/23/05 3:44 PM Page xiv

About the Author

■SAHIL MALIK has been working as a consultant in Microsoft technology
for about nine years now. He has worked for many top-notch clients across
the globe, including many Fortune 100 companies and government
organizations within the United States. Sahil started programming in
a DOS world, moved to Win32 API, Borland C, MFC, VC /ATL, Visual
Basic 6, and eventually to .NET in both Visual Basic .NET and C# worlds.

Sahil leads the office of Emerging Technologies at the National
Cancer Institute, and is also currently helping architect a highly visible
public website using ASP.NET 2.0/SQL Server 2005. He speaks frequently
at local user groups and conferences. He was the lead author on

Pro ADO.NET with VB.NET 1.1. For his community involvement and contribution, he has also
been awarded the Microsoft MVP award.

xv

5122chFM.qxd 8/23/05 3:44 PM Page xv

5122chFM.qxd 8/23/05 3:44 PM Page xvi

About the Technical Reviewers

■FRANS BOUMA started programming in 1986 on a Toshiba MSX-1, at the
age of 16. After graduating with a bachelor’s degree in Computer Science
from the Hogeschool Enschede in the Netherlands in 1994, he started
working with 4GL systems and post-relational databases, like uniVerse.
In 1996, he founded Solutions Design, a company for database-driven
web-application development. As the lead developer, he developed
medium to large enterprise web applications using SQL Server, AS400,
COM+, VC++, Visual Basic, and ASP.

In 2001, Solutions Design produced a content-management system completely based on
Microsoft technologies like SQL Server 2000, COM+, VC++, Visual Basic 6, and ASP. The following
year, Frans developed in C# his first .NET application, the open-source LLBLGen code generator
for SQL Server stored procedures and .NET classes. Due to the worldwide success of LLBLGen,
in 2003, Frans designed and developed for Solutions Design the O/R mapper and code genera-
tor LLBLGen Pro, which is currently one of the market-leading data-access solutions for .NET,
C#, and VB.NET.

He now works full-time on LLBLGen Pro enhancements. For his community efforts, Frans
received the MVP award for C# in 2004 and 2005.

■ERICK SGARBI was introduced to the computing world in 1981, learned
how to program Sinclair Basic on a ZX Spectrum, and by 1987 became
a full-time AS400 COBOL programmer. He spent 1993 to 2001 working
on several projects, mostly Java, C++, Visual Basic, and Delphi.

Erick attained a bachelor’s degree in Information Systems from
Australia Catholic University and acquired MCAD Charter membership
in 2003. Since 2002, he has been involved in several senior development
positions for .NET projects related to system’s development and supply-

ing contracts for Smart Clients and ASP.NET applications. Over the past few years, Erick has
authored and performed technical reviews and edits on several .NET book titles.

xvii

5122chFM.qxd 8/23/05 3:44 PM Page xvii

5122chFM.qxd 8/23/05 3:44 PM Page xviii

Acknowledgments

No man is an island, and neither are his thoughts. I am merely the medium who wrote
what I heard, read, and learned from various other well-accomplished individuals in my field
or otherwise.

I would first like to thank my countless peers such as Bill Vaughn, Bill Ryan, Miha,
Herfried Wagner, Jon Skeet, Carl Franklin, and countless other superb individuals who spend
their time and effort disseminating what they know. They truly believe that a candle lighting
another candle only creates more light. It is from their endless, tireless discussions, and count-
less, neverending community interaction that I was able to collect what I present in this book.
None of these ideas is mine: I certainly didn’t invent ADO.NET—I merely learned it from all
these fine people.

I would then like to thank the two most critical, spit-in-the-face reviewers I could find.
I was amazed at the thoroughness Frans Bouma and Erick Sgarbi exhibited in their work.
They pored through the text and, thankfully, did not mince their words in helping solidify the
content of this book. I’d like to thank them both, both as my reviewers and my well-meaning
friends who have always wished the very best for me.

I would then like to thank the various Microsoft employees who graciously agreed to help
with my neverending questions. I sit back and think why they agreed to help a complete stranger,
thousands of miles away—and I cannot come up with a good explanation. These guys replied to
e-mails that I sent at 3 a.m., within a matter of minutes. It is guys like these who truly love what
they do and who are able to make such a fantastic programming platform. Of notable mention are
Pablo Castro, Angel Saenz Badillos, Sushil Chordia, Andy Conrad, Mike Clark, Jim Johnson, Raphael
Renous, Mark Ashton, Michael Rys, Chris Lee, Steve Lasker, and, of course, my MVP Lead Rafael
Munoz. (And yet I think I must have missed a few names).

I would then like to thank my boss at work, who encouraged me and guided me much like
a father would guide his son. I would like to thank Michael Arluk, who lent me his neverending
support and encouragement in this rather difficult and time-consuming task of writing an entire
book in such an aggressive duration and timeline. I have told him, and I will tell you, this book
would not have been possible if it weren’t for him.

Finally, I would then like to thank my parents for being the strictest and most loving par-
ents one can pray for. They taught me discipline, they taught me dedication, they taught me
focus, and they taught me endurance and constancy in tough times.

—Sahil Malik

xix

5122chFM.qxd 8/23/05 3:44 PM Page xix

5122chFM.qxd 8/23/05 3:44 PM Page xx

Introduction

. . . Mission control to reader . . . you are now nearing the ADO.NET planet in the .NET
solar system of the Microsoft technology galaxy. Make sure no architectural mistake alien eats
you up for dinner . . .

Learning any new topic is like approaching a new planet. As you approach the planet
from a distance, you first identify its place in the solar system, then the major geographical
features on the surface, and finally you land on it and start digging deep and constructing
buildings to finally call it your home. Then one day before you know it, you are married to
a Mrs. Alien, have two kids, a mortgage, a car payment, and find yourself worrying about
your kid’s college education fund.

It is true!! Life is like a computer game, it keeps getting harder and then you die.
So why should learning ADO.NET be any different? Doesn’t it make sense to start at the

basics and then graduate to the complex?
This book begins with three rather short (about 50 pages combined) and simple chapters:

• The first chapter identifies where ADO.NET is located in the .NET solar system and its
various major building blocks.

• The second chapter begins with identifying the major geographical features of the
ADO.NET terrain. It serves very well as a map for the future chapters when you are on
the ground digging deeper. Because this chapter is a map, you will be reminded to ref-
erence back to the various figures, class names, and namespaces presented in this
chapter as you dig deeper in the terrain.

• The third chapter is when you land on the planet and start walking around and create
four data-driven applications of increasing complexity.

Once you have landed on the planet, are armed with a map of the area, and have walked
around a bit is when it’s time to start digging deeper and do what we humans do so naturally—
exploring (without exploding hopefully).

So let me ask you a question, When you hold a tool such as a hammer in your hand, what
do you do with it? You bang things such as a nail with great force on its head, right?

Now what if someone started telling you, here is a hammer, it has two parts—the head
and the handle. The handle is long and thus helps you exert torque because torque is directly
proportional to the radius of the torque arm. The torque translates to a lot of momentum in
a rather heavy hammer head. Now because momentum can neither be destroyed nor created
per the equation

M1V1 = M2V2

and because the mass of the nail is so little, the momentum gets transferred to the nail, which
results in a very high nail velocity thus driving it through the wood.

xxi

5122chFM.qxd 8/23/05 3:44 PM Page xxi

Oh my, I feel like hitting myself with the hammer when I hear such a complex description
of a rather simple topic. Why can’t we just say, “The hammer bangs the nail on its head so it is
driven through the wood”? Simple, huh?

Then why can’t learning ADO.NET be made as simple as that? There are some very basic
things this data access architecture lets you do: connect with the database, fetch data, hold
disconnected data, work with disconnected data, and save data back into the database. In
writing this book, I have therefore tried to focus on the tasks you need to achieve and have
tried to simplify ADO.NET’s architecture in those terms.

Then there is the battle between C# and VB.NET, and different databases such as SQL
Server and Oracle. Choosing between C# and VB.NET is a bit like choosing between democrats
and republicans. No matter which side I pick, I lose half my friends, and it’s not like either
side is any better than the other. So I figured, why choose between these? All examples are
presented both in C# and VB.NET. The examples written will work on a SQL Server 2005
database, but notable differences along with code snippets are presented for Oracle as well.
A good example is MARS. It works both in SQL Server and Oracle, but what are the different
implementation patterns? I will, however, say that, in a bid to prevent this book from looking
like a soup of leftovers from the past week, I have tried to avoid the mish-mash effect by try-
ing to concentrate more on SQL Server than on Oracle—though Oracle has not been ignored.

Thus, Chapters 4 through 11 are filled with content that is database agnostic. They are laid
out in a simple task-oriented approach, which means instead of giving you a rote list of meth-
ods on DbCommand, in contrast I take the approach of “You may need to query for a scalar, or
a row, or maybe fill a DataSet instead, and this is how you would do that.”

I could end the book there, but an ADO.NET book wouldn’t be complete if I didn’t mention
SQL Server 2005–specific features such as SQLCLR (the CLR inside SQL Server) and XML features.
Thus, Chapter 12 and Chapter 13 are specific to SQL Server 2005 and cover those topics.

Finally, architecture (especially data access) is a black art. There is no white or black, but
plenty of gray. Okay, certain shades are definitely whiter than others, but you get the idea. The
book ends with a discussion-oriented chapter that brings up the major debates that surround
data access and application architecture in general.

I hope this book will arm you with enough knowledge to allow you to make informed day-
to-day architectural decisions with confidence.

I hope you enjoy it.
. . . Mission control to reader . . . the ADO.NET planet is in sight, grab the steering, sit firm in

the pilot’s seat, tighten your seatbelts, pack your bags, and flip over to Chapter 1. The fun is
about to begin . . .

■INTRODUCTIONxxii

5122chFM.qxd 8/23/05 3:44 PM Page xxii

1

C H A P T E R 1

■ ■ ■

An Introduction to ADO.NET

A computer can be thought of as an information storage and processing machine. While not
every application has a specialized program managing its store of information, it’s hard to imag-
ine a computer program that doesn’t work with any kind of data. Certain applications, like
Microsoft Word and Notepad, choose to manage their own data, while many other specialized
applications, especially those that require vast amounts of data, choose a much more special-
ized program or architecture that runs on a separate machine, typically referred to as a database.

While some applications choose to use a server-based database architecture, like Oracle,
Microsoft SQL Server, MySQL, DB2, and others, certain other applications might choose a file-
based architecture instead, such as Microsoft Access or Excel.

Even various programs on a computer allow you to manage information effectively: pro-
grams that are designed specifically to handle information, such as databases that handle
information quite differently than programs that sit between the user and the database. Most
databases store their information as tables, which arrange data as a collection of rows and
columns and values within them. Most modern databases will also let you specify relationships
between these tables, which allow the database to keep data sanctity between various tables
that have relationships between them.

However, programming languages have a different method of representing data. In par-
ticular, most modern-day object-oriented languages choose to represent data in hierarchical
representations of objects.

In fact, one program could work with more than one data source at a time and it needs some
sort of data access libraries to accomplish this task, as shown in Figure 1-1.

5122ch01.qxd 8/23/05 12:52 PM Page 1

CHAPTER 1 ■ AN INTRODUCTION TO ADO.NET2

Figure 1-2. What is ADO.NET and where does it fit in the picture?

Therefore, there is a mismatch between how most databases handle information and how
most programming languages handle information. It’s at this very place where ADO.NET fits
into the grand scheme of things.

But what is ADO.NET?

What Is ADO.NET?
Microsoft ADO.NET is part of the Microsoft .NET Framework: a set of tools and layers that
allows your application to easily manage and communicate with its file-based or server-based
data store. In the .NET Framework, the ADO.NET libraries appear under the System.Data name-
space. These libraries include functionality to connect to these data sources, execute commands,
and store, manipulate, and retrieve data. This is illustrated in Figure 1-2. For the sake of simplicity
and discussion, only one data source is illustrated, but keep in mind that there could be more
than one.

Figure 1-1. A typical program and its data sources

5122ch01.qxd 8/23/05 12:52 PM Page 2

CHAPTER 1 ■ AN INTRODUCTION TO ADO.NET 3

What sets ADO.NET apart from previous data access technologies is that it allows you to
interact with your database in a completely disconnected data cache to work with data offline.
While attempts have been made to achieve this in the past using technologies such as Remote
Data Objects (RDO), those attempts were little more than patches on an existing technology.
ADO.NET, on the other hand, is built from the ground up with this requirement in mind.

Disconnected data access is crucial for today’s high-demand applications, as it’s simply
not possible to directly connect every single user or entity in a system to the database. Archi-
tecting your application for high-demand scenarios is covered in further depth from Chapter 4
onward.

An important element of disconnected data access is a database-agnostic container for
tabular data. This database-agnostic disconnected container for tabular data is represented in
the ADO.NET libraries by a DataSet or a DataTable object. These objects will be covered in
a greater depth in Chapter 6.

It is important to understand, however, that ADO.NET succeeds a previous data access
technology in the Microsoft world called ADO classic, or simply ADO. Even though ADO.NET
and ADO are completely different data access architectures, it is important to understand where
ADO falls short to appreciate what ADO.NET gives you.

What Is Wrong with ADO?
ActiveX Data Objects (ADO) was the premier data access technology under the Microsoft
umbrella before ADO.NET was introduced as an integral part of the .NET Framework. An obvi-
ous question is “Why did Microsoft have to come up with a brand new data access technology
when you had ADO serving this purpose?” As a matter of fact, this question could be broadened
to “What is wrong with DAO, RDO, ODBCDirect, OleDb, and ADO?”

In short, over the years data access needs have changed, which necessitated a change in
the premier data access technology. ADO was accessed primarily via unmanaged code, which
in .NET would require you to write unmanaged code accessing ADO objects via a standard
mechanism used to access COM objects called interop. Not only does unmanaged code accessed
over interop pay a performance penalty in comparison with fully managed code, but a bigger
disadvantage is that it doesn’t conform to .NET security. Also, unmanaged code is subject to
the old world problems of DLL Hell etc., and garbage collection doesn’t quite work as well for
interop-based objects either. As you may already know, garbage collection in .NET, to a great
extent, alleviates the individual programs of cleaning up their freed memory. This facility was
not available in COM, which relied on reference counting for memory management. If not
architected correctly, it’s possible that interoped COM components might not work well with
the new garbage collection model, and might result in memory leaks. The last thing you want
is memory leaks in your data layer, which is typically one of the most crucial parts of your
application as far as performance and reliability goes.

Another big disadvantage of ADO was that it was really never designed to work with XML.
XML was retrofitted into it after the fact, and (for those of you with previous ADO experience)
while a Recordset could be converted to XML, the XML produced was hardly human readable
and not as portable between various objects as you’d like it to be. On the other hand, ADO.NET
has been designed from the ground up with these demands in mind.

Along the same lines, when ADO was written, web services and the entire concept of
disconnected computing were still in their infancy. With the explosion of disconnected com-
puting and extreme demands on a central database, it became evident that a new kind of data

5122ch01.qxd 8/23/05 12:52 PM Page 3

CHAPTER 1 ■ AN INTRODUCTION TO ADO.NET4

access architecture was required. The new data access architecture had to support better con-
currency, pooling, XML support, and disconnected architecture in general. Thus, ADO.NET
was born.

Meeting the Players: Important Objects in
ADO.NET
Like any other architecture, there are certain important parts that make up ADO.NET. In this
section, you’ll look at the various objects that make up ADO.NET.

As you probably know, .NET classes can be grouped under namespaces. All ADO.NET-related
functionality appears under the System.Data namespace. This doesn’t mean that some other
software developer cannot write libraries that don’t belong to that namespace, but as the Microsoft
.NET Framework ships, all ADO.NET-related functionality sits inside the System.Data namespace.

Also, like any other .NET component, ADO.NET doesn’t live in isolation, and it can interact
with various other parts of the .NET Framework such as the System.Web.UI.WebControls.
Adapters.TableAdapter class or the System.Transactions namespace.

The ADO.NET architecture can be split into two fundamental spheres: the connected and
the disconnected. The various classes that appear within ADO.NET can be categorized within
the connected and disconnected spheres. The only major exception is the DataAdapter object,
which acts as a sentry between the connected and disconnected spheres. Let’s further examine
the various details of each one of these spheres.

The Connected Objects
The connected part represents the objects that insist on having an open connection available
for them to work and interact with the data source. Under the connected part of ADO.NET,
there are the following main objects:

• Connection: This is the object that allows you to establish a connection with the data source.
Depending on the actual .NET data provider involved, connection objects automatically
pool physical database connections for you. It’s important to realize that they don’t pool
connection object instances, but they try and recycle physical database connections.
Examples of connection objects are OleDbConnection, SqlConnection, OracleConnection,
and so on. These will be covered in further detail in Chapter 4.

• Transaction: There are times when you would want to execute a group of commands
together as a group or as an atomic operation, as an “all-or-nothing” execution. An
example might be a banking application where a credit must not occur if a correspon-
ding debit cannot be done. Transaction objects let you group together such groups
of commands and execute them atomically. Examples of transaction objects are
OleDbTransaction, SqlTransaction, OracleTransaction, and so on. In ADO.NET 2.0,
you also have the ability to run distributed transactions and enlist in nondatabase
transactions via the System.Transactions namespace. In ADO.NET 1.0 and 1.1, this was
possible as a less than ideal solution using the System.EnterpriseServices namespace.
This comparison and further details will be covered in Chapter 11.

5122ch01.qxd 8/23/05 12:52 PM Page 4

CHAPTER 1 ■ AN INTRODUCTION TO ADO.NET 5

• DataAdapter: This object acts as a gateway between the disconnected and connected flavors
of ADO.NET. It establishes the connection for you or, given an established connection, it
has enough information specified to itself to enable it to understand a disconnected object’s
data and act upon the database in a prespecified manner. Examples of DataAdapters are
SqlDataAdapter, OracleDataAdapter, and so on. DataAdapters will be covered in Chapter 7.

• Command: This object represents an executable command on the underlying data source.
This command may or may not return any results. These commands can be used to
manipulate existing data, query existing data, and update or even delete existing data.
In addition, these commands can be used to manipulate underlying table structures.
Examples of command objects are SqlCommand, OracleCommand, and so on. This will be
covered in Chapter 5.

• Parameter: A command needs to be able to accept parameters. This allows commands
to be more flexible and accept input values and act accordingly. These parameters could
be input/output or return values of stored procedures, or “?” arguments passed to a SQL
query, or simply named parameters to a dynamic query. Examples of parameters are
SqlParameter, OracleParameter, and so on. This will be covered in Chapter 5.

• DataReader: The DataReader object is the equivalent of a read-only/forward-only firehose
cursor that allows you to fetch data from a database at an extremely high speed but in
a forward-only and read-only mode. This object will be covered in further detail in
Chapter 5.

The Disconnected Objects
Constantly, connected applications alone don’t fulfill the demands of modern-day distributed
applications. Disconnected applications built using ADO.NET, however, take a different approach.
Disconnected applications typically connect as late as possible and disconnect as early as they
can. While they are working in a disconnected fashion, ADO.NET pools the actual physical con-
nection between various requests. This is shown in Chapter 4 where an actual code demon-
stration clearly illustrates how an application can improve performance many times over by
connection pooling in this fashion.

The various objects in consideration under the disconnected model of ADO.NET are as
follows:

• DataSet: The DataSet is at the central core of the disconnected mode of ADO.NET data
access. The best way to think of a DataSet is like having your own very mini relational
database management system (RDBMS) completely represented in memory. While it
isn’t quite an RDBMS and should never be thought to replace an RDBMS, it helps to
understand a DataSet if its various components are connected on a one-to-one basis
with most major RDBMS objects. Also, it is important to realize that DataSets are avail-
able at System.Data.DataSet, i.e., above any .NET provider, thus making them .NET data
provider–independent (more about .NET data providers in the next section). A DataSet
can also be thought of as a logical collection of DataTables and DataRelations.

• DataTable: A DataTable is most similar to a table in a database. It consists of DataColumns,
DataRows, and various constraints set upon them. It stores data in a row/column format.
Starting with ADO.NET 2.0, a DataTable is fully convertible to XML and can be serialized

5122ch01.qxd 8/23/05 12:52 PM Page 5

CHAPTER 1 ■ AN INTRODUCTION TO ADO.NET6

just like a DataSet. For data access needs where your DataSet might contain only one
DataTable, it may make more sense to use a DataTable instead. As you’ll see in future
chapters, this is not only more convenient, but it’s also better performing.

• DataRow: One of the properties of DataTable is Rows of DataRowCollection type, which
represents an enumerable collection of DataRow objects. As data is filled into a DataTable,
the DataRowCollection gets new DataRow objects added to itself. The best logical equiva-
lent of a DataRow in a database is a row in a table.

• DataColumn: A DataTable also contains a Columns property of DataColumnCollection type.
Essentially, this represents the structure of a DataTable. The best logical equivalent of
a DataColumn object in a database is an individual column in a given table in a database.

• DataView: A DataView is most similar to a view in a database. A DataView allows you to cre-
ate a “view” on a DataTable and view a subset of the data based on a preset condition
specified in its Filter property. You could also use the Sort property to sort the filtered
subset of the DataTable’s data. One DataTable can have multiple views defined on it.

• Constraint: A DataTable contains yet another property called Constraints of
ConstraintsCollection type. This lets you create ForeignKeyConstraintor UniqueConstraint
objects and associate various columns to certain conditions based on which data in the
DataTable must pass for it to exist in the DataTable. The most logical equivalent of
a ForeignKeyConstraint is a foreign key in a database, and UniqueConstraint specifies
a Unique condition on a given column in a database.

• DataRelation: A DataSet, like a database, might contain various interrelated tables.
A DataRelation object lets you specify relations between various tables that allow
you to both validate data across tables and browse parent and child rows in various
DataTables. Its most logical equivalent is a foreign key specified between two tables
in a database. The difference between a ForeignKeyConstraint and a DataRelation is
that a DataRelation, in addition to validating data, gives you a convenient mechanism
to browse parent and child rows in a DataSet.

Figure 1-3 shows where the various connected and disconnected objects fit into the big-
ger picture.

Note that in Figure 1-3, your program talks with ADO.NET as a whole. In other words, it
can choose to use the disconnected objects, the DataAdapter, the connected objects, or a combi-
nation thereof.

and the DataAdapter

5122ch01.qxd 8/23/05 12:52 PM Page 6

CHAPTER 1 ■ AN INTRODUCTION TO ADO.NET 7

Figure 1-4. A .NET data provider, and where it fits in the bigger picture

All of these objects are covered in further depth in Chapter 6. When compared with ADO,
the data holder object, which used to be Recordset, is now a DataSet. However, there is a criti-
cal difference. While a Recordset was also responsible for communicating with the database,
a DataSet is not responsible for communicating with the database. Instead, it uses the gateway
object between connected and disconnected modes—the DataAdapter. The disconnected data
access model will be covered in Chapters 6 through 10.

Since the connected objects need to work directly with the underlying database, connected
objects typically need to implement database-specific code. On the other hand, disconnected
objects are meant to be database agnostic, thus it is logical to assume that they can be shared
between different databases.

As it turns out, most connected objects are implemented inside what are referred to as
.NET data providers.

.NET Data Providers
ADO.NET splits the connected objects as specific implementations for the underlying database.
In other words, in order to connect with a Microsoft SQL Server database, there exists a specific
class called SqlConnection. In fact, all such SQL Server–specific classes appear under the same
System.Data.SqlClient namespace. Similarly, all Oracle-related classes would appear under
the System.Data.OracleClient namespace.

These specific implementations for a specific database are referred to as .NET data providers.
This can be seen in Figure 1-4.

The modern-day computing world offers us many popular databases to choose from. As
described in the beginning of this chapter, these databases can be server- or file-based. While
server-based databases tend to be more stable and are able to support multiple concurrent
users better, file-based databases are easier to deploy and manage after your application has
been installed on a wide client base. Do note, however, that this is a generalization; for instance,
with Microsoft SQL Server 2005, you now have the capabilities of a full-fledged server-based
database while being able to communicate with it with the ease of a file-based system.

Given the vast choice of data sources available, ADO.NET needs to be able to support a wide
variety of data sources. Each data source might have its own peculiarities or set of features. Thus,
ADO.NET supports a provider model. An ADO.NET provider for a particular data source can

5122ch01.qxd 8/23/05 12:52 PM Page 7

CHAPTER 1 ■ AN INTRODUCTION TO ADO.NET8

be defined as a set of classes within a namespace that are designed specifically to work with
that particular data source.

In other words, for a specific data source, you need to have a specific .NET data provider.
This distinction is a bit blurry in the case of OleDb and ODBC since, by their nature, they have
been designed to work with any OleDb or ODBC compliant database, but even their specific
implementations live inside a specific .NET data provider designed especially for them. This
can be seen in Figure 1-5. Note that your program can use any of the objects inside the grey box
in Figure 1-5. You can choose to use disconnected objects, data adapters, connected objects, or a
combination thereof to architect your application.

Figure 1-5. The full picture: your program, ADO.NET, multiple data sources, and multiple data
providers

Now to set things in perspective for a moment, compare Figure 1-5 with Figure 1-1. The
shaded block in Figure 1-5 represents a zoomed-in image of the middle block in Figure 1-1.

By convention, the providers that come with the .NET Framework can all be found in
their own namespace under the System.Data namespace. Table 1-1 is a list of some common
data providers that come with the .NET 2.0 Framework.

Table 1-1. Various .NET Data Providers

Data Source Name Provider Namespace

Microsoft SQL Server 7.0 and above System.Data.SqlClient

Oracle 8.1.6 and above System.Data.OracleClient

SqlXml support in SQL Server System.Data.SqlXml

Any ODBC data source System.Data.ODBC

Any OleDb data source System.Data.OleDb

5122ch01.qxd 8/23/05 12:52 PM Page 8

CHAPTER 1 ■ AN INTRODUCTION TO ADO.NET 9

As you may note from Table 1-1, Microsoft SQL Server 7.0 and Oracle 8.1.6 can also be
accessed using the ODBC or OleDb data providers. Using the data source–specific data providers,
such as SqlClient or OracleClient, gives you some distinct advantages over using generic data
providers:

• Specialized data providers, such as SqlClient or OracleClient, give you much better
performance than generic ones.

• Specialized data providers are better equipped for database-specific functionality.

• Specialized data providers give you the ability to work with database-specific data types.
Doing so prevents boxing/unboxing costs in many instances, and it might alleviate data
type precision errors that may arise inadvertently when saving an Int64 in an Int32 column.

There may be times, however, when you might not know the exact data source you need
to interact with. ADO.NET provides you with a number of options in writing code that is
provider agnostic. Specifically, ADO.NET 1.1 gave you two ways of writing code that was
provider agnostic:

• Using the nonspecialized data providers: You could stick with a common minimum-base
functionality between all data sources and use either the ODBC or the OleDb data
providers. These data providers suffer performance, feature, and other disadvantages
because they are not database specific. Nevertheless, they do provide you with one
advantage—writing database-independent code. Depending on your exact need, you
may choose to ignore the performance and feature-set issues and stick with one com-
mon .NET data provider.

• Using interfaces and base classes: ADO.NET provides standard interfaces and base
classes for most commonly used objects. So, for example, the System.Data.SqlClient.
SqlConnection object must implement System.Data.IDbConnection and inherit from
System.Data.Providerbase.DbConnectionBase. By working with data types that are rep-
resented either by a base interface or an implemented interface, you can avoid runtime
cast errors. The disadvantage of this approach is that you need to stick with the common
minimum-base functionality even though now you might not pay the performance penalty
that ODBC or OleDb data providers would have been subject to.

Either of these ways is not perfect. While the first method doesn’t perform as well, the
second method suffers from providing you a subset and, in many cases, a different set of func-
tionality than the data source–specific provider would. To overcome these problems, ADO.NET 2.0
provides you with a convenient way to write code in a provider-agnostic method. For this purpose,
ADO.NET 2.0 gives you a provider factory in which available providers can be instantiated as
long as you know the correct provider name as a string variable. This is also referred to as the
ProviderBase model.

Using the ProviderBase Model
This approach incorporates the best of both worlds. Any Windows machine might contain
more than one data provider installed on it. In the .NET 2.0 Framework, there is a section in

5122ch01.qxd 8/23/05 12:52 PM Page 9

CHAPTER 1 ■ AN INTRODUCTION TO ADO.NET10

the Machine.Config file called DbProviderFactories. In that section, you can define various
data providers that can be accessed using the ProviderBase model. Listing 1-1 shows a typical
DbProviderFactories section in the Machine.Config file.

Listing 1-1. The DbProviderFactories Section

<system.data>
<DbProviderFactories>

<add name="Odbc Data Provider" invariant="System.Data.Odbc" support="BF"
description=".Net Framework Data Provider for Odbc"
type="System.Data.Odbc.OdbcFactory, System.Data, Version=2.0.3600.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089" />

<add name="OleDb Data Provider" invariant="System.Data.OleDb" support="BF"
description=".Net Framework Data Provider for OleDb"
type="System.Data.OleDb.OleDbFactory, System.Data, Version=2.0.3600.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089" />

<add name="OracleClient Data Provider" invariant="System.Data.OracleClient"
support="BF" description=".Net Framework Data Provider for Oracle"
type="System.Data.OracleClient.OracleClientFactory, System.Data.OracleClient,
Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" />

<add name="SqlClient Data Provider" invariant="System.Data.SqlClient"
support="FF" description=".Net Framework Data Provider for SqlServer"
type="System.Data.SqlClient.SqlClientFactory, System.Data, Version=2.0.3600.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089" />

<add name="SQL Server CE Data Provider"
invariant="Microsoft.SqlServerCe.Client" support="3F7" description=".NET Framework
Data Provider for Microsoft SQL Server 2005 Mobile Edition"
type="Microsoft.SqlServerCe.Client.SqlCeClientFactory, Microsoft.SqlServerCe.Client,
Version=9.0.242.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91" />

</DbProviderFactories>
</system.data>

■Note Such information could be specified in any configuration file: Machine.Config, App.Config,
Web.Config, and so on. Your custom data provider or a third-party data provider can be added to this collec-
tion by simply modifying the suitable configuration file.

You can easily enumerate through the available providers on your machine using the
code shown in Listings 1-2 and 1-3.

Listing 1-2. Enumerating Through Available Providers in C#

DataTable factoryClassesTable = DbProviderFactories.GetFactoryClasses();
foreach (DataRow factoryClass in factoryClassesTable.Rows)
{

Console.WriteLine("Name:"+ factoryClass["Name"]);

5122ch01.qxd 8/23/05 12:52 PM Page 10

CHAPTER 1 ■ AN INTRODUCTION TO ADO.NET 11

Console.WriteLine("Description:"+ factoryClass["Description"]);
Console.WriteLine("Invariant Name:"+ factoryClass["InvariantName"]);
Console.WriteLine("\n");

}

Listing 1-3. Enumerating Through Available Providers in Visual Basic .NET

Dim factoryClassesTable As DataTable = DbProviderFactories.GetFactoryClasses()
Dim factoryClass As DataRow
For Each factoryClass In factoryClassesTable.Rows

Console.WriteLine("Name:" & factoryClass("Name"))
Console.WriteLine("Description:" & factoryClass("Description"))
Console.WriteLine("Invariant Name:" & factoryClass("InvariantName"))
Console.WriteLine("")

Next

When this code is run, it produces output as shown here:

Name:Odbc Data Provider
Description:.Net Framework Data for Odbc
Invariant Name:System.Data.Odbc

Name:OleDb Data Provider
Description:.Net Framework Data for OleDb
Invariant Name:System.Data.OleDb

Name:OracleClient Data Provider
Description:.Net Framework Data for Oracle
Invariant Name:System.Data.OracleClient

Name:SQL Server CE Data Provider
Description:.NET Framework Data Provider for Microsoft SQL Server 2005 Mobile
Edition
Invariant Name:Microsoft.SqlServerCe.Client

If you wanted to actually use one of these data providers, you could use the code shown in
Listings 1-4 and 1-5.

Listing 1-4. Putting the ProviderBase Model to Work in C#

//Select SQL Client factory - Can change to use any provider later
DbProviderFactory factory = DbProviderFactories.GetFactory("System.Data.SqlClient");

//Create Connection from the factory
SqlConnection testConnection = (SqlConnection)factory.CreateConnection();
testConnection.ConnectionString = "..."; //Specify connection string – See Chapter 4
testConnection.Open();

//Create Command from the factory

5122ch01.qxd 8/23/05 12:52 PM Page 11

CHAPTER 1 ■ AN INTRODUCTION TO ADO.NET12

//Execute a command from the conneciton
testCommand.Connection = testConnection;
testCommand.CommandText = "...";
SqlDataReader reader = testCommand.ExecuteReader();
while (reader.Read())
{

Console.WriteLine(reader.GetValue(0));
}

Listing 1-5. Putting the ProviderBase Model to Work in Visual Basic .NET

'Select SQL Client factory - Can change to use any provider later
Dim factory As DbProviderFactory = _

DbProviderFactories.GetFactory("System.Data.SqlClient")

'Create Connection from the factory
Dim testConnection As SqlConnection = factory.CreateConnection()
testConnection.ConnectionString = "..." ' Specify connection string – See Chapter 4
testConnection.Open()

'Create Command from the factory
Dim testCommand As SqlCommand = factory.CreateCommand()

'Execute a command from the conneciton
testCommand.Connection = testConnection
testCommand.CommandText = "..."
Dim reader As SqlDataReader = testCommand.ExecuteReader()
While reader.Read()

Console.WriteLine(reader.GetValue(0))
End While

One of the things you might note in Listings 1-4 and 1-5 is that the ProviderBase model
allows you to retrieve strongly typed provider-specific objects such as SqlConnection and
SqlCommand without knowing in advance which provider the user intends to work with. The
user could have chosen "System.Data.SqlClient" through a drop-down on his UI, which is
simply passed to the GetFactory method as a string parameter.

This is possible because the DbProviderFactory object always returns objects of data types
that are actually base classes to various common objects in a .NET data provider. These common
base objects contained in the System.Data.Common namespace can be inherited by any other class
to create a third-party .NET data provider.

Third-Party .NET Data Providers
ADO.NET contains various base classes and interfaces that various third-party .NET data
providers can derive or implement to create their own specific implementations of commonly
used objects such as Connection, Command, and so on. One such example is the DbDataAdapter
class that implements the IDbDataAdapter interface. Thus, the SqlDataAdapter that can be found
in System.Data.SqlClient derives from DbDataAdapter, and hence implements the IDbDataAdapter

e shown in Table 1-2.

5122ch01.qxd 8/23/05 12:52 PM Page 12

CHAPTER 1 ■ AN INTRODUCTION TO ADO.NET 13

Table 1-2. Main System.Data.Common Classes

Class Name Description

DataAdapter This class acts as a sentry between the connected and
disconnected spheres of ADO.NET. It holds a set of data
commands (DbCommand objects) and a data source
connection (DbConnection object) that are used to fill the
DataSet or DataTable and update the data source. This
data source can be any type of data source, unlike the
DbDataAdapter which is only used with relational data
sources.

DbCommand This class is used for executing SQL commands, such as
SELECT queries against the data source.

DbCommandBuilder This class is used to create the INSERT, UPDATE, and DELETE
SQL statements for the command objects used by a data
adapter. It can be used only with a single data source table,
and only if the SELECT SQL statement has been specified
and at least one unique column is returned as part of the
row schema.

DbConnection This class is the actual connection to the data source.

DbConnectionOptions This class is used by the provider factory classes. It’s used
by the provider factory to create a connection; however, it
can also be used manually for purposes such as splitting
a connection string into key-value pairs. It has some
properties and methods that can convert the string values
in a key-value pair to integers and Booleans and check for
the existence of a specific key, such as Data Source.

DbConnectionStringBuilder This is a base class for creating connection strings, and it
can be used in connection with a data provider factory to
create a connection string, edit a connection string, read
a connection string from a configuration file, and save
a connection string to a configuration file. This is covered
in Chapter 4.

DbDataAdapter This class is an abstract helper class that is used with the
IDbDataAdapter interface. The DbDataAdapter class is
derived from the DataAdapter class, and it is used to
create a data adapter for a relational database. This is
done by creating a class that inherits the DbDataAdapter
class and implements the IDbDataAdapter interface.

DbDataReader This class reads a forward-only stream of rows from a data
source, and the rows can be accessed one at a time. The
connection must stay open while you’re reading the rows
from the DbDataReader because the rows are read directly
from the data source when requested.

DbDataRecord This class implements the IDataRecord and
ICustomTypeDescriptor interfaces. This way it provides
data-binding support for the DbEnumerator class. It is
often used with data binding on ASP.NET pages instead of
using the DataBinder.Eval method, which incurs
a performance overhead by using reflection.

DbException This is the generic data exception class, used for throwing
data-related exceptions. This abstract class inherits from
the ExternalException class.

Continued

5122ch01.qxd 8/23/05 12:52 PM Page 13

14 CHAPTER 1 ■ AN INTRODUCTION TO ADO.NET

Table 1-2. (Continued)

Class Name Description

DbParameter This class is used with parameters in your SQL commands
to create dynamic queries that can change by supplying
different values for the parameters.

DbProviderConfigurationHandler This class is used to configure a DbProviderFactory using
values from the application’s configuration file.

DbProviderFactory This class is used for creating provider-specific data-aware
classes based on various input.

DbTransaction This is the generic transaction class used to encapsulate
SQL statements in an all-or-nothing transaction. It’s used
in conjunction with a connection object.

The System.Data.Design Namespace
The System.Data.Design namespace, which is the smallest of the ADO.NET namespaces, con-
tains classes used to create typed DataSet classes, including code and parameters. This name-
space is new to the .NET Framework 2.0, but the classes in this namespace were located in the
System.Data namespace in previous versions of the .NET Framework.

The classes are mostly used internally by ADO.NET-related functionality that is exposed
in the Visual Studio .NET IDE, such as creating a typed DataSet from a DataAdapter dragged
from the toolbox and dropped on the designer. But it’s there for your convenience if you need
a way to create typed DataSets at runtime.

Summary
This chapter gave a brief introduction to the exciting world of ADO.NET. It introduced you to
various important classes and their logical groupings within ADO.NET.

It touched upon the need for a new data access architecture and the problems it solves. It
also showed how ADO.NET is logically grouped in the connected and disconnected parts and
how various data sources are supported using the ProviderBase model. It outlined the challenges
you can face when working with different providers available in ADO.NET as well as the vari-
ous facilities ADO.NET provides to create a data source–agnostic data layer.

In the next chapter, you will build upon what you have already learned in this chapter and
logically group the various classes into the namespace architecture that ADO.NET provides.

5122ch01.qxd 8/23/05 12:52 PM Page 14

15

C H A P T E R 2

■ ■ ■

The ADO.NET Object Model

S ir Isaac Newton, the British physicist who discovered gravity in the seventeenth century,
was a brilliant man. But let’s say that one day on his way to Cambridge he accidentally walked
into a wormhole and somehow showed up in the twenty-first century. What would his reac-
tion be?

Now imagine that he walks up to a large, painted, metal and glass box with four seats inside,
four doors, four wheels, a place to pour fuel, and some kind of controls to direct the movement
of that box. What would he consider that box to be?

If the last chapter was a little bit like explaining that the box is a car and it’s controlled by
using the pedals on the floor and the steering wheel on the dash, then this chapter is a bit like
opening the hood of the car, looking inside at the machinery, and understanding how that liq-
uid fuel makes this contraption move. Also, since you and I are engineers and engineers not
only like to drive the car, but also to break it, repair it, and fully understand how the fuel makes
the car move, it’s imperative that we understand how to perform such operations on the
ADO.NET car.

Before Sir Isaac Newton can learn how to rebuild an engine or change a timing belt, he
first needs to understand what an engine is, what its purpose is, what it looks like, how it works,
and where in that box the engine resides.

Chapter 1 introduced you to where ADO.NET fits into your architecture. You also saw how
ADO.NET is split into two main parts, connected and disconnected, and how you can have
various .NET data providers that allow you to work with different data sources.

This chapter takes the discussion away from logical block diagrams (learning how to drive
the car) to a deeper insight into ADO.NET using class diagrams and class hierarchy (learning
about the machinery). The purpose of understanding how various classes within ADO.NET are
laid out is to enable you to reason how the commonality is enforced amongst diverse .NET data
providers, and how the common disconnected parts of ADO.NET are able to perform a com-
mon role within ADO.NET.

This Is a Reference Chapter
As engineers, we like to understand what is under the hood before we sit behind the steering
wheel; however, simply telling you what exists under the hood of ADO.NET without establish-
ing practical groundwork underneath it all serves very little purpose.

This chapter introduces a lot of classes, interfaces, and namespaces that exist within
ADO.NET. It makes no sense to memorize by rote every single class name, interface, or namespace

5122ch02.qxd 8/23/05 12:56 PM Page 15

CHAPTER 2 ■ THE ADO.NET OBJECT MODEL16

presented in this chapter. Instead, concentrate on understanding the repeating inheritance
pattern that appears within various classes in ADO.NET. By doing so, supplemented with ref-
erencing the various images, class names, and namespaces presented here, you’ll retain the
various names presented in this chapter. Eventually, you’ll find no need to consult or memorize
by rote the contents presented in this chapter.

Thus, as you read through the rest of the book, keep looking back upon the various class names
and figures that appear in this chapter to settle the knowledge presented in the rest of the book.

Without any further delay, let us begin with a 10,000-ft. bird’s-eye view of where and how
ADO.NET appears in the .NET Framework.

10,000-Ft. View of ADO.NET
ADO.NET lives under the System.Data namespace within the .NET Framework. Like any
other part of the .NET Framework, ADO.NET doesn’t exist in a vacuum. There are classes under
System.Windows.Forms, System.Xml, System.Web, and other namespaces within the .NET Frame-
work that work with ADO.NET for operations such as drag-and-drop, transactions, and so on
that interact with ADO.NET. An example of such a class is BindingSource that is contained
under the System.Windows.Forms namespace, which is used to encapsulate a data source for
data-binding purposes.

While Chapter 11 covers transactions, Chapter 3 covers the drag-and-drop method to create
data-driven applications. A drag-and-drop operation in ADO.NET is a quick-and-easy way to
create a data-driven application. It has its place in the overall scheme of things when it comes
to creating prototypes or quick-and-easy applications when a full-scale enterprise-level archi-
tecture is not possible (due to time or budget restrictions); however, drag-and-drop operations
are not nearly enough to have an enterprise-level application up and running—in most cases,
you’ll need to get your hands dirty with real code. For you to be able to code effectively, it’s
critical to understand the class structure within ADO.NET as well as the purpose and behavior
of various distinct components of ADO.NET.

Another item mentioned in Chapter 1 was that the various connected portions of ADO.NET
are data source–specific. The connected portions for a particular data source are collectively
also referred to as the .NET data provider for that particular data source. Generally, by convention,
the data providers are available under their own namespace under the System.Data namespace.
For instance, a .NET data provider that allows you to connect to an Oracle database would
generally be found at System.Data.OracleClient, just as the .NET data provider that allows
you to connect with Microsoft SQL Server would be found at System.Data.SqlClient. This is,
however, only a convention, so don’t be surprised if you run into a data provider that doesn’t
follow this convention.

In fact, the various classes and interfaces that different classes under disparate .NET data
providers either inherit from or implement can easily be implemented by any third-party .NET
data provider. For instance, you could write your own .NET data provider by simply inheriting
from the right classes and implementing the right interfaces. Obviously, then, your written .NET
data provider could live in a namespace of your choice.

ADO.NET is a data access architecture. A few common operations such an architecture
should allow you to perform are the following: establish a connection with the data source,
execute a command, specify parameters to such a command, and fetch results back.

Let’s examine each of these operations to understand what objects in ADO.NET allow you
to perform these operations.

5122ch02.qxd 8/23/05 12:56 PM Page 16

CHAPTER 2 ■ THE ADO.NET OBJECT MODEL 17

Establishing a Connection: DbConnection
In order to work with a data source, your program needs to establish a connection with it. Due
to the variety of data sources available, the information required to connect to any given data
source might be very different. For instance, you might need to supply a user ID and password
along with the server and database name in order to connect to a Microsoft SQL Server database,
but connecting to a Microsoft Access database would require a file-path location. Also, every
data source might support a different set of operations; for instance, a Microsoft SQL Server
database might allow you to change databases, which is an operation that’s probably mean-
ingless in Microsoft Access.

There are differences in each data source; however, at the end of the day, they are all data
sources, thus there is a large degree of commonality between them as well. At the very least
(just because the entity being discussed is a data source you can connect with), there must be
some functionality to open a connection, close a connection, and also check the existing con-
nection state.

Given the fact that there are differences and commonalities, it makes sense to have indi-
vidual implementations for each data source’s connection object, which all inherit from the
same base class and implement the same interface.

What a coincidence, this is exactly what ADO.NET does! The connection object inherits from
the DbConnection base class, which in turn implements the IDbConnection interface. Thus, the
SqlConnection class, which appears at System.Data.SqlClient.SqlConnection, inherits from
System.Data.Common.DbConnection, which in turn implements System.Data.IDbConnection. Simi-
larly, the OracleConnection class, which appears at System.Data.OracleClient.OracleConnection,
also inherits from DbConnection and implements IDbConnection.

This hierarchy can be seen in Figure 2-1.

Figure 2-1. faces

5122ch02.qxd 8/23/05 12:56 PM Page 17

CHAPTER 2 ■ THE ADO.NET OBJECT MODEL18

Figure 2-2. Viewing a Connection object in the Visual Studio .NET component tray

As you can see, for a class to qualify as a valid connection object within the ADO.NET
Framework, it must inherit from System.Data.Common.DbConnection. What’s important about this
class is that it implements IDbConnection, which in turn implements IDisposable. It’s reasonable
to expect that keeping a connection open is tantamount to holding valuable resources, thus the
IDisposable interface requires you to implement the Dispose method where you are supposed
to do any cleanup required by your object. Similarly, the IDbConnection interface establishes the
common ground between various connection objects by enforcing a common set of methods
and properties that they must implement to qualify as a valid connection object.

Thus, you can count on the fact that for the connection object of any .NET data provider
you come across, the method to connect with its data source will be an Open method and not
a Connect or EstablishConnection method. Such commonality also allows you to write data
provider–independent code.

Another important thing to note in Figure 2-1 is that the DbConnection class inherits from
the System.ComponentModel.Component class. This means that any ADO.NET connection object
can be hosted at design time in an environment that implements the IContainer interface
because a Component can be hosted inside a container that implements the IContainer inter-
face. The place where this makes direct impact on you as a programmer is that you can host
an ADO.NET connection object inside the component tray in Visual Studio .NET, as shown in
Figure 2-2. This allows for an easy and convenient user interface that lets you specify various
properties in a visual way at design time.

5122ch02.qxd 8/23/05 12:56 PM Page 18

CHAPTER 2 ■ THE ADO.NET OBJECT MODEL 19

Once your application has the ability to establish a connection, the next important step is
to be able to execute a command. A command has to be executed on a connection, and because
a command can change the underlying data, it makes sense to have some kind of transactional
semantics associated with the command object. Therefore, it makes sense to discuss com-
mands in correlation with both connections and transactions. Let’s look at that next.

Executing a Command: DbCommand
and DbTransaction
Just like a connection object within the ADO.NET Framework requires commonality between its
various implementations in different .NET data providers, the command object lives by the same
rules. Just like a connection object needs to inherit from the System.Data.Common.DbConnection
class, the command object needs to inherit from the System.Data.Common.DbCommand class,
which in turn implements the IDbCommand interface. Thus, the Microsoft SQL Server–specific
command object that appears under the SqlClient namespace, the SqlCommand object, inher-
its from DbCommand. This enforces the similar behavior and commonality between SqlCommand
and any other command object within the framework, say OracleCommand.

Also, a command needs a connection to execute upon. For this reason, there exists
a Connection property on the DbCommand object. The connection has to be of DbConnection type.
Thus, because SqlConnection inherits from DbConnection and SqlCommand inherits from DbCommand,
you can specify a SqlConnection object on the SqlCommand.Connection property.

Similarly, if the command needs a transaction, the DbCommand object has a property called
Transaction, which is of DbTransaction type. DbTransaction is the base class that implements
IDbTransaction, which enforces a common implementation and behavior between various
Transaction implementations within different .NET data providers. Therefore, you can specify
an OracleTransaction, which inherits from DbTransaction at the OracleCommand.Transaction
property. This can be seen in Figure 2-3.

Another thing you may note in Figure 2-3 is that just like the DbConnection object, the
DbCommand object also inherits from System.ComponentModel.Component, which in turn allows
the command object to be visually edited inside a container such as Visual Studio .NET.

Commands are frequently written in a generic fashion. For instance, if you wish to have
a command to update customer information, you probably want to write that command once
and apply it to any customer that you may come across. This is achieved by specifying param-
eters to the command.

5122ch02.qxd 8/23/05 12:56 PM Page 19

CHAPTER 2 ■ THE ADO.NET OBJECT MODEL20

Creating Parameterized Commands: DbParameter
I am lazy. I don’t want to write a new command for every single customer row that might appear
in the Customers table. Fortunately, my boss agrees with me, because he doesn’t want me
wasting time where I shouldn’t have to. And, fortunately, even most databases agree with me
because they try to improve their performance by caching query plans when they see a com-
mand with the same repeating structure. Thus, it makes sense to create a parameterized query
for every Customer row in the Customers table. Parameterized queries have other advantages
too, like being more resistant to injection attacks, in general not requiring you to delimit single
quote characters anytime you deal with a string parameter.

This can be achieved by specifying the command text once and using parameters to achieve
the flexibility you may need for different Customer rows within the same table.

Thus, instead of writing a query that looks like

Update Customers Set FirstName = 'Sahil' where CustomerID = 1

you could, instead, write the query like

Update Customers Set FirstName = @FirstName where CustomerID = @CustomerID

Writing this query allows you to specify values for the two involved parameters,
'Sahil'.

Figure 2-3. The SqlCommand and OracleCommand objects, their Transaction and Connection
properties, and their base class and interface implementations

5122ch02.qxd 8/23/05 12:56 PM Page 20

CHAPTER 2 ■ THE ADO.NET OBJECT MODEL 21

Since a command is represented by the DbCommand object and every .NET data provider may need
to have parameterized commands, this commonality is enforced at the DbCommand level by pro-
viding you with a property called Parameters. The Parameters property is of DbParametersCollec-
tion data type, which is nothing but a collection of DbParameterobjects. This can be seen in Figure 2-4.

Figure 2-4. Specifying Parameters to the SqlCommand and OracleCommand objects using
SqlParameter and OracleParameter objects

An important point to note in Figure 2-4 is that the association between SqlCommand’s and
OracleCommand’s Parameters properties is represented by a double arrow instead of a single arrow,
signifying that it is a collection and not a singular object. Also, as you can see from Figure 2-4,
just as the DbCommand.Parameters property points to DbParametersCollection, the SqlCommand.
Parameters property points to a SqlParameterCollection, which holds a number of SqlParameters.
Similarly, the OracleCommand.Parametersproperty points to an object of OracleParameterCollection
type, which is a collection of OracleParameters.

Thus, in this manner, every .NET data provider that must implement a command object must
have a Parametersproperty that holds a variable of type that inherits from DbParametersCollection,
which is a collection of DbParameter objects.

After executing commands over a connection, the data fetched needs to be held in some
kind of object in .NET code. You could write up your own business objects to represent the data
or you could use the standard object that comes as a part of the .NET Framework, the DataSet
object, to act as the disconnected cache of your data. Let’s examine the structure and purpose

vered in depth in Chapter 6.

5122ch02.qxd 8/23/05 12:56 PM Page 21

CHAPTER 2 ■ THE ADO.NET OBJECT MODEL22

Holding Disconnected Data: DataSet
As you saw in Chapter 1, ADO.NET can be split into two major halves: the connected and the
disconnected. The connection object, command object, rransaction object, and parameter
object along with a few others that form a .NET data provider are objects that need to be con-
nected with the underlying data source to work.

Commands can be split into three major categories: Data Definition Language (DDL),
which is used to define the structure of the database; Data Manipulation Language (DML),
which is used to run queries such as UPDATE, INSERT, and DELETE; and Data Query Language
(DQL), which is used to query data out of the database. An example of DQL is the SELECT
command.

Once such a command is executed, frequently the results are not singular, but appear as
a result set or maybe as a collection of result sets. A result set is simply tabular data that might con-
tain one or more tables. The result set might be read in a connected fashion, using a DataReader
object, which is described briefly later in this chapter and in detail in Chapter 5. Another way
of reading the result set is to fill an object representation of the data and disconnect with the
underlying data source. As you will see in Chapter 4, it’s critical to open the connection as late
as possible and close it as early as you can to facilitate better connection pooling. For now, it’s
enough to understand that connection pooling refers to the technique or process of sharing the
valuable open connection with the data source between requests in an effort to significantly
improve performance. Most providers in .NET will give you this facility by default; in other
words, you don’t have to write any code, but you need to follow the proper guidelines, as discussed
in Chapter 4, to take advantage of connection pooling.

So, you need an object to hold disconnected data. Since the data is disconnected, its imple-
mentation doesn’t have to be data source–specific, as long as there’s some object in the middle
acting as a bridge for you. In other words, the implementation of the object that holds discon-
nected data for you mustn’t be specific to a particular underlying data source, such as Microsoft
SQL Server or Oracle. This bridge, or the sentry between the connected and disconnected
worlds, is the DataReader object described later in this chapter.

As mentioned before, to hold disconnected data, you could write your own business object.
While that approach is certainly possible, it’s also quite possible that there’s some work involved
in setting up the business objects, especially when you consider the fact that now you will be
responsible for writing all the code to make operations such as data binding, state management,
row versions history, etc. possible. (These are covered in further depth in Chapter 6.) It can be
argued, however, that it’s possible to create a business object–based architecture that saves you
work in the long run or is simply a better architecture suited to your situation. There are various
pros and cons to using a business object versus a DataSet, and these are covered in Chapter 14.

■Note What is a business object? A business object is an object that abstracts the entities in the domain
that the program is written to represent. In other words, it’s a representation of something logical in your
architecture. Say you’re designing a system for an insurance company. The customer will probably under-
stand what a policy is, or what a premium is, but the concept of a DataSet or DataTable might be alien to
him. The business objects would be representations of policy and premium rather than DataSets holding
policy and premium information. The exact implementation of business objects is specific to your circum-
stance; however, good reference books for business objects are available: Expert C# Business Objects and

press, 2004/2003).

5122ch02.qxd 8/23/05 12:56 PM Page 22

CHAPTER 2 ■ THE ADO.NET OBJECT MODEL 23

You can use business objects or you can use the DataSet object and its various constituents.
The DataSet object acts as a ready-to-use disconnected cache of data that ships with the .NET
Framework. Even though Chapter 6 discusses DataSets and their various constituents in detail,
Figure 2-5 gives an overview of the major data provider–independent disconnected objects
involved in the DataSet object structure.

Figure 2-5. The DataSet and its various constituents such as DataTable, DataRelation,
DataColumn, DataRow, and Constraint

The best way to understand a DataSet’s structure is to draw a parallel with an RDBMS.
However, I must point out that a DataSet is still an in-memory object. It shouldn’t be confused
or abused as an RDBMS. Its sole purpose is to do what an RDBMS cannot do—provide you
with relational, structured data as a disconnected, portable, in-memory object.

So if a DataSet is the closest parallel to an RDBMS database, with tables and foreign-key
relationships between them, then the DataTable object is the closest simile of a table and the
DataRelation is the closest simile of a foreign-key constraint. Similarly, a column is the closest
parallel to a DataColumn object and DataRow is the closest parallel to a row.

Thus, the DataSet object contains a collection of DataTable objects as a property called Tables,
which is of DataTableCollection type. Also, it contains a property called Relations, which is of
DataRelationCollection type that is a collection of DataRelation objects.

Similarly, the DataTable object has a property called Columns, which is a collection of
DataColumn objects represented by the DataColumnCollection object. Also, it contains
a DataRowCollection type property called Rows to represent the various rows as DataRow objects.

A DataTable may have constraints defined on itself (such as a UniqueConstraint), a collection
of which is held by the Constraints property, which is of ConstraintCollection type that holds

it from the Constraint object.

5122ch02.qxd 8/23/05 12:56 PM Page 23

CHAPTER 2 ■ THE ADO.NET OBJECT MODEL24

Now that you have commands that can be executed to manipulate and fetch data, and objects
to hold fetched data, next let’s look at the two ways to fetch data from the underlying data source.

Fetching Data: Data Reader and Data Adapter
Now that you have an object to hold disconnected data and you have a bunch of objects to
connect and execute transactional and parameterized commands, next you need to see the
two ways to fetch data from the underlying data source. The two methods differ in their
approaches of how long they keep the connection open.

The first approach is using a DataReader object, which insists upon an open and available
connection in order to fetch results back. This approach typically works faster in a single-user
scenario, but where you might need to do heavy processing between rows, it might have a sig-
nificant impact on connection pooling. (This comparison and its various use cases have been
further detailed in Chapter 14.)

The second approach is using a DataAdapter object. The data adapter takes a different
approach by executing the command and filling out all the retrieved information in a discon-
nected cache—a DataSet or a DataTable. Once it’s done filling out the information, it then dis-
connects itself from the underlying data source so the underlying physical connection can be
reused by someone else. (See Chapter 4 for how an underlying physical connection is different
from DbConnection and how this difference allows the physical connection to be reused by
someone else.)

Let’s examine these two approaches one by one, starting with the DataReader object.

The Connected Way to Fetch Data: DbDataReader
Some commands fetch data, some commands manipulate data, and some commands do
both. For that reason, DbCommand contains various methods on it to execute the command. For
instance, one of the methods is ExecuteNonQuery, which simply returns a sum of the total
number of rows affected due to the command executed.

Another such method is the ExecuteReader method. The ExecuteReader method is used
when you want to fetch the results of a query as a result set.

The ExecuteReader method returns an object that inherits from DbDataReader, which is
a common abstract base class that any data reader implementation must inherit from. This
can be seen in Figure 2-6.

5122ch02.qxd 8/23/05 12:56 PM Page 24

CHAPTER 2 ■ THE ADO.NET OBJECT MODEL 25

Once you have a DataReader object, you can use the various methods on it to iterate through
the results and read the values of various columns of the row the data reader is currently posi-
tioned at.

It is important to realize, however, that a data reader is a read-only/forward-only, firehose
cursor that insists on keeping an underlying physical database connection open while it’s
executing.

Data readers are covered further in Chapter 5.

The Bridge Between Connected and Disconnected:
DbDataAdapter
The DataAdapter object is the sentry, or bridge, between the connected and disconnected worlds.
Since the actual implementation of a data adapter is specific to the underlying data source,
you have specific data adapters implemented as a part of the .NET data provider. For instance,
Microsoft SQL Server requires a SqlDataAdapter and Oracle requires an OracleDataAdapter. If
you need generic access via ODBC or OleDb, you have specific data adapters for the generic data
access needs in the form of OdbcDataAdapter and OleDbDataAdapter.

Just like the rest of the connected-world ADO.NET objects, commonality between these
various objects is enforced by a common base class—the DbDataAdapter class. This can be seen
in Figure 2-7. If the number of crisscross arrows appears too overwhelming, try this little trick:
Put your hand over the OracleCommand and OracleDataAdapter objects to view the relationship
between SqlCommand/SqlDataAdapter and DbCommand/DbDataAdapter. Then repeat by putting your
hand over SqlCommand and SqlDataAdapter to view the relationship between OracleCommand/
OracleDataAdapter and DbCommand/DbDataAdapter.

Figure 2-6. SqlDataReader and OracleDataReader—both inherit from DbDataReader

5122ch02.qxd 8/23/05 12:56 PM Page 25

CHAPTER 2 ■ THE ADO.NET OBJECT MODEL26

Also worth noting in Figure 2-7 are the two SqlCommand and OracleCommand classes, which
both inherit from DbCommand. The data adapter needs various DbCommands to work. It can use up
to four DbCommands as the InsertCommand, UpdateCommand, DeleteCommand, and SelectCommand
properties for INSERT, UPDATE, DELETE, and SELECT operations. The base class for data adapters,
DbDataAdapter, defines these four properties of DbCommand data type.

Following the trend of the rest of the ADO.NET connected objects, the specific data adapters,
the SqlDataAdapter, OracleDataAdapter, etc., also provide you with four properties with the same
names—InsertCommand, UpdateCommand, DeleteCommand, and SelectCommand, which take data
provider–specific command objects such as SqlCommand and OracleCommand.

An important part of any programming architecture is error handling. .NET gives you
a mechanism called exception handling to facilitate this task. ADO.NET, like any other architec-
ture, contains a number of standard exceptions for various error conditions that may occur.
Let’s examine various exceptions available within ADO.NET that you should look out for.

Exceptions in ADO.NET
Errors happen. In the .NET Framework, they are thrown as exceptions that are segmented and
protected callpaths, which allow developers to handle errors in a more robust manner. You can
use a simple try...catch block to catch and act upon predefined possible error conditions. It is
important to note, however, that exceptions are implemented as classes, and if your catch
blocks are looking for a base-class exception before the specific inherited exception, you may
never catch the specific exception. The specific or inherited exception will be masked by the
base class.

For instance, in the .NET Framework, SqlTruncateException inherits from SqlTypeException,
ere to write your exception-handling code

Figure 2-7. SqlDataAdapter and OracleDataAdapter—both inherit from DbDataAdapter

5122ch02.qxd 8/23/05 12:56 PM Page 26

CHAPTER 2 ■ THE ADO.NET OBJECT MODEL 27

as shown in Listings 2-1 and 2-2 and a SqlTruncateException occurs, it will be caught in the first
System.Exception block and the code inside the catch block for SqlTruncateException will never
be executed.

Listing 2-1. Incorrect Way of Ordering Exception-Handling Blocks in C#

try
{

...
}
catch (Exception ex)
{

...
}
catch (SqlTypeException sqlTypeEx)
{

...
}
catch (SqlTruncateException sqlTruncateEx)
{

...
}

Listing 2-2. Incorrect Way of Ordering Exception-Handling Blocks in Visual Basic .NET

Try
...

Catch ex as Exception
...

Catch sqlTypeEx as SqlTypeException
...

Catch sqlTruncateEx as SqlTruncateException
...

End Try

The correct way to order exception-handling blocks is shown in Listings 2-3 and 2-4.

Listing 2-3. Correct Way of Ordering Exception-Handling Blocks in C#

try
{

...
}
catch (SqlTruncateException sqlTruncateEx)
{

...
}
catch (SqlTypeException sqlTypeEx)

5122ch02.qxd 8/23/05 12:56 PM Page 27

CHAPTER 2 ■ THE ADO.NET OBJECT MODEL28

...
}
catch (Exception ex)
{

...
}

Listing 2-4. Correct Way of Ordering Exception-Handling Blocks in Visual Basic .NET

Try
...

Catch sqlTruncateEx as SqlTruncateException
...

Catch sqlTypeEx as SqlTypeException
...

Catch ex as Exception
...

End Try

Thus, to write effective exception-handling code, you have to understand the various
exception classes that exist within ADO.NET and use them accordingly.

ADO.NET exceptions have been restructured in .NET 2.0. They can be categorized into
four major categories:

• Disconnected stack exceptions inheriting from System.Data.DataException:

The various exceptions that may occur when working with disconnected data caches
are shown in Figure 2-8.

5122ch02.qxd 8/23/05 12:56 PM Page 28

CHAPTER 2 ■ THE ADO.NET OBJECT MODEL 29

As you may note, all of these exceptions either directly or indirectly inherit from
System.Data.DataException. Thus, if you have code that includes both ADO.NET and
non-ADO.NET operations within your try...catch block, you can filter the ADO.NET
exceptions that occur in disconnected data caches by looking for this exception type.

Most of the exceptions inherit directly from System.Data.DataException with the exception
of EvaluateException and SyntaxErrorException. Both of these exceptions inherit from
InvalidExpressionException, which, in turn, inherits from System.Data.DataException.
The InvalidExpressionException acts as a catchall exception for all DataColumn expression-
related exceptions.

• Provider stack–specific exceptions inheriting from System.Data.Common.DbException:

These exceptions can be seen in the bottom left portion of Figure 2-9.

Figure 2-9. Various other exceptions thrown by classes in ADO.NET

These exceptions within ADO.NET are the ones that could be caused by third-party
.NET data provider libraries and their underlying unmanaged code. These inherit from
System.Runtime.InteropServices.ExternalException. Since ExternalException is a class
common to the entire .NET Framework, ADO.NET puts another level of inheritance to
segregate ADO.NET-specific external exceptions in the form of the System.Data.Common.
DbException. Thus, any .NET data provider can now inherit from DbException and
implement its own custom exception such as SqlException and OracleException.

• SqlTypes-specific exceptions inheriting from System.Data.SqlTypes.SqlTypeException:

These exceptions inherit from System.Data.SqlTypes.SqlTypeException. As the name
suggests, all exceptions that occur when working with SqlTypes inherit from this excep-
tion. The four exceptions that inherit from SqlTypeException are SqlNotFilledException,
SqlAlreadyFilledException, SqlTruncateException, and SqlNullValueException. These
can be seen in the top portion of Figure 2-9.

5122ch02.qxd 8/23/05 12:56 PM Page 29

CHAPTER 2 ■ THE ADO.NET OBJECT MODEL30

• Other ADO.NET exceptions inheriting directly from System.Exception:

These exceptions comprise the group that inherits directly from System.Exception:
DBConcurrencyException and OperationAbortedException. The DbConcurrencyException
is thrown by the data adapter when it detects a concurrency violation. The data adapter
deduces a concurrency violation when it has expected one row to be modified based
upon the command it executed, but zero rows were modified at the time of execution.
These can be seen in the bottom right portion of Figure 2-9.

The OperationAbortedException is a new exception added in the .NET 2.0 Framework.
This exception indicates that an operation has been aborted by the consumer of an API.
In ADO.NET, this exception is thrown when the user aborts the SqlBulkCopy operations
in the SqlBulkCopy.SqlRowsCopied event. SqlBulkCopy is a new introduction in .NET 2.0
and its purpose is to efficiently ferry large amounts of data between databases. This object
is covered in Chapter 9.

Summary
This chapter gave you the essence of ADO.NET. It built upon the information presented in the
first chapter, and took the discussion away from a logical placement of ADO.NET to a more
physical placement with class structures and specific objects.

While the figures showed Microsoft SQL Server–specific objects and Oracle-specific objects,
it is important to realize that you could fire up Visual Studio .NET and create a new class library
project that implements those very interfaces and inherits from those very base-class objects
shown in this chapter and write your own .NET data provider.

An example of a .NET data provider for Microsoft Message Queuing (MSMQ) was presented
in my previous book titled Pro ADO.NET with VB.NET 1.1 (Apress, 2004). Do note, however, that
the information presented in that book pertains to .NET Framework 1.1, but the concepts are
fairly similar. The big difference is the new provider factory, but you can look up an existing .NET
data provider such as SqlClient using a tool such as Lutz Roeder’s reflector and write up one
for any data source of your choice.

This chapter is probably the most concentrated theory chapter in this book. A lot of class
names and interface names were introduced in this chapter. If you are feeling a bit overwhelmed
because you can’t remember all these names, that’s perfectly all right. Even if you memorized
all these names, your understanding will fade if not supplanted with practical examples. These
names will begin to settle in your understanding as you move through this book and its various
chapters. So, as you walk through the rest of the chapters in this book, keep referencing back
to all the class names presented in this chapter.

Subsequent chapters introduce these same objects to you in a practical, task-oriented
approach. In the same spirit, the next chapter gets into writing some real code and creating
a data-driven application.

5122ch02.qxd 8/23/05 12:56 PM Page 30

31

C H A P T E R 3

■ ■ ■

ADO.NET Hello World!

The first chapter explained the purpose of ADO.NET and where it fits in the overall architec-
ture. It explained using common block diagrams, the very high-level structure of ADO.NET,
the connected and disconnected portions of ADO.NET, and the .NET data provider model.

The second chapter took that discussion from a 30,000-ft. view to about a 10,000-ft. view
where you saw the various objects, their inheritance layout within ADO.NET, the various
namespaces, and the reasoning behind that structure.

It’s now time to walk on the ground and write a few real data-driven applications. But
before you deal with the intricacies and complexities of a true enterprise-level data-driven
architecture, it makes sense to see a few simple applications first. This is in the spirit of “crawl
before you walk, walk before you run.” This chapter begins with extremely simple data-driven
applications that require you to write absolutely no code at all. In fact, an entire working appli-
cation is produced by only dragging and dropping. Then, this approach is taken forward to
increasingly more involved examples where you’ll blend some writing with dragging and
dropping. You’ll proceed to a small data-driven console application where you’ll write every
part of the code yourself.

Since all the examples presented in this chapter will be data driven, it is probably a good
idea to set up the data source being used first. The examples presented in this book exemplify
various ADO.NET concepts using a local Microsoft SQL Server 2005 instance. Any differences
with Oracle or other major providers will be identified as they arise. For the purposes of this
chapter, however, the examples are simple enough that there are no differences between the
major data providers.

Setting Up the Hello World Data Source
The quintessential Hello World example serves as a simple introduction to any programming
concept. Let’s try and leverage that to our advantage by setting up a simplistic data source.
As mentioned earlier, the data source will be a database on the local running instance of
Microsoft SQL Server 2005. The database name will be Test, and it will contain one table
called Demo. This table can be set up using the following script:

Create Table Demo
(
DemoID int identity primary key,
DemoValue varchar(200)
)

5122ch03.qxd 8/23/05 3:10 PM Page 31

CHAPTER 3 ■ ADO.NET HELLO WORLD!32

Figure 3-1. Contents of the underlying data source for the examples in this chapter

Go

Insert Into Demo (DemoValue) Values ('Hello World')
GO

The Demo table contains two columns, one of which is DemoID of int type, which is an iden-
tity column. Identity columns are specific to SQL Server; if you’re working with Oracle, you’ll
have to modify your queries to use sequences instead. Thus, depending on the exact database
you’re working with, you’ll have to leverage either an identity or a sequence. For instance, in
IBM DB2 you have a choice of picking between a sequence and an identity.

The second column is DemoValue of VarChar(200) type, which stores a simple text value.
You can download the previous script from the code samples for this chapter in the Downloads
section of the Apress website (http://www.apress.com); it can be found under Chapter 3 in
a file called Create Database.sql. This will enable you to set up such a data source for a local
running instance of Microsoft SQL Server 2005.

Finally, there’s one row inserted in the table—the Hello World row. You can run a simple
SELECT query and find the contents of the underlying data source of your Hello World applica-
tions that you’ll be writing in this chapter. Figure 3-1 shows the contents of the underlying
data source.

With the data source set up, let’s begin by creating the first simplistic data-driven application.

Creating a Data-Driven Application: The Drag-
and-Drop Approach
The purpose of this application is simple. All it needs to do is provide you with a user interface
that lets you view the contents of the Demo table in the Test database. Also, it should give you
some user interface that lets you modify the data.

Historically, developed applications have taken two diverse paths. One insists on being
a monolithic, fat-client architecture that leverages the power of the desktop. Obviously, the
advantage here is the flexibility you get by having the full power of the desktop and the local
nature of the application. The disadvantages are deployment and maintenance issues.

The second kind of application is designed to work on various platforms through a browser.
Typically, these applications are HTML-based, which leverage very little power of the end client,
and most of the work is done at the server. The advantages are easy deployment and versioning,
but the disadvantages include a colossal waste of the end client’s computing power, and your
application having to support various configurations at the end client that you cannot control.

5122ch03.qxd 8/23/05 3:10 PM Page 32

CHAPTER 3 ■ ADO.NET HELLO WORLD! 33

Figure 3-2. Creating a new ASP.NET 2.0 website

In addition, there are some midway application architectures, such as ActiveX and ClickOnce.
But for the purposes of this chapter, let’s concentrate on the two major kinds of applications:
web-based (ASP.NET) and Windows Forms–based.

Let’s begin by looking at web-based applications first, or as they are referred to in the .NET
platform, ASP.NET applications.

Drag and Drop in ASP.NET 2.0
The simplicity of creating an application using drag and drop in ASP.NET 2.0 is quite remark-
able. The approach and underlying architecture are different from ASP.NET 1.1, which will not
be discussed here.

The code for this example can be downloaded from the Downloads section for this chap-
ter under DragDropWebsite, or you can easily create it yourself by following the steps here. Do
note that because there’s no code to write, the instructions are exactly the same for both C#
and VB.NET:

1. Start by firing up Visual Studio 2005 and creating a new website. To do this, select File
➤ New ➤ WebSite.

2. Give it a name; I chose DragDropWebsite, which is demonstrated in Figure 3-2.

Take note that I am using C# in Figure 3-2 as my choice language. Since the steps are exactly
the same for VB.NET, if you prefer, you can choose VB.NET as your choice language.

3. Click OK to create the website.

4. The created website should have one Default.aspx page created for you. If that page is
not already open inside the Visual Studio IDE, double-click it to open it. At the bottom

.

5122ch03.qxd 8/23/05 3:10 PM Page 33

CHAPTER 3 ■ ADO.NET HELLO WORLD!34

5. Next, open the Database Explorer/Server Explorer window. If the window is not already
visible, you can enable it by selecting View ➤ Server Explorer. This window should look
similar to the one shown in Figure 3-3.

If your Database Explorer/Server Explorer window looks somewhat different than mine—
don’t panic. It’s only because your Server Explorer already has a few entries and mine is
blank.

6. Next, right-click on Data Connections and choose Add Connection as shown in Figure 3-4.

Figure 3-3. The Database Explorer/Server Explorer window

This should show a dialog box that prompts you to select the appropriate data source.
At this point, you can go ahead and fill in the various values. When you click Test Con-
nection, you should see a dialog box informing you that the connection is valid and the
test succeeded, as shown in Figure 3-5.

Figure 3-4. Adding a connection to the Database Explorer/Server Explorer

5122ch03.qxd 8/23/05 3:10 PM Page 34

CHAPTER 3 ■ ADO.NET HELLO WORLD! 35

Figure 3-5. Setting up the data source

7. Click OK twice to accept the data source. At this point, you should be able to see a data
source defined under the Data Connections node in the Database Explorer window.

8. Next, expand the Database Explorer’s newly added data source until you see the Demo
table. This can be seen in Figure 3-6.

Figure 3-6. The Demo table—setting up the data source

5122ch03.qxd 8/23/05 3:10 PM Page 35

CHAPTER 3 ■ ADO.NET HELLO WORLD!36

9. Now the fun starts! With your mouse, drag and drop the Demo table to the surface of
Default.aspx. This should add two things on the surface of the .aspx page: a GridView
control and a SqlDataSource. This can be seen in Figure 3-7.

Notice the small, black, arrow-like button facing to the right at the top-right edge of
the GridView control. When you click it, you should see an editing pane that allows you
to format the GridView control and set a few properties. Go ahead and enable editing
and deleting, along with formatting the GridView to a scheme of your choice. This can
be seen in Figure 3-8.

10. That’s it. Now compile and run the application. You might be prompted to start with or
without debugging, just select the default choice. You should see your Hello World
web-based application running, as shown in Figure 3-9.

Figure 3-7. The newly added GridView and SqlDataSource controls on the .aspx page

Figure 3-8. Setting properties on the GridView

5122ch03.qxd 8/23/05 3:10 PM Page 36

CHAPTER 3 ■ ADO.NET HELLO WORLD! 37

Figure 3-9. Hello World in ASP.NET

Try playing around with the application a bit. You’ll notice that this is a fully functional
application that even lets you modify the underlying data. If you do happen to modify the
underlying data, you can easily restore it by running the script provided with this chapter again.

So you wrote absolutely no C# or VB.NET code and you have a data-driven web-based
application ready. How did it all work? Well, the framework did all the work for you. It queried
the underlying data source for you and encapsulated all that functionality within the various
properties set on the GridView control and the SqlDataSource control.

If you view the source of the .aspx page and check out the listing for SqlDataSource, you’ll
see that it looks like the code shown in Listing 3-1.

Listing 3-1. The SqlDataSource Control Defined on the Default.aspx Page

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
ConnectionString="<%$ ConnectionStrings:TestConnectionString1 %>"
DeleteCommand="DELETE FROM [Demo] WHERE [DemoID] = @original_DemoID"
InsertCommand="INSERT INTO [Demo] ([DemoValue]) VALUES (@DemoValue)"
ProviderName="<%$ ConnectionStrings:TestConnectionString1.ProviderName %>"
SelectCommand="SELECT [DemoID], [DemoValue] FROM [Demo]"
UpdateCommand=
"UPDATE [Demo] SET [DemoValue] =
@DemoValue WHERE [DemoID] = @original_DemoID">

<InsertParameters>
<asp:Parameter Name="DemoValue" Type="String" />

</InsertParameters>
<UpdateParameters>

<asp:Parameter Name="DemoValue" Type="String" />
<asp:Parameter Name="original_DemoID" Type="Int32" />

</UpdateParameters>
<DeleteParameters>

<asp:Parameter Name="original_DemoID" Type="Int32" />
</DeleteParameters>

5122ch03.qxd 8/23/05 3:10 PM Page 37

CHAPTER 3 ■ ADO.NET HELLO WORLD!38

A few things are worth noting in Listing 3-1:

• The connection string, which is the information that tells the underlying libraries what
data source to connect with and how to connect with it, has already been set up for you
under ConnectionStrings:TestConnectionString1. This, as it turns out, has been specified
in the Web.Config file under the ConnectionStrings section for you. This can be seen in
Listing 3-2.

Listing 3-2. The Connection String Defined for You in the Web.Config File

<connectionStrings>
<add name="TestConnectionString1"
connectionString="Data Source=(local);Initial Catalog=Test;
Integrated Security=True" providerName="System.Data.SqlClient"/>

</connectionStrings>

• The framework queried the underlying data source for you and prepared SQL statements
for the various possible commands. This can be seen in Listing 3-1.

• Those commands are even parameterized with the right data types. All of this—written
for you, by the framework. This also can be seen in Listing 3-1.

Next, let’s turn our attention to the GridView control added for you by the framework. If
you look in the source of the .aspx page, you should see code similar to that in Listing 3-3.

Listing 3-3. The GridView Control Defined on the Default.aspx Page

<asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False"
BackColor="White" BorderColor="#CCCCCC" BorderStyle="None" BorderWidth="1px"
CellPadding="4" DataKeyNames="DemoID" DataSourceID="SqlDataSource1"
EmptyDataText="There are no data records to display." ForeColor="Black"
GridLines="Horizontal">

<FooterStyle BackColor="#CCCC99" ForeColor="Black" />
<Columns>

<asp:CommandField ShowDeleteButton="True" ShowEditButton="True" />
<asp:BoundField DataField="DemoID" HeaderText="DemoID"

ReadOnly="True" SortExpression="DemoID" />
<asp:BoundField DataField="DemoValue"

HeaderText="DemoValue" SortExpression="DemoValue" />
</Columns>
<PagerStyle BackColor="White" ForeColor="Black" HorizontalAlign="Right" />
<SelectedRowStyle BackColor="#CC3333" Font-Bold="True" ForeColor="White" />
<HeaderStyle BackColor="#333333" Font-Bold="True" ForeColor="White" />

</asp:GridView>

5122ch03.qxd 8/23/05 3:10 PM Page 38

CHAPTER 3 ■ ADO.NET HELLO WORLD! 39

As you can see from Listing 3-3, the data source for the GridView control has been defined
as the SqlDataSource1 object, which is what you see in Listing 3-1. This is what binds the GridView
and the data source together. Then it’s just a question of adding the relevant bound columns
and the command buttons and your application is ready to run!

Thus, by a simple drag-and-drop operation, you’re able to create a data-driven application
from the ground up with very little code.

■Caution You just created a data-driven application. Why should you bother to read any further? At this
point, I must goad you to continue. A little knowledge is a dangerous thing, and you should not leave your
ADO.NET knowledge incomplete because you now have the power to create a data-driven application in
a matter of minutes by a simple point-and-click operation. As you’ll learn in future chapters, your application
is just as good as the amount of effort you put into it. You can’t expect drag-and-drop applications to help
you create a well-architected enterprise-level application up and running; however, it’s important to learn
this approach and possibly leverage it to implement a fast track to your eventual goal.

Now, with the data-driven ASP.NET application set up, let’s look at a Windows
Forms–based application created in a similar fashion.

Drag and Drop in a Windows Forms Application
Similar to an ASP.NET data-driven application, let’s go ahead and follow a few simple steps to
create a data-driven Windows Forms application. You can download the necessary code for
this application from the associated code download in DragDropWinApp; however, since it
doesn’t make much sense to look at the final code, because it is all autogenerated anyway,
I recommend that you follow these steps:

1. Begin by creating a new Windows Forms application in the language of your choice.
Call it DragDropWinApp. Open the Form1 form added for you in Design mode.

2. Next, within Visual Studio 2005, go to the Data Sources window. If this window is not
visible by default, then select Data ➤ Show Data Sources, as shown in Figure 3-10.

Figure 3-10. The Show Data Sources menu item

5122ch03.qxd 8/23/05 3:10 PM Page 39

CHAPTER 3 ■ ADO.NET HELLO WORLD!40

Figure 3-11. The Data Sources window

Figure 3-12. Choosing the Data Source type

3. When prompted to choose the Data Source type, select Database, as shown in Figure 3-12.

4. When prompted to choose your data connection (see Figure 3-13), either choose the
connection if it is already available in the list or click New Connection to add a new
connection in a dialog box very much like Figure 3-5, which you saw in the ASP.NET

When you do see this window, as shown in Figure 3-11, click the Add New Data Source link.

5122ch03.qxd 8/23/05 3:10 PM Page 40

CHAPTER 3 ■ ADO.NET HELLO WORLD! 41

Figure 3-13. Choosing the data connection

5. When prompted, choose to save the connection string, as shown in Figure 3-14.

Figure 3-14. Choosing to save the connection string

5122ch03.qxd 8/23/05 3:10 PM Page 41

CHAPTER 3 ■ ADO.NET HELLO WORLD!42

Figure 3-15. Choosing the Demo table to be a part of your data source

Figure 3-16. Configuring the data source’s Demo table

6. When prompted to choose the database objects in your data source, choose the Demo
table, as shown in Figure 3-15.

7. Click Next and Finish, which adds the TestDataSet data source to your application. At
this point, you should see the TestDataSet data source added in the Data Sources win-
dow. If you select the Demo table under the data source, you can see a drop-down arrow
next to it. For the purposes of this application, you can select DataGridView, as shown
in Figure 3-16.

8. Next, drag and drop the Demo table onto the surface of the form. This operation should
add a number of controls to the surface of the form, as shown in Figure 3-17 (after

5122ch03.qxd 8/23/05 3:10 PM Page 42

CHAPTER 3 ■ ADO.NET HELLO WORLD! 43

Figure 3-17. The form in Design mode after rearranging the autogenerated controls

Figure 3-18. Various controls added for you in the component tray

This operation also adds a number of controls in the component tray under the form,
as shown in Figure 3-18.

9. That’s it. Your data-driven application is ready. Compile and run it to see a fully opera-
tional window, as shown in Figure 3-19. You’ll also see that you can edit the underlying
data using this application. As an exercise to the reader, you can repeat this application
by selecting something other than DataGridView in step 7.

Again, you just created a fully functional data-driven application without actually having
to write any code. As it turns out, in this case, the framework actually wrote some code for you.
If you open the App.Config file, you’ll see that the application has saved the connection string
as an element, as shown in Listing 3-4.

Listing 3-4. The Connection String in the App.Config File

<connectionStrings>
<add name="DragDropWinApp.Settings.TestConnectionString"
connectionString=
"Data Source=(local);Initial Catalog=Test;Integrated Security=True"

providerName="System.Data.SqlClient" />

Figure 3-19. A fully running data-driven Windows Forms application, created using drag
and drop

5122ch03.qxd 8/23/05 3:10 PM Page 43

CHAPTER 3 ■ ADO.NET HELLO WORLD!44

Also, if you view the added form’s code, you’ll see the code as shown in Listings 3-5 and 3-6.

Listing 3-5. Autogenerated Code in C#

private void bindingNavigatorSaveItem_Click(object sender, EventArgs e)
{

if (this.Validate())
{

this.demoBindingSource.EndEdit();
this.demoTableAdapter.Update(this.testDataSet.Demo);

}
else
{

System.Windows.Forms.MessageBox.Show(this, "Validation errors occurred.",
"Save", System.Windows.Forms.MessageBoxButtons.OK,
System.Windows.Forms.MessageBoxIcon.Warning);

}

}

private void Form1_Load(object sender, EventArgs e)
{

// TODO: This line of code loads data into the 'testDataSet.Demo' table.
// You can move, or remove it, as needed.
this.demoTableAdapter.Fill(this.testDataSet.Demo);

}

Listing 3-6. Autogenerated Code in Visual Basic .NET

Private Sub bindingNavigatorSaveItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bindingNavigatorSaveItem.Click
If Me.Validate Then

Me.DemoBindingSource.EndEdit()
Me.DemoTableAdapter.Update(Me.TestDataSet.Demo)

Else
System.Windows.Forms.MessageBox.Show(Me, "Validation errors occurred.", _
"Save", System.Windows.Forms.MessageBoxButtons.OK, _
System.Windows.Forms.MessageBoxIcon.Warning)

End If

End Sub

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles MyBase.Load
'TODO: This line of code loads data into the 'TestDataSet.Demo' table.
' You can move, or remove it, as needed.

5122ch03.qxd 8/23/05 3:10 PM Page 44

CHAPTER 3 ■ ADO.NET HELLO WORLD! 45

Me.DemoTableAdapter.Fill(Me.TestDataSet.Demo)

End Sub

This is not the only code generated for you. As you’ll see in subsequent chapters, there is
a lot of code generated in the TestDataSet strongly typed DataSet and in a hidden file called
Form1.Designer.cs or Form1.Designer.vb. But for now, let’s leave that for later.

Next, let’s look at an application that gets a little bit more hands on as far as writing code
yourself goes.

Hybrid Approach: Write Some Code, Do Some Drag
and Drop
In the previous example, you saw how to easily create a data-driven Windows Forms application
by simply dragging and dropping the various components onto the surface of the form. The
important part to realize here is that the code that is autogenerated for you is “one size fits all.”
It’s a lot of very generic code that is written in such a way that it will work in a logically correct
manner for most applications; however, it might not be the most efficient code. Of course, when
it works for most situations that implies that there will be that one odd situation where it won’t
work. Can you imagine your enterprise application having 500 tables? And then imagine having
to drag and drop those 500 tables in a drag-and-drop architecture? It’s just not maintainable.
Plus, you can’t customize that code to fit any situation that you may be faced with.

However, this approach does have its place in application architecture. Depending on your
situation, you may decide that creating a full-fledged application using only a drag-and-drop
application is a bad idea, but you could leverage the autogenerated code to your advantage by
using the various generated objects as shortcuts and writing code similar to what has been
shown in Listings 3-5 and 3-6 yourself.

Let’s look at an example that demonstrates this very hybrid approach. You can download
this application from the associated code download in ConsoleApp, or you can follow these
steps to create such an application yourself:

1. Begin by creating a new console application. Call it ConsoleApp.

2. Follow steps 2 through 7 of the Windows Forms application to add a new data source.
Since, in this exercise, you’ll write code in a hybrid approach (drag-and-drop plus write
code) as a part of a console application, it doesn’t make sense to set the Demo table to
DataGridView or anything else.

3. In the console application, write code as shown in Listings 3-7 and 3-8. This code will
be used to fill in the contents of the Demo table into the testDS.Demo object, and then
write out the value of the first row’s DemoValue column.

Listing 3-7. Code to Fill and Write Hello World from the Data Source in C#

TestDataSet testDS = new TestDataSet();
TestDataSetTableAdapters.DemoTableAdapter tableAdapter =

new TestDataSetTableAdapters.DemoTableAdapter();
tableAdapter.Fill(testDS.Demo);

5122ch03.qxd 8/23/05 3:10 PM Page 45

CHAPTER 3 ■ ADO.NET HELLO WORLD!46

Figure 3-20. The running hybrid application

TestDataSet.DemoRow demoRow =
(TestDataSet.DemoRow)testDS.Demo.Rows[0];

Console.WriteLine(demoRow.DemoValue);

Listing 3-8. Code to Fill and Write Hello World from the Data Source in Visual Basic .NET

Dim testDS As TestDataSet = New TestDataSet()
Dim tableAdapter As TestDataSetTableAdapters.DemoTableAdapter = _

New TestDataSetTableAdapters.DemoTableAdapter()
tableAdapter.Fill(testDS.Demo)

Dim demoRow As TestDataSet.DemoRow = _
CType(testDS.Demo.Rows(0), TestDataSet.DemoRow)

Console.WriteLine(demoRow.DemoValue)

4. Compile and run the application. You should see an output as shown in Figure 3-20.

Thus, as you can see, you were able to write a few lines of code to leverage a lot of auto-
generated code. Just as an exercise, read the code closely and try and understand what it does.
There are really only four steps involved:

1. The first is to create an instance of TestDataSet:

C#
TestDataSet testDS = new TestDataSet();

VB.NET
Dim testDS As TestDataSet = New TestDataSet()

5122ch03.qxd 8/23/05 3:10 PM Page 46

CHAPTER 3 ■ ADO.NET HELLO WORLD! 47

2. The second step is to create a new instance of the autogenerated DemoTableAdapter
object. Note that this is an autogenerated object, which means this is a table adapter
that is specific to your situation and the table you specified. As you’ll see in Chapter 9,
the framework actually wrote a lot of code for you to make this possible. In other words,
this code is not a native part of the .NET Framework. Instead, it builds upon existing
.NET Framework classes to provide you with a class, the DemoTableAdapter class, that is
specific to your purpose and situation:

C#

TestDataSetTableAdapters.DemoTableAdapter tableAdapter =
new TestDataSetTableAdapters.DemoTableAdapter();

VB.NET

Dim tableAdapter As TestDataSetTableAdapters.DemoTableAdapter = _
New TestDataSetTableAdapters.DemoTableAdapter()

3. The third step is to use the DemoTableAdapter to fill in the testDS.Demo table. As you
will see in Chapters 6 and 7, this fill operation is really being done by an underlying
object called the DataAdapter, but in this case, the framework masks all these complex-
ities from you. Obviously, if you needed deeper-level control (for instance, working
with hierarchical data or other such situations), then this approach won’t work for you.
Chapter 10 covers an instance using hierarchical data where you could not possibly
use this approach correctly enough to work with a relatively more complex data structure:

C#
tableAdapter.Fill(testDS.Demo);

VB.NET
tableAdapter.Fill(testDS.Demo)

4. And the final step is to query the filled object’s first row’s DemoValue column. This is
very much like querying a DataSet. This is because TestDataSet is really nothing but
a class that inherits from DataSet. It is also referred to as a strongly typed DataSet,
which is covered in depth in Chapter 6:

C#

TestDataSet.DemoRow demoRow =
(TestDataSet.DemoRow)testDS.Demo.Rows[0];

Console.WriteLine(demoRow.DemoValue);

VB.NET

Dim demoRow As TestDataSet.DemoRow = _
CType(testDS.Demo.Rows(0), TestDataSet.DemoRow)

Console.WriteLine(demoRow.DemoValue)

This code gives you a little more flexibility than a pure drag-and-drop approach. But you
still can’t appreciate what is going on behind the scenes without actually diving deeper into the
depths of ADO.NET.

For instance, where is the SQL Query in the previous code?

5122ch03.qxd 8/23/05 3:10 PM Page 47

CHAPTER 3 ■ ADO.NET HELLO WORLD!48

As you’ll see in Chapter 9, the SQL Query is embedded deep inside the autogenerated
code for TestDataSet. But let’s leave that for Chapter 6. For now, let’s look at a simple but
purely write-yourself approach and create a simple application that connects to the data
source and fetches the same results for you.

Data-Driven Application: The “Write Code Yourself”
Approach
In the last example, I posed a question: Where is the SQL Query?

I gave the answer along with the question—it is embedded deep inside autogenerated
code. But why should a simple query such as that have to be embedded in so much code? It
really doesn’t have to be. As a matter of fact, when you do see the autogenerated queries in the
strongly typed DataSet in Chapter 9, you’ll see that the queries take an extra-safe approach by
comparing all columns and specifying highly inefficient, but accurate, UPDATE and DELETE
queries. This is because the autogenerated code must work in all situations and can’t make
any assumptions as it is written in a one-size-fits-all approach.

Usually, in any application architecture, you’ll have to make a choice between performance,
flexibility, and initial effort. Application architecture is a black art. Unfortunately or fortunately,
you can’t fully automate the process: unfortunately because it means more work for you and me,
and fortunately because you and I will have jobs for a very long time. There are many instances
where you’ll have to consciously decide and pick between various approaches. That’s what this
book intends to help you do—give you enough knowledge so you can make those decisions
intelligently as an application architect. As a matter of fact, generally in a full-blown enterprise
application, you’ll see yourself doing more hands-on work writing code yourself, rather than
dragging and dropping.

Thus, it’s important that the underlying data-access architecture gives you the ability, or
fine-level control, to selectively choose what you need. Luckily, ADO.NET does give you this
ability.

Let’s look at a quick example that achieves the same results as the previous console appli-
cation example, but this time around with no drag-and-drop help. You can download the code
for this exercise from the associated code download, or you can easily create it using the following
steps:

1. Create a new console application. Call it ConsoleApp2.

2. Add the necessary using or Imports statements at the top of Program.cs or Module1.vb:

C#
using System.Data.SqlClient ;

VB.NET
Imports System.Data.SqlClient

3. Let’s cheat here a bit. You need a connection string to connect to the data source.
Connection strings have been mentioned briefly earlier in this chapter, but they will be
covered in more detail in Chapter 4. For now just copy and paste the connection string
from any of the previous examples. Create the connection string as a private string, so
it is accessible to the rest of the code within the class, but not outside of it, like so:

5122ch03.qxd 8/23/05 3:10 PM Page 48

CHAPTER 3 ■ ADO.NET HELLO WORLD! 49

C#

private static string connectionString =
"Data Source=(local);Initial Catalog=Test;Integrated Security=True";

VB.NET

Private connectionString As String = _
"Data Source=(local);Initial Catalog=Test;Integrated Security=True"

4. With the connection string added, write in the following code in the Main function or
subroutine:

C#

SqlConnection testConnection = new SqlConnection(connectionString);
SqlCommand testCommand = testConnection.CreateCommand() ;
testCommand.CommandText = "Select DemoValue from Demo where DemoID = 1" ;
testConnection.Open() ;
string result = (string)testCommand.ExecuteScalar() ;
testConnection.Close();
Console.WriteLine(result) ;

VB.NET

Dim testConnection As SqlConnection = New SqlConnection(connectionString)
Dim testCommand As SqlCommand = testConnection.CreateCommand()
testCommand.CommandText = "Select DemoValue from Demo where DemoID = 1"
testConnection.Open()
Dim result As String = CType(testCommand.ExecuteScalar(), String)
testConnection.Close()
Console.WriteLine(result)

5. Compile and run the application. You should see output as shown in Figure 3-21,
which is very much like the output shown in Figure 3-20.

Figure 3-21. The application that you wrote running in a hands-on way

5122ch03.qxd 8/23/05 3:10 PM Page 49

CHAPTER 3 ■ ADO.NET HELLO WORLD!50

Here you were able to achieve the same results as the drag-and-drop approach in very few
lines of code. By comparison, if you do actually browse the autogenerated code (see Chapter 9),
you’ll see that the autogenerated code can be hundreds or even thousands of lines of code.

Let’s examine a bit more closely the code you just wrote. Some of it may not make sense
yet (the necessary objects and methods involved are explained in Chapters 4 and 5), but let’s
look at the main steps involved:

1. First, create an object that will hold the connection. This is logical because to query
the underlying data source you need a connection (this object is covered in detail in
Chapter 4):

C#
SqlConnection testConnection = new SqlConnection(connectionString);

VB.NET
Dim testConnection As SqlConnection = New SqlConnection(connectionString)

2. Next, create a command that will hold the SQL Query. This could have even been
a stored procedure, or it can even take parameters (the command object is covered in
detail in Chapter 5):

C#

SqlCommand testCommand = testConnection.CreateCommand() ;
testCommand.CommandText = "Select DemoValue from Demo where DemoID = 1" ;

VB.NET

Dim testCommand As SqlCommand = testConnection.CreateCommand()
testCommand.CommandText = "Select DemoValue from Demo where DemoID = 1"

3. Next, in order to run the command, you need to open the connection:

C#
testConnection.Open() ;

VB.NET
testConnection.Open()

4. Now that the command is prepared and the underlying connection is open, you can
run the command and fetch the results in a string variable:

C#
string result = (string)testCommand.ExecuteScalar() ;

VB.NET
Dim result As String = CType(testCommand.ExecuteScalar(), String)

5. Next, close the connection. This, as you will see in the next chapter, is extremely impor-
tant to do. Never fail to close an open connection:

C#
testConnection.Close();

5122ch03.qxd 8/23/05 3:10 PM Page 50

CHAPTER 3 ■ ADO.NET HELLO WORLD! 51

VB.NET
testConnection.Close()

6. With the results fetched in a string variable, you can now simply show the results using
the Console.Writeline method:

C#
Console.WriteLine(result) ;

VB.NET
Console.WriteLine(result)

In brief, here are the steps you took to write a fully hand-written Hello World application:

1. Create a connection.

2. Create a command that holds the SQL Query.

3. Open the connection.

4. Run the command.

5. Close the connection.

6. Show the results.

When you see the steps without the objects involved, it seems like a fairly logical way to
query your data source. Maybe the only curious thing to note is that the connection has been
opened just before step 4—running the command—and closed immediately afterward. This
golden rule of ADO.NET follows: “Open connections as late as possible and close them as early
as you can.”

This wraps up the last scenario presented in this chapter. In subsequent chapters, you’ll
come across the details of various objects involved that will help you create data-driven appli-
cations effectively.

Summary
Chapter 1 began by giving you a very high 30,000-ft. overview of what ADO.NET is, and where
it fits into your general application architecture.

Chapter 2 got a little bit closer to the ground and took the discussion away from logical
block diagrams and more toward class diagrams and the physical class structure layout of the
various major objects and namespaces involved in ADO.NET. At this point, you should quickly
glance back at Chapter 2 and compare the SqlConnection and SqlCommand objects involved in
the last presented example in that chapter.

Chapter 3 was the first chapter in this book that presented you with true hands-on code,
and you created four working data-driven applications.

So now that you have actually started walking on the ground of this new planet and have
actually built some data-driven applications, it’s time to start running by digging deeper into
the framework. As an application architect and programmer, it’s not only important to under-
stand how to do something, but it’s also important to understand how to do it right, and be
able to reason between the various ways to achieve the same goal.

5122ch03.qxd 8/23/05 3:10 PM Page 51

CHAPTER 3 ■ ADO.NET HELLO WORLD!52

I can’t tell you the one possible panacea simply because there isn’t one that fits every sin-
gle situation out there. This is because application architecture, especially ADO.NET, can’t be
zeroed down to black or white. There are too many scenarios to deal with and various shades
of gray involved. However, certain things, such as not closing your database connections or
abusing a DataSet as a database, are clearly bad.

Starting with Chapter 4, you’ll see the various important objects involved in ADO.NET
and the usage scenarios and best practices involved with them. As the book carries forward,
the discussion will continue to visit various other important objects, their usage scenarios,
and best practices involved.

Now that you have landed on this planet and have walked around a bit, tighten your seat
belts, pack your bags, and hold onto your seat tightly, your magic carpet ride is about to begin
with Chapter 4, “Connecting to a Data Source.”

5122ch03.qxd 8/23/05 3:10 PM Page 52

53

C H A P T E R 4

■ ■ ■

Connecting to a Data Source

It’s hard to imagine an application that doesn’t have a data source. If a computer can be
thought of as an information processing and storage machine, more often than not, the data
storage for any serious application requires a dedicated data source. The data source could be
as simple as a Microsoft Access database for a simple front-end point-of-sale application for
your local convenience store, or it could be as complicated as a full-blown implementa-
tion of a leading commercial-quality database, such as Microsoft SQL Server or Oracle, for an
e-commerce website.

Given the wide variety of applications that exist today, the demands on the database for
a given application could range from a continuously connected user to multiple users seam-
lessly sharing connections using a connection pool.

Whether an application is simple or complicated, one fact remains: ADO.NET needs to be
able to establish and manage a connection with a data source.

In this chapter, you’ll examine the various methods available within ADO.NET to connect
to a database. You’ll learn how to create, open, and close connections. Since, in the modern
Internet-driven world, it’s far too common to see applications that require a vast number of
users requesting real-time interaction with the system, and given that connecting to the data-
base is one of the most expensive operations a server-based application might need to do, most
modern-day data access architectures have implemented mechanisms like connection pooling
to address this problem. In this chapter, you’ll also examine how ADO.NET supports connection
pooling and learn the proper way to close and destroy connection objects to take advantage
of pooling.

The Ability to Connect
The need to connect to a data source is essential for any data access architecture. ADO.NET
gives you the ability to connect to a data source by providing a suitable connection object, which
is part of a data source–specific data provider. So the .NET Framework data provider for SQL
Server would have a class by the name of SqlConnection that will allow you to establish a con-
nection with a Microsoft SQL Server database, and the OracleClient data provider would have
a class by the name of OracleConnection that will allow you to establish a connection to an
Oracle database.

Whichever data source you are connecting to, there are a few common characteristics
between connection implementations. Obviously, at the very least, you should be able to
connect, or open, a connection. To open a connection, you need to specify what information

5122ch04.qxd 8/23/05 3:11 PM Page 53

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE54

is needed to open the connection, such as the name of the server, user ID, password, and so
on. Since every target data source might need a different set of information for ADO.NET to
connect to the data source, a flexible mechanism of specifying all these settings through a con-
nection string is chosen.

A connection string tokenizes the minimum information needed to establish a connec-
tion in the form of string key-value pairs. The various key-value pairs in a connection string
can also define certain configurable parameters defining the behavior of the connection. So
a typical connection string takes the following form:

"parametername1=parametervalue1;parametername2=parametervalue2;..."

By virtue of being able to open a connection, it makes sense that you should also be able
to close an open connection. In addition, for any communication you might need to do with
the data source, you might need to check if the data source connection is currently open and
available or not. So, you should also be able to retrieve the current state of the connection.

So, at the very least, you need two methods: Open and Close, and one State property on
the class that allows you to establish a connection with the database. Let’s create a connection
object and write up a quick example that demonstrates the simple exercise of connecting to
a database.

Creating Connection Objects
As you saw earlier, ADO.NET wraps the functionality of establishing connections with a given
database in a typical connection class. Let’s try creating an instance of the connection class:
the connection object. Even though I’ll demonstrate the examples using the SqlConnection class,
the concepts for other kinds of connection objects in various providers remain the same. The
various connection objects can simply be created by creating a new instance of their respective
connection classes. This is shown here:

C#

SqlConnection testConnection = new SqlConnection();

VB.NET

Dim testConnection As New SqlConnection

Looks simple enough; however, as you might have already guessed, that’s not enough
because you haven’t told your connection object which database to connect to, which access
credentials to use, and so on. You need to specify these parameters using the ConnectionString
property of the SqlConnection object, as shown here:

C#

SqlConnection testConnection = new SqlConnection();
string testConnectionString =

"Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI";
testConnection.ConnectionString = testConnectionString;

5122ch04.qxd 8/23/05 3:11 PM Page 54

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE 55

VB.NET

Dim testConnection As New SqlConnection
Dim testConnectionString As String = "Data Source=(local);" & _

"Initial Catalog=Test;Integrated Security=SSPI"
testConnection.ConnectionString = testConnectionString

This code would prepare the connection object to open a connection to a SQL Server run-
ning on your local machine using Windows authentication and connect to a database called
“Test”. Alternatively, you could use one of the constructors of the SqlConnection class to give
us a ready-to-use SqlConnection object, as shown here:

C#

SqlConnection testConnection=
new SqlConnection(
"Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI");

VB.NET

Dim testConnection As New SqlConnection(_
"Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI")

Thus, as long as you know the ConnectionString, you could have a ready-to-use SqlConnection
object in as little as one line of code. Also, with the connection object prepared here, all you need
to do now is call the Open method to successfully open a connection to the specified database.

■Note Do note, however, that a connection object is not the same as a physical connection to the database.
As you’ll see later in this chapter, if you’re using connection pooling, which is turned on by default for many
providers, then calling Open on a connection object will either allow you to use an already open and unused
physical connection, or open a brand new connection if sufficient open physical connections don’t exist.

Using the connection strings shown in Listings 4-1 and 4-2, a quick example can be written
that connects to a database called “Test” running on a local SQL Server instance. The examples
use Windows authentication to connect to the database. They simply create the connection
object, establish a connection, and check the state of the connection to verify if the connec-
tion was successfully opened or not, and finally they close the connection. The code can be
seen in Listings 4-1 and 4-2 or can be downloaded as Exercise 4.1 from the Downloads section
of the Apress website (http://www.apress.com).

Listing 4-1. Working with a Connection Object in C#

static void Main(string[] args)175

{
SqlConnection testConnection =

new SqlConnection(

5122ch04.qxd 8/23/05 3:11 PM Page 55

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE56

try
{

testConnection.Open();
if (testConnection.State == ConnectionState.Open)
{

Console.WriteLine("Successfully opened a connection");
}

}
catch (Exception)
{

if (testConnection.State != ConnectionState.Open)
{

Console.WriteLine("Failed to open a connection");
}

}
finally
{

// Closing a connection ensures connection pooling.
if (testConnection.State == ConnectionState.Open)
{

testConnection.Close();
}
testConnection.Dispose();

}
}

Listing 4-2. Working with a Connection Object in Visual Basic .NET

Sub Main()
Dim testConnection As SqlConnection = _

New SqlConnection(_
"Server=(local);Database=Test;Integrated Security=SSPI")

Try
testConnection.Open()
If testConnection.State = ConnectionState.Open Then

Console.WriteLine("Successfully opened a connection")
End If

Catch
If testConnection.State <> ConnectionState.Open Then

Console.WriteLine("Failed to open a connection")
End If

Finally
' Closing a connection ensures connection pooling.
If testConnection.State = ConnectionState.Open Then

testConnection.Close()
End If
testConnection.Dispose()

End Try

5122ch04.qxd 8/23/05 3:11 PM Page 56

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE 57

When the code in Listing 4-1 or 4-2 runs, assuming that you have a database called “Test”
on your local machine and you have adequate access to it, the output should be either

"Successfully opened a connection"

or

"Failed to open a connection"

As you can see from Listings 4-1 and 4-2, the various key-value pairs in the connection
string are how you pass various information to the connection object, which gives it sufficient
information to connect to the database.

Usually, in order to connect to a given database, you’d need to specify more than one such
key-value pair in a delimited string, as shown previously. So, as you saw in Listings 4-1 and 4-2,
the connection string contains three such key-value pairs:

"Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI"

Say that instead of Integrated Security=SSPI, a typo had crept in by entering Itegrated
Security=SSPI; you wouldn’t have been able to use the connection successfully. An industry-
standard database, such as SQL Server or Oracle, could possibly support a lot of parameters
inside a valid connection string. Remembering the exact names of the parameters, and maybe
even parameter values, could get challenging at times. Fortunately, there is help!

Generating Provider-Specific Connection Strings
There are many parameters that could be specified in a connection string. Each of those
parameter names needs to be spelled properly with a valid value in order for us to establish
a connection to the database successfully. Not only could it get difficult to remember each
parameter name and its spellings properly, but it is also easy to overlook the many config-
urable features for any data provider’s connection object if you don’t have an easy, intuitive
way to construct your connection strings.

ADO.NET 2.0 tries to address this problem by providing a DbConnectionStringBuilder
class. The DbConnectionStringBuilder object strongly types various connection string con-
stituent values in order to avoid trivial programming errors as well as to make the connection
string information more manageable.

Every .NET data provider is required to contain a class that inherits from
DbConnectionStringBuilder to facilitate easy connection string building. So OracleClient
would have an OracleConnectionStringBuilder class, and SqlClient would have
a SqlConnectionStringBuilder class. We’ll take a look at how this is done using the
SqlConnectionStringBuilder class.

Let’s say I stopped you in the middle of a hallway and asked, “Could you tell me about the
database you wish to connect to?” Usually, instead of telling me the connection string, your
answer would sound something like this:

The database I am interested in connecting to . . .

. . . is on my local machine.

. . . has the name “Test”.

. . . will allow me to connect using Windows authentication.

. . . etc.

5122ch04.qxd 8/23/05 3:11 PM Page 57

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE58

The SqlConnectionStringBuilder class is based around this paradigm, so instead of having
to specify a connection string manually, you can specify the information using full intellisense
inside the Visual Studio 2005 environment and derive a connection string from that instead. The
sample code in Listings 4-3 and 4-4 demonstrates how to use the SqlConnectionStringBuilder
class.

Listing 4-3. Using the SqlConnectionStringBuilder Class in C#

static void Main(string[] args)
{

SqlConnectionStringBuilder connstrBuilder = new SqlConnectionStringBuilder();
connstrBuilder.DataSource = "(local)";
connstrBuilder.InitialCatalog = "Test";
connstrBuilder.IntegratedSecurity = true;

using (SqlConnection testConnection =
new SqlConnection(connstrBuilder.ToString()))

{
try
{

testConnection.Open();
if (testConnection.State == ConnectionState.Open)
{

Console.WriteLine("Connection successfully opened");
Console.WriteLine("Connection string used: " +

testConnection.ConnectionString);
}

}
catch (Exception)
{

if (testConnection.State != ConnectionState.Open)
{

Console.WriteLine("Connection open failed");
Console.WriteLine("Connection string used: "

+ testConnection.ConnectionString);
}

}
}
// Automatic dispose call on conn ensures connection is closed.
Console.WriteLine("Press any key to continue ..");
Console.Read();

}

Listing 4-4. Using the SqlConnectionStringBuilder Class in Visual Basic .NET

Sub Main()
Dim connstrBuilder As SqlConnectionStringBuilder = _

New SqlConnectionStringBuilder()

5122ch04.qxd 8/23/05 3:11 PM Page 58

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE 59

Figure 4-1. Using a connection string generated by the SqlConnectionStringBuilder

connstrBuilder.DataSource = "(local)"
connstrBuilder.InitialCatalog = "Test"
connstrBuilder.IntegratedSecurity = True

Using testConnection As SqlConnection = _
New SqlConnection(connstrBuilder.ToString())
Try

testConnection.Open()
If testConnection.State = ConnectionState.Open Then

Console.WriteLine("Connection successfully opened")
Console.WriteLine("Connection string used: " & _

testConnection.ConnectionString)
End If

Catch ex As Exception
If testConnection.State <> ConnectionState.Open Then

Console.WriteLine("Connection successfully failed")
Console.WriteLine("Connection string used: " & _

testConnection.ConnectionString)
End If

End Try
End Using
' Automatic Dispose Call on conn ensures connection is closed.
Console.WriteLine("Press any key to continue ..")
Console.Read()

End Sub

The execution results of this code are shown in Figure 4-1.

So, by using the SqlConnectionStringBuilder class you can easily create connection
strings that would’ve otherwise required you to remember the various ConnectionString
key-value pairs. As an exercise, you should examine the various properties available on the
SqlConnectionBuilderObject and observe the various configurable parameters that can be
communicated to the data source using the connection string.

Another good thing about the SqlConnectionStringBuilder and really any class that
inherits from the DbConnectionStringBuilder class is that they can act as the bridge between
a connection string and a description for the database. If you have an existing connection

5122ch04.qxd 8/23/05 3:11 PM Page 59

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE60

Figure 4-2. The Data Link Properties dialog box

string that you wish to map to an instance of the SqlConnectionStringBuilder class, you
could simply pass the existing connection string as a parameter to one of the constructor
overloads for SqlConnectionStringBuilder or, alternatively, set the SqlConnectionStringBuilder.
ConnectionString property. By doing so, all the relevant properties would be populated
accordingly.

Even though the previous example demonstrated the use of connection builders using
the SqlConnectionStringBuilder class, there’s an equivalent class for each data provider. For
example, System.Data.OracleClient has an OracleClientConnectionStringBuilder class,
System.Data.OleDb has an OleDbConnectionStringBuilder class, and so on.

However, while this trick might work well for specialized data sources such as SQL Server
or Oracle, the more generic data providers for OleDb and ODBC require you to specify keys
such as Provider information. Again, it’s quite possible to commit an error while spelling out
the Provider information. And once again, fortunately, you are in luck!

The Easy Way to Any Connection String
The data provider–specific connection string builder classes allow you to easily create a con-
nection string for their respective databases. For other data providers, though, the Microsoft
universal data link (.udl) file offers a convenient, alternative method for creating and remem-
bering complex connection strings. Here’s how you create a simple connection string to con-
nect to a Microsoft Access database located at C:\Apress\MyDb.mdb:

1. Create a new text file on your hard disk. Name it myfile.udl.

2. Double-click myfile.udl to bring up the Data Link Properties dialog box, as shown in
Figure 4-2.

5122ch04.qxd 8/23/05 3:11 PM Page 60

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE 61

3. Open the Provider tab and choose the Microsoft Jet 4.0 OLE DB Provider.

4. Open the Connection tab, specify the properties needed (if any), such as user ID and
password, and click Test Connection to verify that everything works. A message box
indicating the test result will now display.

5. Click OK twice: first to close the message box and then to close the Data Link Properties
dialog box. Your changes are now saved.

The myfile.udl file can now be viewed in Notepad and it should look like Listing 4-5.
Please note that the listing has been formatted for display purposes.

Listing 4-5. myfile.udl File Content

[oledb]
; Everything after this line is an OLE DB initstring
Provider=Microsoft.Jet.OLEDB.4.0;Password="";
Data Source=C:\Apress\Mydb.mdb;Persist Security Info=True

That’s it. Now you can copy and paste the connection string into your code and begin
connecting to the Microsoft Access database as shown here:

C#

OleDbConnection testConnection = new OleDbConnection
("Provider=Microsoft.Jet.OLEDB.4.0;" +
"Data Source=C:\\Apress\\mydb.mdb;Persist Security Info=False");

VB.NET

Dim testConnection As New OleDbConnection(_
"Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Data Source=C:\Apress\mydb.mdb;Persist Security Info=False")

Even better, you can be “lazy” and directly specify the .udl file as your connection string,
like this:

C#

OleDbConnection testConnection = new OleDbConnection(
"File Name=C:\\Apress\\myfile.udl");

VB.NET

Dim testConnection As New OleDbConnection(_
"File Name=C:\Apress\myfile.udl")

While this technique works out of the box for OleDb or ODBC .NET data providers, there’s
one little nuance you need to be careful of when using this technique with a specific .NET data
provider such as SqlClient or OracleClient: When accessing a data source through the OleDb

rovider used in the connection string,

5122ch04.qxd 8/23/05 3:11 PM Page 61

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE62

such as Microsoft.Jet.OLEDB.4.0. When using the native .NET Framework data providers for
SQL Server or Oracle, you don’t need this piece of information, as the provider is fixed. Hence,
you need to remove the Provider key-value pair from the generated connection string in order
to use it with a SQL Server or Oracle database.

Securing Connection Strings
So far you’ve looked at the overall general architecture of the connection object. You saw how
to create a connection object, and you saw a couple of easy ways to create a connection string.

While the examples shown so far work well, in a production application you would proba-
bly not want to hard code the connection string due to the following reasons:

• Connection strings often need to be changed after deployment. You don’t want to
recompile your application because someone changed a password or moved the data-
base to a different server.

• .NET code can be disassembled and thus connection strings, including passwords, can
be read.

• By storing the connection string in a common place, you ensure everyone uses exactly
the same connection string. As you’ll see later in this chapter, this ensures effective con-
nection pooling. Effective connection pooling is critical to the performance of an appli-
cation that needs to support multiple database requests. However, it’s important to note
that in ADO.NET physical connections are pooled at the client, not at the database server.
Please see the “Connection Pooling” section later in this chapter for more information
on this subject.

A common approach to this dilemma is to store the connection string in an XML-based
configuration file instead, such as the Web.Config file for ASP.NET Web-based applications.

Using the .NET Framework 1.x, you could specify the connection string as an appSetting
element, so your configuration file could look somewhat like this:

<?xml version="1.0" encoding="utf-8"?>
<configuration>

<appSettings>
<add key="connectString" value="...." />

</appSettings>
</configuration>

While this certainly works, you’re stuck with implementing your own encryption mecha-
nisms to protect your connection strings from prying eyes.

The .NET Framework 2.0 includes a useful security enhancement. The engineers at Microsoft
realized that one of the most common uses of a configuration file was to store connection
strings, so not only did they create a separate section in the configuration file for connection
strings, but they also created an infrastructure to support encryption of configuration file
sections. There is a new protectedData section in configuration files specifically for this purpose.

The usage is fairly simple: You simply need to add a protectedData element to your
configuration file and add the relevant sections you wish to protect as protectedDataSections
elements inside the protectedData element. In the protectedDataSections, you can specify which
provider you wish to use in order to encrypt the particular section of your configuration file.

5122ch04.qxd 8/23/05 3:11 PM Page 62

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE 63

■Note At the time of writing this book, the two provider choices you have are the
RSAProtectedConfigurationProvider and the DPAPIProtectedConfigurationProvider.

The relevant portion of your configuration file under .NET Framework 2.0 should look like
Listing 4-6. You’ll note in Listing 4-6 that I’m using useMachineContainer="true". This is because
the RSA key container being used in this example is a machine-level key container.

Listing 4-6. Configuration File with Encrypted Section

<configuration>
<connectionStrings>

<EncryptedData/>
</connectionStrings>

<protectedData>
<providers>

<add name="MyProvider"
type="System.Configuration.RsaProtectedConfigurationProvider"
keyContainerName="MyKeys"
useMachineContainer="true" />

</providers>

<protectedDataSections>
<add name="connectionStrings"

provider="MyProvider"
inheritedByChildren="false"/>

</protectedDataSections>
</protectedData>

</configuration>

There’s no connection string for the EncryptedData element. That makes sense since the
EncryptedData holding the connection string isn’t something you want to type in by hand; you
have to resort to writing some code instead, as shown in Listings 4-7 and 4-8.

Listing 4-7. Saving Encrypted Data to a Configuration File in C#

Configuration config =
ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None, "");

config.ConnectionStrings.ConnectionStrings.Add(
new ConnectionStringSettings(
"MyConnectionString",
"Server=local; Database=Test; Password=myPassword; User Id=myUser;")
);

config.Save();

5122ch04.qxd 8/23/05 3:11 PM Page 63

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE64

Listing 4-8. Saving Encrypted Data to a Configuration File in Visual Basic .NET

Dim config as Configuration = _
ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None, "")

config.ConnectionStrings.ConnectionStrings.Add(_
New ConnectionStringSettings(_
"MyConnectionString", _
"Server=local; Database=Test; Password=myPassword; User Id=myUser;") _
)

As you can see, yet another neat feature of .NET 2.0 is that configuration files can be
edited directly through code. This was not possible to do in .NET 1.1 unless you resorted to
editing the configuration file using an XmlDocument object. If you ran this code as is, it would
probably throw an exception informing you that the KeySet was not found. What this means is
that you first need to set up either a machine-level or user-level KeySet on the machine this
code is being executed upon. The easiest way to do this would be to run the following at the
command line:

aspnet_regiis -pc "MyKeys" –exp

Now with everything set up, if you ran the code shown in Listings 4-7 and 4-8 and opened
the configuration file after execution, it would look like the code shown in Listing 4-9. Also
note that if you’re executing the code as a ConsoleApplication, these changes won’t make it to
App.Config but to ConsoleApplication1.exe.config, where ConsoleApplication1.exe is the
name of the console application executable.

Listing 4-9. Configuration File with Encrypted Section and Encrypted Data

<configuration>
<connectionStrings>

<EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element"
xmlns="http://www.w3.org/2001/04/xmlenc#">

<EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc" />
<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
<EncryptedKey Recipient="" xmlns="http://www.w3.org/2001/04/xmlenc#">

<EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5" />
<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

<KeyName>Rsa Key</KeyName>
</KeyInfo>
<CipherData>

<CipherValue>fquSeRPQvoa47qFzEys62yWC1VxNABD318DrCQc/hL6zLnuaG
GgQE6qxYSStHOccUntJ67HrDTjlpM0pRTxgXLLGzIq3vVLLMdKnRTE6eFAZcQe
pB7qBiK+PWuWTAcy4mFXfaHznPNiQNU4bDtkJCUO3j9FbLhUqeprSUCjOp1c=
</CipherValue>

</CipherData>
</EncryptedKey>

</KeyInfo>
<CipherData>

<CipherValue>b/6ILwoFPKGop5jyGQfbHAu00Q48M9JaHSYUJf1rTy4Tt1Kqr8qIY0x

5122ch04.qxd 8/23/05 3:11 PM Page 64

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE 65

cL6339lw3NwNLAeRZlFOq5vqo9xvFAA//eyW13HkNvV14Bxm9rn7zNv4iQ5PCexOOi8T
JJDMtUpetuYVccfYzuVwoK2LQTiqDJ/ILeVsiVfyGsRA=
</CipherValue>

</CipherData>
</EncryptedData>

</connectionStrings>

<protectedData>
<providers>

<add name="MyProvider"
type="System.Configuration.RsaProtectedConfigurationProvider"
keyContainerName="MyKeys"
useMachineContainer="true" />

</providers>

<protectedDataSections>
<add name="connectionStrings"

provider="MyProvider"
inheritedByChildren="false"/>

</protectedDataSections>
</protectedData>

</configuration>

To retrieve the connection string, you merely have to use code that looks like this:

ConfigurationManager.ConnectionStrings["MyConnectionString"].ConnectionString

By doing so, the .NET Framework will automatically encrypt and decrypt the protected
sections for you. Therefore, in .NET Framework 2.0, not only can you store connection strings
in the configuration file in a separate dedicated section, you can also encrypt and decrypt them
with almost no additional code. One important point to mention here is that the portion of
your application that reads the connection strings (typically your main application) remains
unchanged whether the connection strings are encrypted or not. What this means is that you
could use unencrypted connection strings in development and encrypt them for production
use—all this, without making any code changes!

So far, the examples you’ve seen demonstrate working with a SqlConnection object. However,
all data providers have a valid connection object that works in a very similar fashion.

This would be a good time to refer back to Figure 2-1 and review the commonality
between various connection objects in different .NET data providers.

Such common behavior and polymorphism, in the sense of object-oriented programming
(OOP), between objects is good as it allows us to establish certain base classes and interfaces
to wrap the common behavior or implementation in. It also allows us to program in a data
provider–agnostic way, meaning that you, as a developer, don’t care which data source you’re
connecting to. However, because every data source might have its own peculiarities, not only
is different information needed to successfully establish a connection, but even when you do
establish a connection successfully, each data source might, and often does, support different
feature sets. These differences are not only applicable to connection objects, but also to other
objects found in any data provider like the Command object, the Transaction object, and so on.

5122ch04.qxd 8/23/05 3:11 PM Page 65

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE66

While the differences are handled in individual connection classes, such as SqlClient or
OracleClient, the common behavior in ADO.NET 1.1 was enforced by the IDBConnection interface.
The IDBConnection interface required any data provider’s connection class to support a few
basic minimum features such as ConnectionString, ConnectionTimeout, State, and so forth.
Similarly, because all connection classes implement certain common logic, like the ability to
dispose a connection after its use and perform a routine cleanup, ADO.NET 2.0 goes one step
further and introduces the data provider factory model and a class called DbConnection, from
which any connection class has to inherit. It also requires connection classes to implement
the IDbConnection interface in order to maintain backward compatibility. As a matter of fact,
the DbConnection class implements the IDbConnection interface. An additional advantage of
implementing such base classes is the ability to query the system for all the data providers it
might support and then hand the client the appropriate connection object for the selected data
source.

The Common Behavior: IDbConnection
The common behavior of any connection object, like the ability to open a connection, close
a connection, and determine its current state, is enforced by implementing the System.Data.
IDbConnection interface. An ADO.NET connection object can be thought of as something that
works with an external resource. What the connection object works with is not just an external
resource; it’s a resource that comes with an overhead in terms of performance, because con-
necting to a data source is one of the most overhead-enduring actions an application can
perform. For this reason, it’s important that a connection object implements IDisposable.
IDisposable is the standard interface in .NET that defines a method named Dispose, which is
used to release allocated resources—unmanaged ones in particular.

■Note This is also enforced by the IDbConnection interface because it implements IDisposable.

The Dispose method on a connection object performs certain important cleanup jobs and
is covered in greater detail later in this chapter.

The following is a list of various methods that IDbConnection requires the .NET data
provider writer to implement:

• BeginTransaction: To ensure data consistency, most modern databases support the
concept of transactions. Transactions define atomic operations, which operate in an
all-or-nothing fashion. BeginTransaction is most commonly the function you need to
call to begin a transaction on a database. This method is overloaded and one of its over-
loads allows you to specify the IsolationLevel this transaction will use. This transac-
tion is different from the transactions implemented in the System.Transactionsnamespace.
Transactions and isolation levels are covered in further depth in Chapter 11.

5122ch04.qxd 8/23/05 3:11 PM Page 66

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE 67

• ChangeDatabase: When connecting to a database server, one server might have multiple
databases on it. The ChangeDatabase function allows you to change databases within
the same server. Calling ChangeDatabase has less overhead than using a brand new con-
nection object even with connection pooling turned on. The benefit, however, is limited
to SQL Server since SQL Server uses a two-step connection process. The first step con-
nects to the server and the second step connects to the requested catalog. By calling
ChangeDatabase, you simply switch to another catalog.

• Open: The Open method is what opens a connection to the database and makes the con-
nection ready to use. Open database connections cannot be pooled until they are explic-
itly closed or disposed, so it’s important to open a database connection as late as possible
and close it as early as you can.

• Close: Conversely, Close will close an open connection to the database. By calling
Close, the underlying physical connection to the database is now ready to be pooled.
Do note that disposing a connection object calls Close internally; but, in addition, it
clears out the stateful information of the connection object, such as the connection
string. What this means to you as an application developer is that, even though Close
and Dispose both help in connection pooling, a closed connection can be reopened,
whereas a disposed connection cannot be.

• CreateCommand: Interactions with the database are accomplished using Command objects.
Command objects allow you to specify command text with various parameters. For a com-
mand to execute, it must know what database it will execute against. The CreateCommand
method on a connection object will create a Command object that, when executed, will be
executed on the connection object it was created from. Command objects are covered in
depth in Chapter 5.

The following is a list of various properties that IDbConnection requires you to implement:

• ConnectionString: This property is used to specify various parameters that give sufficient
information to the connection object to successfully open a connection to the database.
You can also specify other information here to control the behavior of the connection object.

• ConnectionTimeout: Since the establishment of a connection is, at the very least, to a file
and, in many cases, to a separate machine on the network, there could be issues such
as timeouts or unsuccessful connection attempts due to network failures or other causes.
ConnectionTimeout allows you to specify a number of seconds before the connection
object gives up and throws an error. A value of 0 would indicate a limitless timeout
and should be avoided. Do note, however, that CommandTimeouts are different from
ConnectionTimeouts and, as of ADO.NET 2.0, CommandTimeouts cannot be configured at
the connection level.

• Database: This property gets the name of the current database or the database to be
used after the connection is opened.

• State: This allows the connection object to specify its current state. The most com-
monly used states are ConnectionState.Open and ConnectionState.Closed.

5122ch04.qxd 8/23/05 3:11 PM Page 67

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE68

The Common Logic: DbConnection
The DbConnection class is a new class introduced in ADO.NET 2.0. It’s marked abstract/MustInherit,
which means you cannot instantiate it directly. A specific data provider’s connection class is
required to inherit from this class. The DbConnection class implements IDbConnection so you
don’t have to explicitly implement it. All this commonality allows you to develop applications
that are somewhat agnostic to the exact data source type they might have to work with. The
SQL will still be database specific though.

A .NET data provider’s connection object would inherit from the DbConnection class and
receive all the logic implemented in the base classes for free. It might decide to override a certain
method’s implementations to better suit its purposes, like the SqlConnection object overrides
the Connection.Open method, whereas it builds upon the base class’s SqlConnection.Dispose
functionality.

High-Demand Applications
Sooner rather than later you’ll find yourself writing ADO.NET code for a high-demand appli-
cation. It could be a website or a highly concurrent system involving multiple real-time users.
In a simpler single-user application, while keeping a connection open for an unwarranted long
time might not have a serious impact on the database server performance, higher-demand
applications pose different issues that you must consider within your architecture.

Earlier, I briefly touched on the fact that IDbConnection implements IDisposable. The
IDisposable interface requires that the connection class implement the Dispose method where,
by convention, all the cleanup of allocated resources happens.

In many complicated high-demand applications, you would probably want to use an
industrial-strength database like SQL Server or Oracle as your backend data source. Under the
wraps of data provider–specific connection objects like SqlConnection or OracleConnection,
ADO.NET communicates with these databases across a network. Maintaining an open network
connection and retrieving large amounts of data over the network is probably one of the most
expensive operations a typical application needs to accomplish. Leading e-commerce websites
and stock-trading applications typically have hundreds or even thousands of concurrent users
requesting real-time interaction with a website or a server application. Most likely, it’s not pos-
sible to let every individual connect to the database and keep his connection open for as long
as he might need it. Thus, there is a problem.

Various data access architectures solve this dilemma by keeping a few ready-to-use open
physical network connections and handing off currently not-in-use physical network connec-
tions to a request to open a database connection (like SqlConnection). In essence, this multi-
plexes fewer open physical connections over a number of DbConnection objects, via a mechanism
called connection pooling, to create a facade of a highly available database while not using as
many resources. Various data access architectures might even increase or shrink this pool of
available open connections as the demands on the application change.

■Note It’s important to realize that a SqlConnection or OracleConnection object instance isn’t equiva-
lent to having one physical connection to the database. The actual number of physically open connections is
managed internally by ADO.NET using connection pooling. An actual physical connection is exposed to the end
application for use through a specific DbConnection object, such as SqlConnection or OracleConnection.

5122ch04.qxd 8/23/05 3:11 PM Page 68

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE 69

In the next part of this chapter, you’ll examine what connection pooling is and how it is
implemented in ADO.NET. You’ll see how to tweak connection pooling to fit your requirements
and also understand the best practices about how to use connection pooling in a typical
application.

Connection Pooling
In a highly concurrent/highly available–based application, it’s important to realize that the
majority of the time the user might hold an open connection and not actively use it because
he is busy with other parts of the application. The application could essentially “time slice” his
expensive resource—an open connection—and pool it between multiple users.

Using connection pooling with ADO.NET is really simple because you don’t have to do
anything to use connection pooling with the default settings; instead, you have to turn it off
explicitly should you decide not to use it. For instance, for SqlClient, if you don’t wish to pool
your connections, you simply add the following key-value pair to your connection string:

Pooling=false;

Similarly, you can tweak connection-pooling settings by designating specific key-value
pairs on the connection string. These are shown for SqlConnection in Table 4-1. As you saw
earlier, in order to connect to a database, you need to specify a connection string. ADO.NET
maintains a pool of open connections internally for each connection string. In other words, it
maintains a collection of pools using the connection string as the key. When you request an
open connection via the Open command on a connection object, ADO.NET internally checks
to see if there’s an unused physical database connection available. A physical database con-
nection is ready to be pooled if no other user or portion of the application is actively using it.
This means, for effective connection pooling, you must open as late as possible, and close as
early as you can.

The real picture is a little more involved because ADO.NET makes decisions based on the
application load and might maintain more than one open physical connection concurrently if
it receives too many requests simultaneously. Alternatively, the number of open connections
in a connection pool might decrease if the number of requested open connections is too low.
There are default numbers set for these connection-pooling parameters, but they are config-
urable via the connection string. Table 4-1 shows the various connection-pooling parameters
that can be set using the connection string.

Table 4-1. SqlClient Connection Pooling Key-Value Pairs

Name Definition

Connection Lifetime This parameter is useful in clustered environments. A value specified
here will result in the connection being destroyed if the current time
minus the creation time exceeds the connection lifetime specified. This
allows a new server, brought online in a clustered environment, to start
sharing the load immediately. The default value of 0 indicates an
unlimited connection lifetime.

Connection Reset This causes the connection to be reset every time it’s pulled out of the
pool for use. Specifically for Microsoft SQL Server 7.0, setting this to
false avoids an extra database trip. In addition, the connection state
itself is not reset. The default value is true.

(Continued)

5122ch04.qxd 8/23/05 3:11 PM Page 69

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE70

Table 4-1. (Continued)

Name Definition

Enlist Setting this to true causes the pooler to automatically enlist the
connection in the creating thread’s current transaction context. The
default value is true and other valid values are false, yes, and no.

Max Pool Size This sets the upper limit beyond which if open connections are requested,
they will have to wait for an existing connection to become available.
The default value is 100.

Min Pool Size This keeps a minimum number of connections available and ready to
use. You might want to use this if you can incur the “always open” extra
connection cost and you want to save the time it takes to connect to the
database after a long period of inactivity. The default value is 0.

Pooling As described before, this enables or disables pooling. The default value
is true.

Let’s play detective and verify the previous statements via a code example. The code
shown in Listings 4-10 and 4-11 demonstrates a simple example of opening and closing the
connection repeatedly with connection pooling turned off and on.

Listing 4-10. Demonstrating Connection Pooling in C#

SqlConnection testConnection =
new SqlConnection
("Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI;");

long startTicks = DateTime.Now.Ticks;

for (int i = 1; i <= 100; i++)
{

testConnection.Open();
testConnection.Close();

}

long endTicks = DateTime.Now.Ticks;
Console.WriteLine("Time taken : " + (endTicks - startTicks) + " ticks.");
testConnection.Dispose();

Listing 4-11. Demonstrating Connection Pooling in Visual Basic .NET

Dim testConnection As New SqlConnection(_
"Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI;")

Dim startTicks As Long = DateTime.Now.Ticks

For I As Integer = 1 To 100
testConnection.Open()
testConnection.Close()

Next

5122ch04.qxd 8/23/05 3:11 PM Page 70

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE 71

Dim endTicks As Long = DateTime.Now.Ticks
Console.WriteLine("Time taken : " & (endTicks - startTicks) & " ticks.")
testConnection.Dispose()

When the code runs, it produces output that looks like the following (the exact value will
differ based on your machine’s processing power and current running tasks):

Time taken : 400576 ticks.

Let’s make a minor modification to this code and explicitly disable connection pooling
like this:

C#

SqlConnection testConnection =
new SqlConnection("Data Source=(local);Initial Catalog=Test;" +
"Integrated Security=SSPI;Pooling=false");

VB.NET

Dim testConnection As New SqlConnection("Data Source=(local);" & _
"Initial Catalog=Test;Integrated Security=SSPI;Pooling=false")

And now with no other modifications, when you run the code, the output looks like this:

Time taken : 7310512 ticks.

Even though the actual results will differ on your machine, the bottom line is that with
connection pooling turned off, it took about 18 times longer to open and close 100 connections.
This is so because with connection pooling explicitly turned off, every time you call the Open
or Close method on the connection object, ADO.NET is actually opening and closing a data-
base connection for you. With connection pooling turned on, it was barely pooling a handful
of connections being used, probably as low as a single connection, to serve all the requests.
This is because the application was making sure that it would close any unused connection as
soon as it could. So, for the subsequent requests, ADO.NET could effectively pool the unused
connections. As you can see, clearly this makes a big difference to the performance of your
application!

So How Does It All Work?
Think of it this way: Beneath the DbConnection class, there’s a broker class that maintains
a pool of open connections. It has the responsibility of increasing or decreasing the actual
number of open connections based on the demands of the application. To the broker class,
every connection requested is uniquely identified by its corresponding connection string. So
when any application on the same machine requests an open connection, it first checks its
internal connection pool cache and if there is indeed an available connection, it hands it over.
But if there isn’t an available connection, it will create a new one (up to a configurable limit)
and hand over the new connection.

Similarly, when any application is done using a connection and calls either Dispose or Close
on the connection object, the broker class marks that connection as unused or unassigned but

5122ch04.qxd 8/23/05 3:11 PM Page 71

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE72

keeps it ready for a second user that might request it. The real implementation may be a little
bit more complex, but this is the crux of the matter. The important part to realize here is that
the caller of the Open method cannot possibly judge any difference between a pooled or unpooled
connection, except maybe a much better performance.

The results of Listings 4-10 and 4-11 can also be verified by running the Performance Monitor.
You can view the SQLServer:General Statistics\User Connections counter to verify how and
how many actual connections are being established to the database. If you really want to shock
yourself, you can create a new SqlConnection object, comment out the closing of the connection,
and only open connections on newly created SqlConnection objects in rapid succession to view
the connection usage of your application. You could even make it worse by not doing this in
a loop so the created connection objects don’t get garbage collected by falling out of scope at
the end of the loop—which might be a scenario closer to a nonconnection-pooled high-demand
application. Thus, it’s extremely important that you close your connection as soon as possible
and open as late as possible or the performance of your application will come grinding to its
knees very quickly. Unfortunately, this is something that will happen only in load tests or in
production, so it’s important to architect your data access layer with this nuance in mind.

Deciding on the Right Pool Size
The right pool size depends on the kind of application you are working with. In most scenarios,
it’s wise to simply leave the default settings as they are. However, understanding that pools are
maintained on individual client machines running ADO.NET, and not on the database server,
is critical in making an informed decision about a pool size.

For ASP.NET applications, your pool is maintained on the web server. It makes absolutely
no sense to disable connection pooling on an ASP.NET site. Though if you are running a large
number of web heads over a Network Load Balanced architecture all connecting to the same
database server, you must realize that the pool size, as far as the server is concerned, just got
multiplied by the same number of web heads/web servers serving your website.

Similarly, if you have a number of application servers over a remoting connection or sim-
ply a web service, then the number of application servers will increase the number of active
connections in the pool linearly.

■Note Too often I have seen a solution of a leaky application, i.e., an application that isn’t responsibly closing
the connections properly, being set a very large pool size. This isn’t the right approach to a permanent
acceptable solution. By doing so, you aren’t fixing the actual problem, only giving yourself a little bit more time
by masking the true problem. The true problem is to find the source of the leaky open connections and plug it.

This minor point of mention of “per client connection pool” becomes extremely important
where you have a “cowboy-style” application (I just coined that word). A cowboy-style application
is one that insists on connecting to the database directly, right from the user’s desktop. There
is no application server, web service, or website in the middle. In this circumstance, each client
maintains a connection pool. This means, that with 1,000 clients, your database will suddenly
come under 1,000 times the connection pool–size load. This situation will worsen rapidly, if
you are unfortunate enough that your architecture is leaking open connections. It’s for this

5122ch04.qxd 8/23/05 3:11 PM Page 72

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE 73

reason that most .NET data providers that support connection pooling will give you fine-level
control over the settings that dictate its behavior.

Now it may be tempting to hold one global DbConnection instance at each client and keep
it open for the life of the application. The obvious problem with this is the inability of multiple
threads to execute (at least reliably) multiple commands on that same connection at the same
time. You can maintain Multiple Active Resultsets (MARS), but that is not quite the same thing
as running parallel commands on one connection. This will become evident when you read
about MARS in detail in Chapter 11.

Let’s say that somehow you did architect a solution to the multiple parallel commands issue
by implementing locks or semaphores on the one shared connection object; then it might be
argued that a simple Windows Forms application could keep a connection open all the time,
so, effectively, you could turn off connection pooling and live happily ever after.

While, in that specific situation, turning off connection pooling and actually holding an
open connection object, and thus holding an open network or physical connection, might not
make much of a performance difference, this locks you into an architecture where, as the needs
of your application grow, you’ll never be able to use an application server in order to access your
database properly, via a data layer and connection pool. Not to mention, if your Windows Forms
application crashes without explicitly closing a connection, it’s now up to the garbage collector
to do your cleanup for you. Unfortunately, the garbage collector fires its cleanup job on the
basis of the unavailability of memory, and the SqlConnection object itself occupies very little
memory. So the garbage collector blissfully ignores the fact that an open SqlConnection object
is occupying significant system resources by holding onto an open connection.

This is something that you, as an architect or developer, will have to worry about. Or you
could just not try and reinvent the wheel, and leave it all up to connection pooling to take care
of it for you. Of course, remember to tweak the specific connection pool settings as needed if
too many individual client pools seem to overload your server.

Corrupt Connection Pools
Now that you’ve seen the benefits of connection pooling, let’s examine a complication that
connection pools might introduce. Imagine a situation where an application has been run-
ning for a while. The application connects to a SQL Server database over the network. A nice
and useful connection pool has been built with, say, 25 useful connections. Now some guy
walks into the server room and trips over the power cord for the database server and acciden-
tally reboots it. Quickly, he plugs it back in (and hopes nobody noticed a thing). There’s now
no way for the .NET CLR (Common Language Runtime), sitting on the application server or
web server, to know that its connection pool is now corrupt. What’s worse is that now when you
request a connection to be opened, the connection pool broker class will simply hand you one of
the connections because the connection pool broker class thinks what it’s handing over to you
is still a valid connection—little does it know that the connection no longer holds. Not only
will the behavior from now on be unpredictable, but it’s also probably occupying valuable sys-
tem resources in the form of confused underlying network connections that are now actually
dead. It’s not until you execute a command on it that an exception will be thrown because
the restarted SQL Server has no idea what connection you were on when the power failed. What’s
worse, this error will now be thrown at random on all of the remaining 24 connections in the
corrupt connection pool.

5122ch04.qxd 8/23/05 3:11 PM Page 73

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE74

In .NET 1.1, the only way to fix this would be to restart the application server. However, in
.NET 2.0, two new static methods have been introduced for this purpose:

• SqlConnection.ClearPool: This method is used to clear a particular connection pool
identified by the connection string passed as a parameter.

• SqlConnection.ClearAllPools: This method is used to clear all existing connection
pools.

■Note It’s important to note, however, that these two methods are not substitutes for closing all connec-
tions. Connections are just marked in an inconsistent state, and they are eventually garbage collected, but
they are not explicitly closed. This mechanism shouldn’t be used in place of properly disposing and closing
your connections.

Closing Connections: Good Application Design
Earlier in this chapter you saw that a connection object must implement IDisposable. The
IDisposable.Dispose method is, by convention, the method used for cleanup jobs for any
object. While most good .NET programmers know to call Dispose if they see it, constructs exist
in both C# and VB.NET, like the using block that automatically calls the Dispose method for you.

The ADO.NET connection object is no exception to the rule—it uses the Dispose method
to clean up unallocated resources. In addition to cleaning up unallocated resources, Dispose
calls Close on a connection object and makes it ready for reuse in a connection pool. In addi-
tion to calling Close, Dispose does a little more housekeeping work than Close might do.
Dispose cleans the internal collections to clear out various settings, such as the connection
string on a connection object, so it allows the garbage collector to reuse the memory used
by the actual connection object; however, calling Close alone will make the actual underlying
object available for reuse in a connection pool.

One of the most common ways to interact with a database is via a data access layer. A data
access layer is nothing but a common set of classes that every portion of your application needs
to go through in order to talk to the database. There are a few advantages of implementing a data
access layer:

• The author of the data access classes ensures connections are disposed (and hence
closed) as soon as possible.

• You can put performance metrics inside the data access layer.

• If there is, indeed, a connection leak (open connections being created without being
closed) inside your data access layer, it can be traced and fixed easily.

An example of a data access layer is the Microsoft Data Access Application Block, which
can be downloaded from Microsoft’s website at http://msdn.microsoft.com/library/en-us/
dnbda/html/daab-rm.asp. You might need to tweak it a little bit to suit your purposes, but it’s
a good starting point.

5122ch04.qxd 8/23/05 3:11 PM Page 74

Within the data access layer, or outside if you choose not to implement one, you should
use either using blocks or try...catch...finally constructs to always ensure your connec-
tions are disposed of properly.

Here’s a description of the differences between calling the Close and Dispose methods, or
none at all:

• Calling Close on a connection object enables the underlying connection to be pooled.

• Calling Dispose on a connection object alleviates the need for you to call Close on it
explicitly. It not only ensures that the underlying connection can be pooled, but it also
makes sure that allocated resources can now be garbage collected.

• Not calling either Close or Dispose will effectively kill your application performance by
increasing the connection pool to a maximum limit, and then everyone will have to wait
for the next available connection object. Not only that, but even when the open connections
fall out of scope, they won’t be garbage collected for a relatively long time because the
connection object itself doesn’t occupy that much memory—and the lack of memory is
the sole criterion for the garbage collector to kick in and do its work.

In short, Dispose is the best option as it helps garbage collection and connection pooling,
Close is second best option as it helps only connection pooling, and not calling either Close or
Dispose is so bad that you shouldn’t even go there.

Summary
In this chapter, you examined the various facets involved in being able to connect to a database
through ADO.NET. You examined the class structure and learned how to establish a simple
connection by specifying a connection string. Because it could be difficult to remember all
those parameter name keywords, you looked at two alternate mechanisms for easily coming
up with connection strings and a standard way of securing connection strings. Finally, you
learned about connecting to the database in high-demand applications using connection
pools. You saw an example of how using a connection pool could vastly affect application per-
formance and what was necessary to do in applications to take advantage of connection pools.

Now that you know how to connect to a data source, in the next chapter you’ll learn about
how to execute commands and retrieve data from the data source in a connected mode.

Next, you’ll look at data readers and commands in ADO.NET.

CHAPTER 4 ■ CONNECTING TO A DATA SOURCE 75

5122ch04.qxd 8/23/05 3:11 PM Page 75

5122ch04.qxd 8/23/05 3:11 PM Page 76

77

C H A P T E R 5

■ ■ ■

Retrieving Data in a Connected
Fashion

The data source for an application is typically a dedicated external resource; it could be a file
or server software like Microsoft SQL Server or Oracle running on a dedicated server, accessed
over a network connection.

In the last chapter you read about establishing a connection with such an external resource.
Even though the data itself might reside in an external resource, i.e., the data source, the data
is eventually mapped into object representations of the entities/types of the data source, and
the logic to process upon the object representations of the data resides within the application
itself. Therefore, to process data, the application needs to retrieve the parts of the data from the
data source, which the application should process.

As you saw in Chapters 1 and 2, ADO.NET is split into two main halves: the connected
and disconnected. This chapter will concern itself with the connected fashion of retrieving
data, which involves connecting to the data source over an ADO.NET connection, sending
commands, and retrieving the results while remaining connected to the database or external
data source.

The need for an external data source arises because applications tend to be better at stor-
ing the logic that will process the data rather than storing the actual data. It’s not uncommon
for an enterprise application’s data to span several gigabytes, but usually, at a given time, the
application is processing only a small subset of the data. Thus, the application needs a way to
communicate with the data source requesting the subset of the data that it’s interested in at
a given time.

Communicating with the Data Source
After a connection has been made, communicating with the data source involves two operations:

1. Specifying what data the application is interested in.

2. Receiving results back.

Specifying what data the application is interested in involves sending a command/request
via a predefined language or format. Even though ADO.NET doesn’t limit you to a particular
language or syntax, the most commonly accepted format of data source query language is

5122ch05.qxd 8/23/05 3:14 PM Page 77

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION78

a form of the Structured Query Language (SQL). Microsoft SQL Server supports T-SQL whereas
Oracle chooses to support PL/SQL, but both are text-based and their syntaxes and purposes
are similar, although not exactly the same.

In SQL, you have the ability to query your database by specifying some sort of selection
logic via a SELECT command, or you can manipulate data using an INSERT, UPDATE, or DELETE
command. If your database administrator has given you the appropriate access rights, you
might also be allowed to manipulate data schema information or perform administrative tasks
on your database. The textual strings comprise what is collectively referred to as database com-
mands. In this chapter, however, we’ll concentrate mostly on SELECT commands and leave the other
Data Manipulation Language (DML) commands like INSERT, UPDATE, and DELETE for Chapter 9.

SQL is a powerful language and the command itself could take many shapes. The com-
mand sent to the database via ADO.NET could take any of the following forms:

-- Simple Select Command
SELECT useraddress, userphone FROM users WHERE username = 'John';
-- Parameterized command for reuse and flexibility
SELECT useraddress, userphone FROM users WHERE username = @UserName;
-- Stored Procedure Execution.
EXEC sp_getUserAddressPhone(@UserName);

ADO.NET supports the listed command forms, and you can execute them using an
ADO.NET command object.

Let’s get familiar with the command object by introducing an example in which you can
query the database using a simple command.

Retrieving a Scalar Value
To query your database, you need to use a command object. The discussion in this chapter is
mostly centered on using Microsoft SQL Server, but the concepts apply to any of the commonly
found ADO.NET data providers. The generic command object in ADO.NET is represented by
the DbCommand class, and the Microsoft SQL Server–specific command object is represented
by the System.Data.SqlClient.SqlCommand class, which inherits from DbCommand. This would be
a good time to quickly glance back at Figures 2-3 and 2-4 presented in Chapter 2. This will give
you a visual understanding of the inheritance structure between SqlCommand, DbCommand, and
other such classes.

Creating a command object is simple. You need to instantiate the object using any one of
the four supported overloads. In its simplest form, the code can look like this:

C#

SqlCommand testCommand = new SqlCommand();

VB.NET

Dim testCommand As New SqlCommand()

Even though this code compiles, it doesn’t really do anything. Now, let’s take a step back
and think about the minimum requirements for any command to execute successfully:

5122ch05.qxd 8/23/05 3:14 PM Page 78

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION 79

Figure 5-1. TestDemo for examples in this chapter

• It must execute against a database—but we didn’t specify which connection this command
will use to execute.

• We need to specify which action the command performs—but we didn’t specify the
command text (yet).

So at the very least, you need to specify the connection the command object should use
and the action it should perform. Let’s start with the first part of the information you must
specify—the database the command will execute against.

Which Database to Execute Against
In the exercises in this chapter, you’ll be connecting to a Microsoft SQL Server 2005 database
named “Test” running on your local machine, using Windows authentication. This database
will have one table called TestDemo with data, as shown in Figure 5-1.

Assuming that you have set up such a database on your machine, you can start writing
your first exercise. You can either create the application by following the steps here, or you can
find it in the Downloads section of the Apress website (http://www.apress.com) as Example 5.1:

1. Start up Visual Studio and create a new Console Application project named “Example 5.1.”

2. Open the Program.cs class file (C#) or the Module1.vb module file (VB.NET).

3. Import the relevant disconnected and connected namespaces:

C#

using System.Data;
using System.Data.SqlClient;

VB.NET

Imports System.Data
Imports System.Data.SqlClient

4. Create and set up the SqlConnection object in the Main procedure:

C#

string connectionString =
"Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI;"

using (SqlConnection testConnection = new SqlConnection(connectionString))
{

// Code will be added here

5122ch05.qxd 8/23/05 3:14 PM Page 79

VB.NET

Dim connectionString As String = _
"Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI;"

Using testConnection As New SqlConnection(connectionString)
' Code will be added here

End Using

Note that because you are making use of the using block, you don’t need to explicitly call
Close, because that will be called as a part of Dispose for you at the end of the using block.
With the connection set up, you need to create a new SqlCommand object and specify the con-
nection information. This can be done as shown in Listing 5-1 or 5-2 (within the using/Using
block created in Example 5.1).

Listing 5-1. Three Possible Ways of Instantiating the Command Object in C#

// Instantiate Command and specify Connection in two steps
SqlCommand testCommand = new SqlCommand();
testCommand.Connection = testConnection;
// Instantiate Comamnd and specify Connection in single step
SqlCommand testCommand = new SqlCommand("<<commandtext here>>", testConnection);
// Using CreateCommand method
SqlCommand testCommand = testConnection.CreateCommand();

Listing 5-2. Three Possible Ways of Instantiating the Command Object in Visual Basic .NET

' Instantiate Command and specify Connection in two steps
Dim testCommand As New SqlCommand()
testCommand.Connection = testConnection
' Instantiate Comamnd and specify Connection in single step
Dim testCommand As New SqlCommand("<<commandtext here>>", testConnection)
' Using CreateCommand method
testCommand = testConnection.CreateCommand()

Any of these three methods associate the testCommand SqlCommand object with the
testConnection SqlConnection object. This is necessary since this is how you tell a command
object which connection and, thus, which data source to use.

You might ask, “Why does ADO.NET even let me instantiate a command object without
connection information?” This is so because it’s not uncommon to wrap the command logic
in various command objects and use them between various data sources. In other words, you
might choose to reuse the same command object between different data sources. Of course, in
doing so, you would have to disconnect and connect with various data sources, which empha-
sizes the disconnected flexibility that ADO.NET gives you.

Yet another method of creating a command object allows you to specify the transaction,
in which you can wrap the commands executed using the command object:

SqlCommand testCommand = new SqlCommand("...", connection, transaction);

This constructor overload will be discussed in further depth in Chapters 10 and 11.

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION80

5122ch05.qxd 8/23/05 3:14 PM Page 80

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION 81

As you might have figured out, we haven’t actually specified which data to retrieve yet,
and the first parameter in the second method of Listing 5-1 is an empty string with value
"<<commandtext here>>". This is where the command text should be specified, which is sent to
the data source once the command object is executed. So, no matter which of the three methods
shown in Listing 5-1 you use to create the command object, you need to specify the command
text. This is covered in the next section, “What to Execute.”

What to Execute
The SELECT query your command object should hold is executed against the TestDemo table in the
Test database. The command object should retrieve the number of rows in the TestDemo table
using the SQL statement SELECT COUNT(*) FROM TestDemo, and it’s done in any of the following
ways:

C#

// Instantiate Command and specify command text in two steps
SqlCommand testCommand = new SqlCommand();
testCommand.CommandText = "SELECT COUNT(*) FROM TestDemo";
// Instantiate Command and specify command text in single step
SqlCommand testCommand = new SqlCommand("SELECT COUNT(*) FROM TestDemo");

VB.NET

' Instantiate Command and specify command text in two steps
Dim testCommand As New SqlCommand()
testCommand.CommandText = "SELECT COUNT(*) FROM TestDemo"
' Instantiate Command and specify command text in single step
Dim testCommand As New SqlCommand("SELECT COUNT(*) FROM TestDemo")

In addition, you can specify both the connection and the command text in a single line of
code. This is what Example 5.1 in the code download uses:

C#

SqlCommand testCommand =
new SqlCommand("SELECT COUNT(*) FROM TestDemo",testConnection);

VB.NET

Dim testCommand As New SqlCommand(_
"SELECT COUNT(*) FROM TestDemo", testConnection)

Another piece of information you’d need to specify is the CommandType property on the
command object. The default value is CommandType.Text, so in this case you don’t need to
worry about that. However, if, for instance, you were using a stored procedure instead, you’d
then need to set CommandType to CommandType.StoredProcedure.

The code isn’t complete until the command is actually executed and you see the results.
Now that you have specified enough information for the command object, it’s time to execute
it and retrieve the results.

5122ch05.qxd 8/23/05 3:14 PM Page 81

Executing a Command to Retrieve Results
As you saw in Chapter 4, the SqlConnection class inherits from the DbConnection class, which
implements IDbConnection (see also Figure 2-1 from Chapter 2), and the most commonly used
ADO.NET objects follow the same paradigm. So, the command class implements the IDbCommand
interface and inherits from the DbCommand class. Actually, DbCommand implements IDbCommand
(see Figures 2-2 and 2-3 from Chapter 2), which also means that the ExecuteScalar method is
accessible using the SqlCommand class for executing a command that returns only a single result.
The single result can only be a value, not a result set, so the ExecuteScalar method is what you
need to retrieve the total number of rows in the TestDemo table.

Before you can call the ExecuteScalar method, the connection on which you execute the
command must be open and available or else you’ll get an exception. In this case, it means
you need to open the connection, for which all you need to do is call the Open method on the
connection object. The ExecuteScalar method returns a value of data type Object and should
be called like this:

C#

int numResults = (int) testCommand.ExecuteScalar();

VB.NET

Dim numResults As Integer = CInt(testCommand.ExecuteScalar())

1. Add a call to the ExecuteScalar method to the code created in Example 5.1 so far.

2. Make sure you open the connection object before you execute the ExecuteScalar
method, and close it afterwards.

3. Output the result of the ExecuteScalar method to the console, making the final code
look like Listing 5-3 or 5-4.

Listing 5-3. Executing a Simple Command in C#

string connectionString =
"Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI;"

using (SqlConnection testConnection = new SqlConnection(connectionString))
{

SqlCommand testCommand =
new SqlCommand("SELECT COUNT(*) FROM TestDemo",testConnection);

testConnection.Open();
int numResults = (int) testCommand.ExecuteScalar();
Console.WriteLine("Total number of rows in TestDemo: " + numResults);
testConnection.Close();

}

Console.Read();

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION82

5122ch05.qxd 8/23/05 3:14 PM Page 82

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION 83

Listing 5-4. Executing a Simple Command in Visual Basic .NET

Dim connectionString As String = _
"Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI;"

Using testConnection As New SqlConnection(connectionString)
Dim testCommand As New SqlCommand(_

"SELECT COUNT(*) FROM TestDemo", testConnection)
testConnection.Open()
Dim numResults As Integer = CInt(testCommand.ExecuteScalar())
Console.WriteLine("Total number of rows in TestDemo: " & numResults)
testConnection.Close()

End Using

Console.Read()

When you compile and run the application, it produces the following output:

Total number of rows in TestDemo: 3

As expected, the application correctly reports the number of rows in the TestDemo table.
Even though Example 5.1 creates a fully functional ADO.NET application, it’s obviously

not very complex. Usually, in querying data sources, the results to a query are in the form of
rows and columns, which is also commonly referred to as a result set.

So now, let’s create an application that helps you retrieve a result set.

Retrieving a Result Set
As you saw in the previous section, ExecuteScalar is good for retrieving a single scalar value
from a SELECT statement. So the natural question is, “What can you do to retrieve an entire
result set?”

A full result set is obviously the result of a command such as SELECT * FROM TESTDEMO
specified as the command text for a command object. For an object to qualify as a valid ADO.NET
command object, it needs to implement the IDBCommand interface. One of the methods that the
IDBCommand interface requires you to implement is the ExecuteReader method. ExecuteReader
is the method that gives you access to the multiple rows in a result set. As you’ll see later,
ExecuteReader also gives you the ability to browse through multiple result sets using the
NextResult method, which typically might be the result of a batched query (SQL Server) or
multiple REF CURSORs (Oracle).

ExecuteReader returns an object of IDataReader data type, and IDataReader allows you to
iterate through the various rows and columns in a result set in a read-only/forward-only fashion.

The IDataReader interface also implements IDataRecord and IDisposable interfaces. As
mentioned in Chapter 4, IDisposable requires you to implement a method called Dispose that
ensures the freeing, releasing, or resetting of unmanaged resources. On the other hand, the
IDataRecord interface represents an individual record in ADO.NET. So you can safely assume
that IDataRecord is the minimum functionality that any row representation in ADO.NET must
implement. Here are a few important methods IDataRecord implements:

5122ch05.qxd 8/23/05 3:14 PM Page 83

• Get[DataType]: Please note that the full name of the method, or rather methods, depends
on the value you want to retrieve; say you wish to retrieve a Boolean value, you have
a method called GetBoolean. If you wish to retrieve a Byte value, you have the GetByte
method. In fact, there are methods for all intrinsic .NET data types. If you’re unsure of the
data type contained in a column, you have a generic GetValue method that would return
an Object data type. All of the methods mentioned here accept an Int32 parameter. The
Int32 value is the column ordinal, i.e., the number of the column within a row/record to
retrieve a value from. Given that the ordering of the columns is zero-based, retrieving
a value from the first column requires you specify 0 as the column ordinal.

• GetName: If you need the name of a specific column, you can use this method by passing
the column ordinal. This method works conversely to the GetOrdinal method.

• GetOrdinal: If you need the ordinal of a specific column, you can use this method by
passing the column name. This method works conversely to the GetName method.

• IsDbNull: Databases are different from .NET in that they can store null values in integers
and other intrinsic types. Even though .NET 2.0 has introduced the concept of nullable
value types, the IsDbNull method is used to check if a column value is represented as
null/Nothing in the database. You’d still want to use this method instead of assigning
the column value directly to a nullable value type because if the column holds a null
value an exception is thrown. Due to performance reasons, a better alternative to using
IsDbNull is to compare the retrieved value with System.DBNull.Value instead.

Now, given that you have an IDataRecord type of variable, you could access a given column
using either the ordinal of the column you wish to query or specifying the name of the column
you wish to query. So you could access a given column in the IDataRecord in either of the
following two ways:

C#

IDataRecordInstance["MyColumn"]; // Using Column Name
IDataRecordInstance[0] ; // Using the column ordinal

VB.NET

IDataRecordInstance("MyColumn"); ' Using Column Name
IDataRecordInstance(0); 'Using the column ordinal

You might ask, “Why would you ever access a column value using the column ordinal, mak-
ing your code look cryptic, instead of using the name of the column?” Well, only for performance
reasons. Retrieving using the column ordinal performs far better than retrieving using the col-
umn name. That makes sense because the computer finds it easier to look through Int32 data
types (4 bytes) rather than strings. In addition, since strings are immutable objects, every time
you create a string it ends up eating a little bit more memory, thus a string indexer in a loop
would consume all that much extra memory as many times as the loop might have run. This,
of course, means that your code will look a bit more cryptic because you’re using column ordinals
rather than column names as strings.

In this situation specifically, the GetOrdinal method is especially useful. Given the name
of a particular column, you can retrieve the column name at runtime and use that instead.

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION84

5122ch05.qxd 8/23/05 3:14 PM Page 84

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION 85

This is especially useful if you retrieve a collection of IDataRecord objects and you’re iterating
through them in a loop and all you know in advance is the column name, not the column ordinal.
In the next section, you’ll examine retrieving more than one row where all this will become clear—
but more on that in just a bit.

■Note For performance reasons, you should try and use the Int32 indexer in a loop instead of the string
indexer. You can use the GetOrdinal and GetName methods to perform the conversion between column
name and ordinal, and vice versa.

To fetch an entire result set, you need a method that gives you a collection of IDataRecord
objects. The DbCommand.ExecuteReader method does exactly that. It returns a DbDataReader object.

So, given that you want to execute the query, SELECT * FROM TESTDEMO, you need to execute
the ExecuteReader method.

To query for a result set instead of a scalar value, you also need a new SQL query command.
The new SQL query command is the command text for the SqlCommand object, so you need new
command text:

C#

SqlCommand testCommand =
new SqlCommand("SELECT * FROM TESTDEMO",testConnection);

VB.NET

Dim testCommand As New SqlCommand(_
"SELECT * FROM TESTDEMO", testConnection)

Now that you’re getting back more than one row, an integer obviously won’t be enough to
hold the returned data. Instead of the integer, the object you’ll use to read the data from the
database is the SqlDataReader object, which implements IDataReader and inherits from
DBDataReader. Accordingly, you need to make changes to your code. The following code can
also be found as a part of the code download in Example 5.2:

C#

SqlDataReader sqlDr = testCommand.ExecuteReader(CommandBehavior.CloseConnection);

VB.NET

Dim sqlDr As New SqlDataReader(CommandBehavior.CloseConnection)

Now if you raised your eyebrows here and asked, “Why didn’t ADO.NET just return a col-
lection of IDataRecords instead?” that is, indeed, a very good question. There are mainly two
reasons for that which will become clear as you read further, but I will mention them here briefly:

5122ch05.qxd 8/23/05 3:14 PM Page 85

• First, the SqlDataReader is not a disconnected cache of IDataRecords. It does, however,
give you the ability to return a disconnected cache (as you’ll see shortly), but its default
behavior is to read a little bit ahead of what you’re requesting yet still remain connected
to the database for any additional rows that might match the SqlCommand executed.

• Second, SqlDataReader is a lot more versatile than, say, a collection of IDataRecords
would have been. Not only does it let you return multiple result sets, for larger data
columns like blobs, it even supports a sequential access that allows you to read that
particular row/column into a stream on demand. Pre-loading all that into an
IDataRecords collection would have been less than ideal in many situations.

Also, you might notice that the code is passing a parameter to ExecuteReader here. Even
though an overload exists that allows you to not pass this parameter, passing this parameter
ensures that the underlying connection is closed once you are done with it and have closed
the SqlDataReader. There are a few other options (command behaviors) you can specify to the
ExecuteReader method. Here are the various command behaviors available:

• Default: Functionally the same as ExecuteReader().

• CloseConnection: When the command is done executing, both the DataReader and the
connection are closed. Now it’s notable that DataReader.Close populates the final
results of the query, like number of RecordsAffected, etc. So for complicated queries,
the close process might take a while to execute. In such cases, you might want to call
DataReader.Cancel instead and not use this parameter.

• KeyInfo: This parameter instructs the data reader to retrieve only column and primary-
key information.

• SchemaOnly: This parameter returns only column information.

• SequentialAccess: This specifies that you’ll read the data from the data reader sequentially.
You might want to do this when you’re reading large amounts of data like blobs or big
XML chunks as varchars. The OleDbDataReader, however, will let you reread the column
value until reading past it, whereas the SqlDataReader will not. Also, columns will need
to be sequentially accessed.

• SingleResult: You can specify a batched query with multiple results and use the
NextResult to move to the next result set. SingleResult returns only the first result set.

• SingleRow: This fetches only one row per result set. It’s important to note, however,
that this would block command execution and you would be responsible for calling
SqlDataReader.Close.

Given that accessing a result set requires you to deal with SqlDataReader, which is a different
kind of object, you need a new way of accessing and reading the SqlDataReader. Your reading
logic would now look like Listing 5-5 or 5-6.

Listing 5-5. Reading the Results from a SqlDataReader in C#

if (sqlDr.HasRows)
{

while (sqlDr.Read())

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION86

5122ch05.qxd 8/23/05 3:14 PM Page 86

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION 87

{
Console.WriteLine("TestDemo: " + sqlDr.GetInt32(0)
+ " and Description : " + sqlDr.GetString(1));

}
}

Listing 5-6. Reading the Results from a SqlDataReader in Visual Basic .NET

If sqlDr.HasRows Then
While sqlDr.Read

Console.WriteLine("TestDemo: " & sqlDr.GetInt32(0) & _
" and Description : " & sqlDr.GetString(1))

End While
End If

In this code, using the HasRows property, you first check and see if the data reader returned
any rows in the one result set you expect.

If, indeed, there are rows available, you start iterating through those rows in a forward-only
fashion by calling the Read method. This is because the cursor in the result set is placed at the
front of the first row, so to read that row you have to call the Read method.

And while your data reader object sqlDr is focused on a particular row, you can retrieve
various column values out of that row by calling the GetInt32 and GetString methods.

When you compile and run the application, it produces the output shown in Figure 5-2.

It’s important to note that the data reader gives you no way of going backward in the result
set, nor does it give you any ability to edit the results. What you have is a read-only/forward-only
method that is continuously connected to the database.

You might want to run a quick test on a larger result set being read into a SqlDataReader.
Set a breakpoint after, say, the first execution of SqlDataReader.Read, and stop the underlying
SQL Server and continue to iterate through the data reader. You might be surprised to learn
that even with the database stopped, the SqlDataReader continues to retrieve results. Even
though this behavior might appear surprising, it is, indeed, logical. The best way to imagine

Figure 5-2. Results of using ExecuteReader to iterate through a result set

5122ch05.qxd 8/23/05 3:14 PM Page 87

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION88

database. Even if someone turns the hose off at the database, for a short while results will con-
tinue coming in. If you increase the number of results returned by a few thousand rows, you’ll
notice that the data reader will eventually throw an exception informing you of the closed
connection.

What this also means is that while a data reader is running, you are keeping a physical
connection busy serving your request. So if you have logic that executes on every row, the physical
connection will now remain open for the time the logic runs, plus the time it takes for you to
retrieve the results out of the database.

As you saw in Chapter 4, the longer you keep your connections open, the worse your con-
nection pooling performance will be. What you really need in such a situation is a disconnected
cache of objects representing each row—you need a true collection of IDataRecords.

Such a collection might be useful if you want to pass the collected data to a data-binding
UI, or do any other processing. This might be useful in the situation where you wish to read as
fast as possible out of the database (hence, use a data reader), but the processing you might need
to do on the results takes a long time and it keeps the connection object open for an inordinately
long duration, thus nullifying any performance gains you might have achieved by using a data
reader. You need a way to quickly iterate through a data reader’s results and store them for
processing purposes, and close the connection so someone else can use it.

Querying a Result Set for Storage
In the previous section, you saw how the data reader allows you to iterate through a collection
of rows in a result set. What if you wanted to use this data for data-binding or number-crunching
purposes? If it took you a long time to work on the data while in connected mode, you’d be forced
to keep the connection open which would negatively impact connection pooling performance.
Thus, when you might need to do significant processing between each iterated row, you should
first try to read all the rows you can and close the underlying connection. Once you have the
data, then you can start processing it.

The SqlDataReader class contains a method called GetEnumerator. What GetEnumerator
allows you to do is use it in a foreach construct. In the foreach construct, the enumerator
returns the objects sequentially that the enumerator holder is a collection of. In the case of
SqlDataReader, the enumerator will return DbDataRecords one by one.

Let’s examine this in Example 5.3 in the associated code download, or you can simply
follow these steps:

1. Create a Windows Forms application.

2. Throw a DataGridView on the Form1 of the application, and name it myDataGrid. Also,
format it to your favorite style.

3. Throw a button on the form and call it btnPopulate. Change the text to “Populate
Arraylist”.

4. If you wish, set various other “make the form pretty” properties, such as resize it
properly, make it FixedSingle window style, disable the Maximize button, set the con-
trols properly, etc. The form should look like Figure 5-3 in Design mode.

5122ch05.qxd 8/23/05 3:14 PM Page 88

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION 89

Figure 5-3. Example 5.3’s form in Design mode

5. Double-click btnPopulate to open the code view with the cursor placed at the function
that will be called when you click on the button when the form is running.

6. At this location, add the code shown in Listings 5-7 and 5-8.

Listing 5-7. Creating a Disconnected Cache of DbDataRecords in C#

string connectionString =
"Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI";

using (SqlConnection testConnection = new SqlConnection(connectionString))
{

SqlCommand testCommand =
new SqlCommand("SELECT * FROM TESTDEMO", testConnection);

testConnection.Open();
SqlDataReader sqlDr =
testCommand.ExecuteReader(CommandBehavior.CloseConnection);

if (sqlDr.HasRows)
{

foreach (DbDataRecord rec in sqlDr)
{

dbRecordsHolder.Add(rec); // dbRecordsHolder is an ArrayList
}

}
} // testConnection.Dispose is called automatically

Listing 5-8. Creating a Disconnected Cache of DbDataRecords in Visual Basic .NET

Dim connectionString As String = _
"Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI"

Using testConnection As SqlConnection = New SqlConnection(connectionString)
Dim testCommand As SqlCommand = _
New SqlCommand("SELECT * FROM TESTDEMO", testConnection)

testConnection.Open()
Dim sqlDr As SqlDataReader = _

5122ch05.qxd 8/23/05 3:14 PM Page 89

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION90

DataGridView

testCommand.ExecuteReader(CommandBehavior.CloseConnection)
If sqlDr.HasRows Then

For Each rec As DbDataRecord In sqlDr
dbRecordsHolder.Add(rec) ' dbRecordsHolder is an ArrayList

Next
End If

End Using ' testConnection.Dispose is called automatically

7. Finally, add another button to the form, call it btnDataBind, change its text to DataBind,
and double-click it to add the following code:

C#

myDataGrid.DataSource = dbRecordsHolder;

VB.NET

myDataGrid.DataSource = dbRecordsHolder

Let’s examine what the code in Listings 5-7 and 5-8 does. It creates a command and
fetches a data reader just like the console application you saw in Example 5.2; however, what
is new this time around is that, instead of retrieving our data using the “Get” functions, you
instead enumerated through various DbDataRecords and put those into an ArrayList called
dbRecordsHolder. This ArrayList exists as a private variable in our class and is instantiated in
the constructor as you can see in the associated code download. Since the ArrayList object is
directly data-bindable, you can simply data bind it with myDataGrid as shown in step 7. Do
note, however, that in an ASP.NET application, you can data bind the data reader directly.

Interestingly, if you now click Populate Arraylist, the ArrayList is filled up and the con-
nection is closed because Dispose is called on the connection object. So at that point, you
have all the data in the ArrayList, which is completely disconnected from the database. So
what you’re binding to the data grid is, indeed, disconnected from the database. The biggest
advantage of this is that you didn’t keep the SqlConnection open while your application was
busy data binding with the UI.

The practical upshot of not having to keep the SqlConnection open while you were data
binding is that you kept the connection open for as little time as possible. This results in much
better connection pooling performance.

Compile and run the application. Click Populate DataGrid first and then DataBind. The
output looks like that shown in Figure 5-4.

5122ch05.qxd 8/23/05 3:14 PM Page 90

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION 91

Also note that, now as you try to update this data via the DataGridView, the DataGridView
knows that this object is not editable and shows the data in read-only mode.

You’ve briefly brushed against the disconnected mode of storing data. You’ll see a deeper
disconnected data access mode discussion in Chapter 6, but for now let’s return to the connected
data retrieval mode discussion.

So far, the examples that you have seen in this chapter have involved querying the TestDemo
table with two columns and three rows. However, it’s not uncommon to see tables with tens of
thousands of rows in them. As an experiment, you might want to try and change the command
text to point to a larger table and run the code from Example 5.3 once again. You’ll notice that
while the command executes, the UI finds it difficult to even repaint itself because its main
thread is busy executing the SqlCommand.

Getting back to this exercise and the discussion of retrieving data in a connected fashion,
let’s now pose the questions: “What if you had a large number of records (say 500,000) to retrieve?
Will that freeze up your UI for the few seconds you’re executing the command?” Or, “What if
you had a report that takes 15 minutes to run? Could you execute the command that retrieves
data for the report and alert the user when the results are available?” In other words, you wish
to execute the command asynchronously, you wish to ask it to execute, and you wish to keep
your main thread free for other requests—such as repainting itself, or responding to user input.

Before I talk about how to execute a SqlCommand asynchronously, let’s be clear about what
I mean by executing a command asynchronously.

Imagine that I am expecting an urgent courier package delivery today. One of my options
is to sit at my doorstep and wait for the courier package. Another option is to go to work and
ask my neighbor’s teenager son to watch for the package for me and call me when it arrives.

In the first case, I will have to sit at the doorstep and do the very mundane task of sitting
and waiting until the courier delivery driver shows up with my package. While it would work,
it’s a terrible waste of my day. This is the equivalent of executing a task synchronously. I’m con-
tinuously waiting for the driver and cannot do anything else in the meantime.

The second case is where I don’t wait for results myself. Instead, I let someone else do that job
for me, who will let me know (callback) when the package is there. In the meantime, I can concern
myself with other important tasks. This is the equivalent of executing a task asynchronously.

Now, let’s apply this paradigm to a long-running SqlCommand.

Querying Large Result Sets Asynchronously
In the previous two sections, you saw how to retrieve a result set using a data reader. The exercises
ran very well because you had only three rows in your result set. But what if you had 100,000
rows? Could you use the previous code? Sure you could. The only problem is that the minute
or two it will take for the previous command to get executed, the calling thread will be locked.
If that thread happens to be the thread your UI was created on (say in a single threaded applica-
tion like Example 5.3), your UI wouldn’t even be able to repaint itself. The impression the user
will get is that your application is “hung” and he might try and “End Task” your application.

In .NET 1.1, you could’ve gotten around this problem by firing off another thread, creating
the data reader on that thread instead, and then having that thread notify the main thread
that it was ready to retrieve the data. The right way to then show the data would be to use the
Form.Invoke method to switch thread contexts and then data bind the fetched data on the UI
in the context of the thread the UI was created upon.

5122ch05.qxd 8/23/05 3:14 PM Page 91

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION92

If you didn’t have to read the previous paragraph at least twice to understand what I just
said, you are probably a really advanced .NET programmer. And if you did find yourself
scratching your head a little bit, take heart because this was obviously a fairly complicated
work-around to a situation that might occur much too often. Keeping that in mind, .NET 2.0
introduced asynchronous execution on many commands using the popular Begin/End meth-
ods and IAsyncResult data types.

■Note Never update the UI on a thread other than the thread the UI was created upon. This might cause
the thread to update a textbox the user is typing data into. As a matter of fact, if you try doing this in .NET
2.0, you’ll actually get a System.InvalidOperationException.

The code from Example 5.3 can be easily modified to use the asynchronous command
execution method instead. But before you make any modifications to the code, first let’s see
what it will take to change the existing example to make it asynchronous, instead of the cur-
rently synchronous command execution.

First, you need a query that will take longer to execute. One quick way of ensuring that
you have enough records that will take a while to retrieve is to simply execute the following
SQL statement on your TestDemo table a few times:

INSERT INTO TESTDEMO (DESCRIPTION) (SELECT DESCRIPTION FROM TESTDEMO)

■Note In a production application, after such heavy insertion into the database, you might want to execute
UPDATE STATISTICS on the given table to ensure fast selects.

Now that you have a query that takes longer to execute, your intention is that when the user
clicks on Populate Arraylist, instead of blocking the UI, you instead use the BeginExecuteReader
method of the SqlCommand object and pass it a callback method and the command object. The
callback method is what will be called when the command execution completes. By doing so,
we are telling the BeginExecuteReader method to “Go ahead and begin executing the method to
get me a data reader, and when you are done, please call my callback, and also please remem-
ber to return this command object to me so I can remember what we were talking about.”

Let’s see how this looks in code. You can follow these four steps, or look at Example 5-4 in
the associated code download for this chapter.

1. Starting with the code you have written for Example 5.3, replace the call to ExecuteReader
with a call to BeginExecuteReader as shown here:

C#

AsyncCallback callback = new AsyncCallback(DataReaderIsReady);
IAsyncResult asyncresult =

testCommand.BeginExecuteReader(callback, testCommand);

5122ch05.qxd 8/23/05 3:14 PM Page 92

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION 93

VB.NET

Dim callback as AsyncCallback = new AsyncCallback(DataReaderIsReady)
Dim asyncresult as IAsyncResult = _
testCommand.BeginExecuteReader(callback, testCommand)

The biggest advantage of this approach is that since calling BeginExecuteReader is
nonblocking (i.e., you’ll be given the control of your thread back), you have the ability
to continue processing on something else (like repainting your UI) while the command
is being executed.

2. Add code for DataReaderIsReady, which is the method specified in the new AsyncCallback
call. This is the method that’s called when BeginExecuteReader is done processing. This
code is shown in Listings 5-9 and 5-10.

Listing 5-9. Callback Implementation for BeginExecuteDataReader in C#

private void DataReaderIsReady(IAsyncResult result)
{

MessageBox.Show("Results Load Complete", "I'm Done");
SqlCommand testCommand = (SqlCommand)result.AsyncState;

SqlDataReader sqlDr = testCommand.EndExecuteReader(result);
if (sqlDr.HasRows)
{

foreach (DbDataRecord rec in sqlDr)
{

dbRecordsHolder.Add(rec);
}

}
sqlDr.Close();
cmd.Connection.Dispose(); //Do not forget to at least close, if not dispose

}

Listing 5-10. Callback Implementation for BeginExecuteDataReader in Visual Basic .NET

Private Sub DataReaderIsReady(ByVal result As IAsyncResult)
MessageBox.Show("Results Load Complete", "I'm Done")
Dim testCommand As SqlCommand = CType(result.AsyncState, SqlCommand)
Dim sqlDr As SqlDataReader = testCommand.EndExecuteReader(result)
If sqlDr.HasRows Then

For Each rec As DbDataRecord In sqlDr
dbRecordsHolder.Add(rec)

Next
End If
sqlDr.Close()
cmd.Connection.Dispose()'Do not forget to at least close, if not dispose

End Sub

5122ch05.qxd 8/23/05 3:14 PM Page 93

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION94

The DataReaderIsReady method is called once cmd.BeginExecuteReader is done with its
processing. When you started the BeginExecuteReader, you passed in the command
object. That object can now be retrieved using the IAsyncResult.AsyncState property.
Once you have the SqlCommand object back, you can now get the prepared SqlDataReader
by executing the EndExecuteReader method. From then on you can use the SqlDataReader
as you had used it in the synchronous example you saw in Example 5.3.

The big difference, however, is that, while your underlying database (SQL Server in this
case) is busy executing the query and preparing the results to send, your application is
not tied up waiting to hear back from SQL Server. The framework lets you know when
the results are ready, so you can begin listening at that time.

■Note As you’ll see in Chapter 13 when you write stored procedures in SQLCLR (the CLR inside SQL
Server 2005), you have the option of sending the results in one shot (SqlContext.Pipe.ExecuteAndSend)
or row by row (SqlContext.Pipe.SendResultsStart, SqlContext.Pipe.SendResultsRow, and
SqlContextPipe.SendResultsEnd). This can be seen in the exercise SqlServerStoredProc in Chapter 13.

While ExecuteAndSend works as a blocking call [i.e., the caller client application (data reader or data adapter)
has to wait for the entire result set to be ready before it can access the first row], the SendResultsStart,
SendResultsRow, and SendResultsEnd methods allow your client application to begin reading the first
row without having to wait for the entire result set to be ready first.

This technique, however, cannot be used when using T-SQL queries since SQL Server itself will not let
SendResultsRow execute unless the entire query has finished executing first. This is because SQL Server
tries to minimize the time you hold contentious resources.

Just remember to close the connection as a good coding practice in the end. Do note,
however, that you don’t have the using block or code limited to a single method’s scope
to do this for you here, so you need to remember to do this cleanup.

3. A rather thoughtful addition to ADO.NET 2.0 and SQL Server 2005 is that any features
that could potentially be misused, thanks to bad architecture or simply little knowledge,
need to be consciously allowed before they can be used. As mentioned earlier, asynchro-
nous command execution, although essential to an application, has the possibility of
being misused or improperly used. So to use asynchronous commands, you have to
consciously make the decision to do so and tell ADO.NET to use them via your connec-
tion string. A change needs to be made to the connection string to allow your code to
use asynchronous commands—thus, add the following to your connection string:

Asynchronous Processing=true

4. Let’s compile and run the application now. The application looks exactly the same as
Example 5.5 except now, when you click Populate Arraylist, your UI remains responsive.
You could have even showed a nice animation while the data was being filled.

One thing you might want to do is show a progress bar as the results are being fetched.
However, that’s not possible because a progress bar has a minimum and a maximum. You know

ou have fully iterated through

5122ch05.qxd 8/23/05 3:14 PM Page 94

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION 95

Figure 5-5. Notification of the callback’s execution

the data reader or at least have executed the command completely. The only way to show a truly
accurate progress bar is to execute two commands and know the result count in advance, which
might not be a very ideal situation. But you could show an animated UI informing the user of
an impending action.

When you do click Populate Arraylist, eventually the application shows a Message Box
(see Figure 5-5) informing the user that the command has finished executing. This means that
your callback has just been called; you can now easily retrieve the SqlDataReader and start
working with it. While you still spend the time retrieving the actual prepared rows from the
underlying database, your main thread didn’t get blocked while the query itself was executing
and the results were being prepared.

After that message, you can click DataBind and get results similar to Example 5.5, only
this time with many more results (see Figure 5-6).

Figure 5-6. Final databound UI with a large number of results

Since your code is now split up between the method that calls BeginExecuteReader and
the callback, one obvious downside is that you can’t use the using block and close the connec-
tion while the data reader is being prepared. Instead, you’ll need to close the connection after

5122ch05.qxd 8/23/05 3:14 PM Page 95

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION96

the callback execution has occurred. This is an important change since this could be a potential
open connection leak, so you absolutely must remember to close the connection in the callback
method yourself.

■Note Asynchronous commands are useful tools, but they should be used wisely. Not only have you now
introduced the complexity of creating the connection in one place and closing at another—thus causing
potential connection leaks—but also if the callback for some reason never gets executed, you now have an
infinite thread, an open connection, and a non-garbage-collectable command object.

As an exercise, try and execute the code in Exercises 5-3 and 5-4 with a large number of
records in the fetched result set and compare the UI’s responsiveness across both code examples.

So far you have seen various methods of querying data from the database in a connected
mode. You had a simple table to work with and you executed simple queries against it. Now
let’s consider a more real-world example.

Say you had two tables you wished to query instead of one and say that you were writing
a UI for managing user permissions. You have predefined permissions in one table, and you
have a list of users in the other table. There’s no relationship between these two yet, and your
desired UI would allow the user to match these in a many-to-many fashion.

There will be three parts to such an application. The first part will query the database for
users and permissions. The second part will create a UI that allows the user to express his
actions to a many-to-many relationship by introducing a third table, which will serve as a map
between users and permissions. The third and final step will be to update the data back to the
database.

For the scope of this chapter, let’s focus our attention on the first step: querying multiple
tables and retrieving multiple result sets.

Querying the Database for Multiple Result Sets
In the previously mentioned example, in order to query to independent result sets, one option
is to make two roundtrips to the server and execute two distinct commands on the database.
While that would certainly work, consider this scenario . . .

About 5 to 10 years back, when most of us were on dialup connections, it took a user located
in the United States around half a second to ping a server in Tokyo. However, downloading a half
megabyte file took the same user about half an hour on a paltry dialup connection. Today, he
might have a fiber-optic cable running all the way to his computer, but when he tries pinging
the same server in Tokyo, it still takes him about a half a second, but downloading half a megabyte
now takes him just a few seconds. At the time of writing this book, scientists don’t have an easy
way of crossing the speed of light; so it is safe to assume that the ping time will probably not
decrease much in the near future, although the download speeds will continue to rise.

Putting the previous paragraph in an ADO.NET perspective, the point is that multiple
database hits for the same amount of data queried is much more expensive than a single
database hit returning the same amount of data. It’s for this reason we should attempt to make
our conversations with the database chunky, not chatty.

5122ch05.qxd 8/23/05 3:14 PM Page 96

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION 97

■Tip In all disconnected computing scenarios, you should always try and make your communication
chunky, not chatty.

So, you need an easy way to retrieve multiple result sets in one single database hit. For
this let’s see an exercise that will query two tables: UserBasicInformation and PermissionsTable
from the TestDemo database on your local Test database. This exercise can be created in the
following steps or can be downloaded in the associated code download under Example 5.5:

1. Starting with the code from Example 5.2 in the associated code download (this is the
example that demonstrates a data reader with one result set), change the command
text specified to the SqlCommand as shown here:

C#

SqlCommand cmd =
new SqlCommand("SELECT * FROM USERBASICINFORMATION" + ";" +
"SELECT * FROM PERMISSIONSTABLE", conn);

VB.NET

Dim cmd as SqlCommand = _
New SqlCommand("SELECT * FROM USERBASICINFORMATION" & ";" & _
"SELECT * FROM PERMISSIONSTABLE", conn)

As you can see, all that I did was concatenate the two command strings and put a ;
character in the middle. This is commonly referred to as a batched SQL command in
Microsoft SQL Server. In Oracle, even though batched queries are supported, they
might be de-supported in the future. In Oracle, if you wish to return multiple result sets,
instead you could create a stored procedure that returns multiple output REF CURSORs
as shown here:

CREATE OR REPLACE PACKAGE UserPermsPkg AS
TYPE ResultCurr IS REF CURSOR;
PROCEDURE GetUserPerms (UserCur OUT ResultCurr,

PermsCur OUT ResultCurr);
END UserPermsPkg;

CREATE OR REPLACE PACKAGE BODY UserPermsPkg AS
PROCEDURE GetUserPerms (UserCur OUT ResultCurr,

PermsCur OUT ResultCurr)
IS
LocalUserCur ResultCurr;
LocalPermsCur ResultCurr;

BEGIN
OPEN LocalUserCur FOR

SELECT * FROM USERBASICINFORMATION;

5122ch05.qxd 8/23/05 3:14 PM Page 97

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION98

OPEN LocalPermsCur FOR
SELECT * FROM PERMISSIONSTABLE;

UserCur := LocalUserCur;
PermsCur := LocalPermsCur;

END GetUserPerms;
END UserPermsPkg;
/

Thus, with a stored procedure such as this, you could use OracleDataReader and work
with multiple result sets in one OracleDataReader that you can iterate over using the
NextResult method.

2. The next change involves reading multiple result sets out of the SqlDataReader. The
SqlDataReader object has a method called NextResult. The NextResult method allows
you to move to the next result set. If there are no more result sets, it will return a false.
This change is shown in Listings 5-11 and 5-12.

Listing 5-11. Reading Multiple Result Sets Out of a Data Reader in C#

if (sqlDr.HasRows)
{

do
{

Console.WriteLine(" ");
while (sqlDr.Read())
{

Console.WriteLine(sqlDr.GetInt32(0)
+ " : " + sqlDr.GetString(1));

}
} while (sqlDr.NextResult());

}

Listing 5-12. Reading Multiple Result Sets Out of a Data Reader in Visual Basic .NET

If sqlDr.HasRows Then
Do

Console.WriteLine(" ")
While sqlDr.Read

Console.WriteLine(sqlDr.GetInt32(0) _
& " : " & sqlDr.GetString(1))

End While
Loop While sqlDr.NextResult()

End If

Note that I checked sqlDr.NextResult in a do...while/Do...Loop While loop. The main
reason for that is because, by default, SqlDataReader points to the first result set in your
collection. By calling NextResult, you would’ve moved to the next result set. This kind
of loop lets you check for this condition after the first iteration.

wn in Figure 5-7 is produced.

5122ch05.qxd 8/23/05 3:14 PM Page 98

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION 99

Figure 5-7. Results of iterating through multiple result sets

Thus, without executing multiple data readers, you have the ability to execute and fetch
multiple data result sets in the same data reader. This is especially useful when working with
disconnected data such as DataSets with more than one DataTable. That scenario will be cov-
ered in Chapters 6 and 7.

One interesting thing about all the examples you have seen so far is that the only data
types you have fetched are the data types that are intrinsic to a given database. These are also
referred to as inbuilt scalar types. You looked at querying a row, querying a result set, and
querying multiple result sets, and in all these cases the data retrieved consisted of such inbuilt
scalar types.

In object-oriented development (OOD), however, most business objects are represented
via an object map representation. This hierarchical object map generally needs to be trans-
lated to and from a flat relational structure into a database, a process typically referred to as
O/R mapping (object-relational mapping). While databases prefer to work with a relational
structure, applications tend to prefer working with object representations of the data.

Thus, we have a mismatch.

Object-Oriented vs. Relational Representation
Let’s assume a hypothetical situation: say you were creating a geographical-mapping application.
Each point on a map is represented using an X,Y coordinate pair. How could you store this infor-
mation in the database?

You could store this information as two integer columns in your database. But then you
really don’t have any good way of differentiating a coordinate with say, a kilometer-to-mile
conversion lookup table, which also might store its data in a similar format. Not only that,
any operations you may wish to do on the two coordinates would require you to read the two
columns from the database and populate them into a business object or a class representation
called XYCoOrdinate, in which you might implement commonly used functions such as distance
from the center (0,0) coordinate.

But then, what if you wanted to execute a SQL query and find out which coordinate within
a given set of coordinates is the furthest away from the center.

Another way of storing this data could be as a varchar column that stores the coordinates
as X,Y, but again you would have to retrieve them from the database and convert them into an
object representation if you really wanted to do any operation on it.

It would be rather nice if you could take the object and directly persist that into the data-

5122ch05.qxd 8/23/05 3:14 PM Page 99

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION100

Storing Objects in the Database
Microsoft SQL Server 2005 allows you to extend its scalar type system by creating User-Defined
Types (UDTs). UDTs allow you to create either a value-type or a reference-type representation
of your object and store that directly into your database.

■Note UDTs are different from the sp_addtype stored procedure that SQL Server 2000 already gives you.
Whereas UDTs let you represent object representations as a data type, sp_addtype allows you to create UDTs
that are scalar data types based off the scalar data-type set supported in SQL Server.

Along with the object representation, you also have the ability to store logic in the class that
represents the object. For example, you could write up a class that represents an XYCoOrdinate,
and have one of the properties on it represent the distance from the center (0,0) coordinate.

SQL Server makes this possible by having the ability to host the CLR natively inside itself.
Having the CLR inside SQL Server allows you to write stored procedures, UDTs, user-defined
functions, triggers, etc. in any CLR-compliant language.

However, it is naive to think that the CLR running inside SQL Server runs in the same
manner as it would run on your average Windows machine. The main difference is that SQL
Server takes the responsibility and manages thread scheduling, synchronization, locking, and
memory allocation.

THE CLR IS INSIDE OUT

An application generally interacts with the CLR by using ICorRuntimeHost or CorBindToRuntimeEx,
which then calls MSCOREE.DLL which loads the runtime. Then, because of the fantastic .NET runtime, life
becomes easier. This principle is followed by most applications except a few special cases—SQL Server
being one of them.

SQL Server 2005 has a slightly different bootstrap mechanism. For one, it doesn’t load the CLR unless
asked to. This allows SQL Server to save a few MB of memory that the CLR would have occupied. Even when
it does, instead of using ICLRRuntimeHost (the replacement for ICorRuntimeHost in .NET 2.0), and hence
ICLRRuntimeHost::SetHostControl, SQL Server 2005 instead uses IHostControl::GetHostManager.
What this means is a lot is now inside out. By doing so, the CLR has now delegated operations, like resource
locking, thread management, etc. to SQL Server runtime instead (inside out).

Because the CLR inside SQL Server runs under different conditions than it runs on your
desktop, it’s subjected to different requirements, especially security. There are generally three
categories of access security for managed code inside SQL Server:

• SAFE: This is the default.

• EXTERNAL_ACCESS: Certain external resources are accessible.

• UNSAFE: Effectively the same as an extended stored procedure.

5122ch05.qxd 8/23/05 3:14 PM Page 100

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION 101

Authoring your own UDTs is subject to similar security requirements.
In addition, the class or structure that might represent a UDT has to be understood by the

SQL Server as easily convertible into a byte stream (thus be Serializable). It needs to show
a logical textual representation when it’s a part of the results of a simple SELECT statement
(ToString()). And it needs to be easily insertable from a simple text-based SQL INSERT com-
mand (Parse method that accepts a SqlString). These methods and more will be covered in
further depth in just a moment.

■Note If you are unfamiliar with SQLCLR projects, you probably should read Chapter 13 before this next
sample.

Visual Studio 2005 makes it simple for you by providing you a SQL Server Project wizard.
Here’s how you can easily create a UDT in Visual Studio 2005:

1. Create a new SQL Server project in Visual Studio.

2. Add a new UDT to that project. Call it “XYCoOrdinate”.

3. The structure of the UDT is laid out for you. Modify the autogenerated UDT code to
look like the code shown in Listing 5-13 or 5-14. (You can download the full UDT code
from the Downloads section of the Apress website.)

Listing 5-13. The XYCoOrdinate UDT in C#

[Serializable]
[StructLayout(LayoutKind.Sequential)]
[SqlUserDefinedType(Format.Native)]
public struct XYCoOrdinate : INullable
{

private int x;
private int y;

public int X
{

get { return x; }
set { x = value; }

}
public int Y
{

get { return y; }
set { y = value; }

}

5122ch05.qxd 8/23/05 3:14 PM Page 101

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION102

public override string ToString()
{

return x.ToString() + "," + y.ToString();
}

public bool IsNull
{

get
{

return false;
}

}

public static XYCoOrdinate Null
{

get
{

XYCoOrdinate h = new XYCoOrdinate();
return h;

}
}

public static XYCoOrdinate Parse(SqlString s)
{

if (s.IsNull || s.Value.ToLower().Equals("null"))
{

return Null;
}
XYCoOrdinate u = new XYCoOrdinate();

string str = s.ToString().Trim();
int commaLocation = str.IndexOf(",");
try
{

u.X = Convert.ToInt32(str.Substring(0, commaLocation));
u.Y =
Convert.ToInt32(
str.Substring(commaLocation + 1, str.Length - commaLocation - 1));

}
catch (Exception ex)
{

throw new ApplicationException(
"Error converting " + str + " to a co-ordinate.", ex);

}
return u;

}
}

5122ch05.qxd 8/23/05 3:14 PM Page 102

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION 103

Listing 5-14. The XYCoOrdinate UDT in Visual Basic .NET

<Serializable()> _
<StructLayout(LayoutKind.Sequential)> _
<SqlUserDefinedType(Format.Native)> _
Public Structure XYCoOrdinate

Implements INullable

Private m_x As Integer
Private m_y As Integer

Public Property X() As Integer
Get

Return m_x
End Get
Set(ByVal value As Integer)

m_x = value
End Set

End Property

Public Property Y() As Integer
Get

Return m_y
End Get
Set(ByVal value As Integer)

m_y = value
End Set

End Property

Public Overrides Function ToString() As String
Return m_x.ToString() & "," & m_y.ToString()

End Function

Public ReadOnly Property IsNull() As Boolean Implements INullable.IsNull
Get

Return False
End Get

End Property

Public Shared ReadOnly Property Null() As XYCoOrdinate
Get

Dim h As XYCoOrdinate = New XYCoOrdinate
Return h

End Get
End Property

Public Shared Function Parse(ByVal s As SqlString) As XYCoOrdinate
If s.IsNull Or s.Value.ToLower().Equals("null") Then

5122ch05.qxd 8/23/05 3:14 PM Page 103

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION104

Return Null
End If
Dim u As XYCoOrdinate = New XYCoOrdinate()

Dim str As String = s.ToString().Trim()
Dim commaLocation As Integer = str.IndexOf(",")
Try

u.X = CInt(str.Substring(0, commaLocation))
u.Y = CInt(_

str.Substring(commaLocation + 1, str.Length - commaLocation - 1))
Catch ex As Exception

Throw New ApplicationException(_
"Error converting " + str + " to a co-ordinate.", ex)

End Try
Return u

End Function
End Structure

Let’s quickly cover the basics that allow you to convert the autogenerated code to
a working UDT. At a first glance, you’ll notice the following method stubs created for you:

• ToString(): This is used when you use the UDT in a SQL query. The ToString() rep-
resentation of the object is displayed in the SQL Server Management Studio results
window.

• IsNull, Null: These help the mismatch of null handling between databases and
.NET data types. You can write logic here to inform the database when your object
should be interpreted as a null, or what its null representation means.

• Parse: This method is used to perform a translation between a scalar type and the
UDT itself. This method is valuable because it allows you to insert into a UDT by
specifying an instantiation scalar value via a simple SQL command.

An entire chapter could be written about UDTs alone, but since this is an ADO.NET
book and not a SQL Server 2005 book we will not go into the depths of writing a UDT.

4. Once the UDT is compiled into a DLL, it can be easily registered into the SQL Server.
You need to register the assembly in the SQL Server. This can be done using the follow-
ing script:

Create Assembly XYCoOrdinate FROM 'C:\Apress\UDT.dll'

5. Once the assembly is added in SQL Server, you can register the UDT as a type from the
previous registered assembly. This can be done using the following script:

Create Type XYCoOrdinate External Name UDT.XYCoOrdinate

6. With the UDT created, create a table that uses the previous UDT:

Create Table MyTest(
TestColumn XYCoOrdinate
)

5122ch05.qxd 8/23/05 3:14 PM Page 104

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION 105

7. And finally, you can insert data into the UDT column:

INSERT INTO MyTest Values('1,1') ;

Querying for UDT Data Using SQL
You can also very easily query the UDT column using a simple SQL command:

SELECT TESTCOLUMN FROM MYTEST

When you execute the previous SQL statement in the SQL Server Management Studio,
you might get an error that looks like the following:

An error occurred while executing batch. Error message is: Could not load type
'System.Data.Sql.SqlUserDefinedTypeAttribute' from assembly
'System.Data, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089'.

This is because the SQL Server Management Studio is like any other .NET application. It
queries the database using ADO.NET and when it cannot find a .NET class implementation to
represent the object, it will throw an exception.

The work-around is to either put the UDT in GAC (Global Assembly Cache), or to put it in
the same directory as the SQL Server Management Studio.

An easier work-around perhaps is to assume the presence of ToString() since everything
in .NET inherits from System.Object, which the SQL Server Management Studio does have
access to.

Thus the query could be written as

SELECT TESTCOLUMN.ToString() FROM MYTEST

but if your UDT implemented any custom methods, you’ll need access to the assembly that
implements the UDT.

Now that you have the ability to store objects, as objects in our database, let’s return to the
discussion of retrieving data in a connected fashion and see how a UDT can be fetched using
a data reader.

Retrieving UDT Data in a Connected Fashion
There are multiple ways of retrieving a UDT from the database in a connected fashion. All of
these involve the SqlCommand object and the SqlDataReader object. Even if you use a UDT in
a disconnected fashion using a data adapter, internally the DataAdapter object will use a data
reader.

The most straightforward way of doing so is simply to use command text that uses the
ToString method:

C#

testCommand.CommandText = "SELECT TESTCOLUMN.ToString() FROM MYTEST";

VB.NET

testCommand.CommandText = "SELECT TESTCOLUMN.ToString() FROM MYTEST"

5122ch05.qxd 8/23/05 3:14 PM Page 105

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION106

This method allows you to retrieve the textual representation of the UDT using the GetString
method of the data reader, as shown here:

C#

string udtRepresentation = sqlDr.GetString(0) ;

VB.NET

string udtRepresentation = sqlDr.GetString(0)

Another equivalent of this code is to instead specify the SqlCommand’s command text as

SELECT TESTCOLUMN FROM MYTEST

and to use the ToString() method on the object retrieved from the data reader instead:

string udtRepresentation = sqlDr[0].ToString() ;

However, the true value of UDTs shines when you’re able to retrieve the data and represent
them as objects, instead of string representations.

This can be easily achieved by casting the retrieved object as shown previously and, instead
of using the ToString method, you could cast it to the object representation, like so:

C#

XYCoOrdinate xyc = (XYCoOrdinate) sqlDr[0] ;

VB.NET

Dim xyc as XYCoOrdinate = CType(sqlDr(0), XYCoOrdinate))

Now that you have the UDT available as a strongly typed object, you can either call the
various implemented methods on this object directly or cast it to an appropriate class if your
object model permits you to do so.

■Note At the time of this writing, in Visual Studio, UDTs by default are implemented as structs. You can just
as easily change them to classes if you wish.

Pragmatic Use of UDTs
Like any technology, UDTs come with their own set of “Don’t do’s.” It’s important to realize
that UDTs are not an O/R–mapping solution. It’s unfair to expect UDTs to live up to the per-
formance standards exhibited by scalar SQL Server data types. Although UDTs can be indexed,
the sorting and indexing logic, especially in UDTs that are Format.UserDefined, is just as good
as the implementer who implemented it.

It’s important that UDTs be viewed as a tool to solve a specific problem in a specific case,
and more as an ability to store objects directly into SQL Server rather than a replacement or
panacea for relational scalar value to object mapping.

5122ch05.qxd 8/23/05 3:14 PM Page 106

CHAPTER 5 ■ RETRIEVING DATA IN A CONNECTED FASHION 107

As you’ll see in Chapter 12, yet another option ADO.NET 2.0 and SQL Server 2005 give you
is to store data as Typed XML. Because Typed XML is schema based, you don’t need to deploy
separate assemblies representing the UDTs and you have the ability to store larger data chunks
(UDTs are limited to 8K). But, in comparison, UDTs do give you better control over indexing
than Typed XML does.

■Note The correct usage of UDTs is dictated by the correct usage of SQLCLR. This topic is covered in fur-
ther depth in Chapters 13 and 14.

Summary
In this chapter you examined retrieving data from a data source in a connected fashion using
ADO.NET. You saw the DbCommand object, provided to you by ADO.NET, enable encapsulation of
a text-based command and the various methods it provides you to access your data in a connected
fashion. (One detail that was not covered in this chapter was the ExecuteXmlReader method on
the SqlCommand object, which will be covered in depth in Chapter 12.) Finally you saw a new
feature that SQL Server 2005 supports: storing objects directly into the database using UDTs.

Also in this chapter, one of the examples you saw concerned itself with creating a discon-
nected cache of your data using the data reader object. Even though a data reader is constantly
connected to the database, we saw an example of where it would indeed make sense to be
able to create such a disconnected cache of your data for further processing. In that example,
you had to cook up your own solution to meet the desire for a disconnected paradigm of data.
However, ADO.NET comes with a rich inbuilt collection of classes for this very purpose. This
aspect of ADO.NET is examined in depth in the next chapter.

5122ch05.qxd 8/23/05 3:14 PM Page 107

5122ch05.qxd 8/23/05 3:14 PM Page 108

109

C H A P T E R 6

■ ■ ■

DataSets

In the last chapter you examined the connected data access mode. You examined various
objects and examples that comprise the connected portion of ADO.NET. That is the most logi-
cal method of data access, where you connect, interact, and disconnect.

In Chapter 4 where you also read about ADO.NET connections in depth, you also looked
at the possibility of a high load, highly available system. Usually in such a system there are
multiple users vying for the same valuable resource: the data source connection. You saw an
example where such a valuable resource could be pooled in effect to give you as much as tens
of times performance benefit in a multiuser, highly concurrent, highly available system.

For such pooling to work, individual users need to be respectful of a shared common
resource, such as the data source connection, by releasing it as soon as they can and acquiring
it as late as they can. As you’ll see in this chapter, for such data access architecture to work you
have to query as much data as you practically can, work in a disconnected fashion, and then
reconnect to the data source and persist your changes while checking for concurrency at that
time. You need to do this not only for connection pooling reasons, but also because disconnected
data access is critical in scenarios such as distributed systems, low bandwidth connections,
delegation of responsibility, etc.

In this chapter, you’ll examine the centerpiece of ADO.NET’s disconnected architecture,
the DataSet. The DataSet is the object that allows you to load a portion of the data source and
acts as the bucket of data that gives you a familiar relational structure of a disconnected nature
and data source–independent data storage mechanism. While making it intuitive and easy to
work on the data, the DataSet also maintains a history of up to one change per cell, thus mak-
ing concurrency and persistence of changes back to the data source easier.

But first, let’s see why it is critical to have a disconnected model.

The Case for the Disconnected Model
Everyone likes a bedtime story, so let me start this chapter with one.

Jon is a busy executive. Most of his work is on his desktop. His desktop is a powerful com-
puter with lots of hard disk space. He has many Excel sheets and Word documents that he needs
to work on. Frequently, Jon goes to the boardroom for meetings. The first time Jon went to such
a meeting, he thought he could remain “connected” with his desktop and make frequent
roundtrips to his desktop and bring any documents he might need to the meetings. In such
a situation, Jon would begin discussing something, and frequently he would have to leave the
meeting and run back to his desktop and fetch the documents he needed. While this certainly

5122ch06.qxd 8/23/05 3:15 PM Page 109

CHAPTER 6 ■ DATASETS110

worked, Jon and his co-workers were quick to realize that this was not the most efficient use of
everyone’s time. Not only was Jon running a bit too much, but everyone ended up waiting for
Jon while he was out getting the Word document or Excel sheet he needed. This was extremely
wasteful of everyone’s resources.

Thus, Jon bought a laptop. The laptop doesn’t have as much disk space, or the processing
power, or even such a big display or keyboard, but what the laptop does allow Jon to do is grab
a subset of the Excel sheets and Word documents that he might need for his meeting, leaving the
rest behind. The laptop isn’t quite the same as the desktop, but it definitely prevents Jon from
making frequent trips to his desktop. Jon can make changes on the fly to his Word documents
and Excel sheets, and update his desktop when the meeting is over.

Now everyone is happy, Jon doesn’t have to run as much, and his co-workers don’t have to
wait as much.

This example is very similar to any enterprise application. Jon had to run to a meeting room
a few feet away, but typically on the Internet, you might have clients that are spread around
the globe trying to connect with the database all too frequently. In a multiuser scenario when
one client is working on the data and holding an open connection, other clients might have to
open a brand new physical database connection to get their job done. What suffers in the end
is the central database, which needs to juggle more physical connections at a given time than
were needed. Especially, when most of the time, the underlying data source is simply waiting
for the user to send an update or a query for more data.

This situation can be easily rectified just as Jon did. You could store all the data you need
in a separate object (laptop, or DataSet). This object isn’t quite as good as the database itself; it
probably can’t store as much data as the database and it probably doesn’t have the same query
flexibility and power as the underlying database does, but it works perfectly for disconnected
scenarios.

For such an object to qualify as something that works well in disconnected scenarios, it
should have the following desirable characteristics:

• It must be serializable: An object is considered to be serializable if it has the ability to
save a memory (or data) state into a serial stream of bytes to be read later or to be sent
across process and machine boundaries. Working in a disconnected scenario, you would
find yourself sending the subset of the data across network, machine, and process bound-
aries. For this to work easily, it must be serializable.

• It must work with XML: Serializability of the object is good, but serialization could pos-
sibly be done to a binary form. Binary is not human readable. It’s for this reason and
more that XML is the lingua franca of the computer world—everyone understands it:
humans and computers. It might not be ideal for some situations, such as wireless net-
works where the extra tags it comes with may make it unsuitable for work on a low band-
width connection, but because it is text-based, and parsers exist for it on almost every
platform, it makes sense that such an object that holds the subset of the data must work
well with XML.

• It must maintain a history of changes: Querying for data is only half the story, persisting
the changes back to the database, while taking care of concurrency issues, is usually
the tougher half. It would be nice if the object had the ability to maintain a history of
the changes done on it since its original fetch. That would allow the program you write
to easily address issues such as concurrency as will be discussed in Chapters 9 and 10.

5122ch06.qxd 8/23/05 3:15 PM Page 110

CHAPTER 6 ■ DATASETS 111

In Chapter 5, you saw an ArrayList being filled in with DbDataRecords in Examples 5.3 and
5.4. For the same amount of data involved, an ArrayList is much lighter weight than a DataSet
is, but such an object does not satisfy the last two desirable characteristics just mentioned. In
some situations, though, that might be a better choice. For example, if you don’t need XML
flexibility, or you’re working with a read-only system [such as the presentation portion of a con-
tent management website, or maybe you intend to re-query the database at update to maintain
concurrency checks (more on this in Chapters 9 and 10)], you might want to choose an ArrayList
as your data object representation.

However, if an ArrayList does not satisfy the requirements of your architecture, you could
create your own business object representation that satisfies all three conditions, or even more
if your architecture demands it. Alternatively, you could use the DataSet object that comes as
a part of ADO.NET that satisfies all three conditions and more.

As an example, when you’re working with disconnected data, one of the things you’ll need
to worry about is being able to maintain an updated, refreshed copy of your data. The DataSet
has inbuilt mechanisms, such as being able to extract changes or merge with another DataSet,
that allow you to write code to avoid stale data. While it’s possible to implement something like
that in another object, such as an ArrayList, you would have to start from zero and put in rel-
atively more work when compared with the DataSet.

The DataSet Object Model
Chapter 3 presented an abbreviated picture of the object model that springs from the DataSet
object. Let’s add some flesh to those bones and look at the bigger picture, shown in Figure 6-1.
A more complete idea of the model will help you understand the power and usefulness of DataSets.

5122ch06.qxd 8/23/05 3:15 PM Page 111

CHAPTER 6 ■ DATASETS112

Table 6-1 shows the three collection properties that together make up the relational data
structure of the DataSet: Tables, Relations, and ExtendedProperties.

Table 6-1. DataSet and Its Main Constituents

Property Description

Tables DataSet.Tables is an object of System.Data.DataTableCollection
type that can contain zero or more System.Data.DataTable objects.
Each DataTable represents a set of tabular data that’s been extracted
from a data source. In turn, each DataTable has collections called
Columns and Rows, which can contain zero or more DataColumn or
DataRow objects, respectively.

Relations The DataSet.Relations property is a System.Data.
DataRelationCollection object that can contain zero or more
System.Data.DataRelation objects. A DataRelation object defines
a parent-child relationship between two DataTables based on foreign-
key values.

ExtendedProperties DataSet.ExtendedProperties is a System.Data.PropertyCollection
object that can contain zero or more user-defined properties. The
ExtendedProperties collection can be used to store custom data
related to the DataSet, such as the time when it was constructed.

To understand the DataSet fully then, you first need to understand the DataTable and its
various constituents. For that reason, let’s first dissect the DataTable class, understanding how
it works and its role in a data-driven application. Once you have dealt with DataTables, you can
start using them in DataSets, building DataRelations between them in the same way that you
would have relationships between two tables in a database.

DataTable
Don’t think that the DataTable class is in some way subservient to DataSet—it’s central to the
ADO.NET architecture, and DataTable objects can be used independently of DataSets, if that’s
what you need. This is even truer in .NET 2.0 where the DataTable is fully serializable and sup-
ports methods like Merge and GetChanges just as a DataSet does.

■Note In .NET 2.0, the DataTable has all methods that a DataSet supports. For a single table use, for
most purposes, you should try and use DataTable instead of DataSet because it’s a smaller object.

As you can see from Figure 6-1, a DataTable implements the same standard interfaces as
a DataSet does, thus in many cases giving it the same functionality that a DataSet has. As outlined
previously, a DataTable contains (among other things) a Columns collection, a Rows collection,
and a Constraints collection. The Columns and Constraints collections together define the
schema for the DataTable (that is, the rules that govern what data the table can hold), while
the Rows collection contains the data itself. Table 6-2 describes these various collections.

5122ch06.qxd 8/23/05 3:15 PM Page 112

CHAPTER 6 ■ DATASETS 113

Table 6-2. Various Collections in a DataTable

Property Description

Columns The Columns collection is an instance of the System.Data.DataColumnCollection
class, and is a container for zero or more DataColumn objects. The DataColumn
objects define the properties of each DataTable column, such as their names,
the type of data they store, and any primary key or seed and step information.

Rows The Rows collection is an instance of the System.Data.DataRowCollection
class, and is a container for zero or more DataRow objects. The DataRow objects
contain the actual data in the DataTable, as defined by the DataTable.Columns
collection. Each DataRow has one item for each DataColumn in the Columns
collection.

Constraints Constraints is an instance of the System.Data.ConstraintCollection class,
and is a container for zero or more System.Data.ForeignKeyConstraint
and/or System.Data.UniqueConstraint objects. The former define the action
to be taken on a column in a primary key–foreign key relationship when a row
is updated or deleted, while the latter are used to enforce the rule that all val-
ues in a given column should be unique.

DataColumn
As stated, a DataColumn is used to define the name and data type of a column in a DataTable.
You can create a new DataColumn either by using the DataColumn constructor, or by invoking
the Add() method of the DataTable.Columns collection property:

C#

// Adding a column using the constructor
DataColumn myColumn = new DataColumn("ID", typeof(System.Int32));
// Adding a column using a DataTable
productsTable.Columns.Add("ID", Type.GetType("System.Int32")) ;

VB.NET

' Adding a column using the constructor
Dim myColumn As New DataColumn("ID", GetType(System.Int32))
' Adding a column using a Datatable
productsTable.Columns.Add("ID", Type.GetType("System.Int32"))

The version of the DataTable.Columns.Add() method that you used here expects two
arguments: the name of the new DataColumn and a Type object. (For the second of these, you
used the typeof or GetType methods.) The Columns property is of DataColumnCollection data
type and, in fact, there are four other overloaded versions of this method available on
DataColumnCollection; here’s how you might use them:

• Add(): Creates and adds a new DataColumn to the DataColumnCollection (and therefore,
by implication, a new column to the table). In the absence of anything to specify other-
wise, the new DataColumn object is given a default name ("Column1", "Column2", etc.).

• Add("ColumnName"): Creates and adds a DataColumn with the specified name to the table.
The default data type of any column for which no type is specified is System.String.

5122ch06.qxd 8/23/05 3:15 PM Page 113

CHAPTER 6 ■ DATASETS114

• Add(myDataColumn): Adds the specified, preexisting DataColumn object to the
DataColumnCollection.

• Add("SubTotal", Type.GetType("System.Single"), "Sum(Price)"): Creates and adds
a DataColumn with the specified name, data type, and Expression property. The expres-
sion can be used to filter rows, to calculate the values in a column, or (as in this case) to
create an aggregate column.

The following code snippet creates a new DataTable object through one of its three con-
structors (the other two allow for the creation of a table with a default name, and specify both
a table name and a table namespace). Once created, it then defines the table’s schema by cre-
ating three new columns in the Columns collection:

C#

// Create a new DataTable
DataTable productsTable = new DataTable("Products") ;
// Build the products schema
productsTable.Columns.Add("ID", typeof(System.Int32)) ;
productsTable.Columns.Add("Name", typeof(System.String)) ;
productsTable.Columns.Add("Category", typeof(System.Int32)) ;

VB.NET
' Create a new DataTable
Dim productsTable As New DataTable("Products")
' Build the Products schema
productsTable.Columns.Add("ID", GetType(System.Int32))
productsTable.Columns.Add("Name", GetType(System.String))
productsTable.Columns.Add("Category", GetType(System.Int32))

To build the schema for this new table, you can call the Add() method of the DataTable.
Columns collection once for each column that you want to add to the DataTable. For each
DataColumn, you can pass in arguments for the ColumnName and DataType properties. The result
is a DataTable named “Products” that’s made up of three columns named “ID”, “Name”, and
“Category” of data types Int32, String, and Int32, respectively.

DataRow
With the DataTable constructed and the columns defined, you can now begin populating the
DataTable with data. This process involves adding new DataRow objects to the DataTable.Rows
collection, which is of DataRowCollection type. To create a new row in the DataTable, you need
to first invoke the DataTable.NewRow() method, which returns a DataRow that conforms to the
DataTable’s current schema. Next, you can set the value of each column in the DataRow before
calling the DataTable.Rows.Add() method and passing the new DataRow object as the only
argument:

C#

// Create a new DataRow with the same schema as the DataTable
DataRow tempRow = productsTable.NewRow() ;

5122ch06.qxd 8/23/05 3:15 PM Page 114

CHAPTER 6 ■ DATASETS 115

tempRow.Item["ID"] = 1 ;
tempRow.Item["Name"] = "Caterham Seven de Dion" ;
tempRow.Item["Category"] = 1 ;
// Add the DataRow to the DataTable
productsTable.Rows.Add(tempRow) ;

VB.NET

' Create a new DataRow with the same schema as the DataTable
Dim tempRow As DataRow = productsTable.NewRow()
' Set the column values
tempRow.Item("ID") = 1
tempRow.Item("Name") = "Caterham Seven de Dion"
tempRow.Item("Category") = 1
' Add the DataRow to the DataTable
productsTable.Rows.Add(tempRow)

This example is adding one row to productsTable. First, you create a new DataRow
object (tempRow) using the schema from the DataTable by calling the productsTable.NewRow()
method. Next, you set the value for each of the columns defined in the productsTable.Columns
collection. Last, you invoke the productsTable.Rows.Add() method to add the new DataRow to
the productsTable.Rows collection.

■Note The DataRow that’s returned to you using the NewRow method is still detached from the DataTable.
In other words, its RowState property is Detached. That row is not a part of the table until you have added it
to the Rows collection by calling Rows.Add.

Constraints
Relational databases enforce data integrity with constraints—rules applied to a column or columns
that define what action to take when data in a related column of a constituent row is altered. In
ADO.NET, there are two types of constraints: ForeignKeyConstraints and UniqueConstraints.
Let’s take a quick look at constraints here, with one or two fairly straightforward examples. In
Chapter 10, you’ll see how you can leverage these constraints and relations to keep disconnected
data clean and in accordance with the database rules.

ForeignKeyConstraint
A ForeignKeyConstraint is intended for use in enforcing referential integrity. In addition, you
can define cascade behavior: When a value in a column in a parent table is changed or deleted,
a ForeignKeyConstraint defines how the child table should react. For example, if a parent record
is deleted, you could specify that all child records should be deleted too—or you could set the
related field in the child records to null or default values, explicitly identifying orphaned records.
This is known as a cascading action, because an action on the parent has consequences that
travel down to affect the child as well.

5122ch06.qxd 8/23/05 3:15 PM Page 115

CHAPTER 6 ■ DATASETS116

The action to be taken on the child is defined in the ForeignKeyConstraint.DeleteRule
and/or the ForeignKeyConstraint.UpdateRule property, and can be set to one of four possible
System.Data.Rule enumerators, as shown in Table 6-3.

Table 6-3. The System.Data.Rule Enumeration

Value Description

Cascade Deletes or updates related rows. This is the default action. You have to be careful
of this since, depending on the structure of your DataSet, it might not always be
possible to enforce cascades.

SetNull Sets values in related rows to DBNull.

SetDefault Sets values in related rows to the value of their column’s DefaultValue property.

None No action is taken on related rows.

UniqueConstraint
A UniqueConstraint enforces that the values in a column or columns should be unique. This
type of constraint is set automatically for primary-key columns, which I will discuss next. If
a column has a UniqueConstraint defined, attempting to set the same value for that column in
two different rows throws an exception of System.Data.ConstraintException type.

You can also set a UniqueConstraint over more than one column. In this case, setting the
same values for every constrained column in two rows of the same table will throw an exception.

Setting a Primary Key: PrimaryKey Property
Since the DataSet and DataTable objects are designed to support most of the basic concepts
of relational databases, a DataTable can and should have a primary key. In a DataTable, the
primary key is defined as an array of DataColumns that together provide a unique identifier for
a DataRow within the DataTable. To create a primary key, you need to set the PrimaryKey prop-
erty of the DataTable to an array of DataColumns. When you define a primary key in this way,
a UniqueConstraint is automatically applied to the DataColumn array:

C#

// Set up the ID column as the primary key
productsTable.PrimaryKey =

new DataColumn[] { productsTable.Columns["ID"] };

VB.NET

' Set up the ID column as the primary key
productsTable.PrimaryKey = New DataColumn() {productsTable.Columns("ID")}

Dynamically Constructing a DataTable
Let’s start to put together some of the things that you’ve looked at so far. In the following code
example, which is an amalgam of the snippets you’ve seen so far, you create a DataTable, set
the primary key, and then set the AutoIncrement and ReadOnly properties of the DataColumn,
which signify that the column will not be directly modifiable and it will get its value automatically

5122ch06.qxd 8/23/05 3:15 PM Page 116

CHAPTER 6 ■ DATASETS 117

incremented as each row is added. This code example can be found in Example 6.1 in the code
download for this chapter, which can be found in the Downloads section of the Apress website
(http://www.apress.com). In addition, the DataColumn class exposes properties for setting up
a read-only, auto-increment column, which is done here for the ID column. This can be seen
in Listings 6-1 and 6-2.

Listing 6-1. Setting Up the productsTable in C#

// Create the table
DataTable productsTable = new DataTable("Products") ;
// Build the Products schema
productsTable.Columns.Add("ID", typeof(System.Int32)) ;
productsTable.Columns.Add("Name", typeof(System.String)) ;
productsTable.Columns.Add("Category", typeof(System.Int32)) ;

// Set up the ID column as the primary key
productsTable.PrimaryKey =

new DataColumn[] { productsTable.Columns["ID"] };

productsTable.Columns["ID"].AutoIncrement = true ;
productsTable.Columns["ID"].AutoIncrementSeed = 1 ;
productsTable.Columns["ID"].ReadOnly = true ;

Listing 6-2. Setting Up the productsTable in Visual Basic .NET

' Create the table
Dim productsTable As New DataTable("Products")

' Build the Products schema
productsTable.Columns.Add("ID", GetType(System.Int32))
productsTable.Columns.Add("Name", GetType(System.String))
productsTable.Columns.Add("Category", GetType(System.Int32))

' Set up the ID column as the primary key
productsTable.PrimaryKey = New DataColumn() {productsTable.Columns("ID")}

productsTable.Columns("ID").AutoIncrement = True
productsTable.Columns("ID").AutoIncrementSeed = 1
productsTable.Columns("ID").ReadOnly = True

Once the DataTable is constructed, you can fill it with DataRows. For this example, this
exercise will populate the DataTable with alternating values by using the Math.IEEERemainder()
method. In even-numbered rows, it will set the Name column of the DataRow to “Caterham Seven
de Dion”, and the Category value to 1. In odd-numbered rows, it will set the Name to “Dodge Viper”
and the Category value to 2. This can be seen in Listings 6-3 and 6-4. Do note that in Listings 6-3
and 6-4 you’re using the WriteXml method on a DataTable, which is a new feature available in
.NET 2.0.

5122ch06.qxd 8/23/05 3:15 PM Page 117

CHAPTER 6 ■ DATASETS118

Listing 6-3. Filling the productsTable in C#

DataRow tempRow;
// Populate the Products table with 10 cars
for (int i = 0; i < 10; i++)
{

tempRow = productsTable.NewRow();
// Make every even row Caterham Seven de Dion
if (Math.IEEERemainder(i, 2) == 0)
{

tempRow["Name"] = "Caterham Seven de Dion #" + i.ToString();
tempRow["Category"] = 1;

}
else
{

tempRow["Name"] = "Dodge Viper #" + i.ToString();
tempRow["Category"] = 2;

}
productsTable.Rows.Add(tempRow);

}
productsTable.WriteXml("productsTable.xml") ;

Listing 6-4. Filling the productsTable in Visual Basic .NET

Dim tempRow As DataRow

' Populate the Products table with 10 cars
Dim i As Int32 = 0
For i = 0 To 9
tempRow = productsTable.NewRow()

' Make every even row a Caterham Seven de Dion
If Math.IEEERemainder(i, 2) = 0 Then
tempRow("Name") = "Caterham Seven de Dion #" & i.ToString()
tempRow("Category") = 1

Else
tempRow("Name") = "Dodge Viper #" & i.ToString()
tempRow("Category") = 2

End If

productsTable.Rows.Add(tempRow)
Next i
productsTable.WriteXml("productsTable.xml")

The interesting thing about this code, compared to what you had earlier, is that you don’t
need to set a value for the ID column—it’s a read-only, auto-increment column. This can be
seen in the contents of productsTable.xml shown in Listing 6-5.

5122ch06.qxd 8/23/05 3:15 PM Page 118

CHAPTER 6 ■ DATASETS 119

Listing 6-5. productsTable in XML

<?xml version="1.0" standalone="yes"?>
<DocumentElement>
<Products>
<ID>1</ID>
<Name>Caterham Seven de Dion #0</Name>
<Category>1</Category>

</Products>
<Products>
<ID>2</ID>
<Name>Dodge Viper #1</Name>
<Category>2</Category>

</Products>
<Products>
<ID>3</ID>
<Name>Caterham Seven de Dion #2</Name>
<Category>1</Category>

</Products>
<Products>
<ID>4</ID>
<Name>Dodge Viper #3</Name>
<Category>2</Category>

</Products>
<Products>
<ID>5</ID>
<Name>Caterham Seven de Dion #4</Name>
<Category>1</Category>

</Products>
<Products>
<ID>6</ID>
<Name>Dodge Viper #5</Name>
<Category>2</Category>

</Products>
<Products>
<ID>7</ID>
<Name>Caterham Seven de Dion #6</Name>
<Category>1</Category>

</Products>
<Products>
<ID>8</ID>
<Name>Dodge Viper #7</Name>
<Category>2</Category>

</Products>
<Products>
<ID>9</ID>
<Name>Caterham Seven de Dion #8</Name>
<Category>1</Category>

5122ch06.qxd 8/23/05 3:15 PM Page 119

CHAPTER 6 ■ DATASETS120

</Products>
<Products>
<ID>10</ID>
<Name>Dodge Viper #9</Name>
<Category>2</Category>

</Products>
</DocumentElement>

DataTable Events
Like many of the objects in the .NET Framework, the DataTable exposes a set of events. In
this case, the events can be captured and handled in order to update the user interface, or
to validate edits or deletes before they are committed. Not including the event inherited
from MarshalByValueComponent.Disposed, there are nine events in all, and they all work in
more-or-less the same way, with similar arguments. They are listed in Table 6-4.

Table 6-4. System.Data.DataTable Events

Event Description

ColumnChanging Occurs when a value is being changed in the specified DataColumn in
a DataRow.

ColumnChanged Occurs after a value has been changed in the specified DataColumn in
a DataRow.

RowChanging Occurs when a DataRow is changing. This event will fire each time
a change is made to the DataRow, after the ColumnChanging event has
fired.

RowChanged Occurs after a DataRow has been changed successfully.

RowDeleting Occurs when a DataRow is about to be deleted.

RowDeleted Occurs after a DataRow is successfully deleted from the DataTable.

TableClearing Occurs when the table is being cleared.

TableCleared Occurs after the table has been cleared.

TableNewRow Occurs right after a new row has been generated.

Each of the DataTable events works in the same fashion. Handlers for the column-related
events (ColumnChanging and ColumnChanged) receive a DataColumnChangeEventArgs object,
which exposes three properties (see Table 6-5).

Table 6-5. DataColumnChangeEventArgs Properties

Property Description

Column Gets the DataColumn object with the changing value.

ProposedValue Gets or sets the proposed value—that is, the new value being assigned
to the column. In a ColumnChanging event handler, for example, you
could evaluate the ProposedValue and make a decision on whether to
accept or reject the change.

Row Gets the DataRow object with the changing value.

5122ch06.qxd 8/23/05 3:15 PM Page 120

CHAPTER 6 ■ DATASETS 121

The handlers for the row-related events other than the TableNewRow (i.e., RowChanging,
RowChanged, RowDeleting, and RowDeleted) take a DataRowChangeEventArgs object, which exposes
just two properties (see Table 6-6).

Table 6-6. DataRowChangeEventArgs Properties

Property Description

Action Gets the action (added, changed, deleted, etc.) that will occur/has
occurred on the DataRow.

Row Gets the DataRow object upon which the action will occur/has occurred.

The handlers for TableCleared and TableClearing receive a DataTableClearTableEventHandler,
which exposes three properties (see Table 6-7).

Table 6-7. DataTableClearTableEventHandler Properties

Property Description

Table Gets the table being cleared as a property.

TableName Gets the name of the table.

TableNamespace Gets the table namespace for the given table. This is especially useful in
XML conversions.

Finally, the handler for TableNewRow receives a DataTableNewRowEventHandler, which has
only one property, Row, the row being added.

Practical Usage of DataTable Events
As you just saw, DataTable events can be split into three main categories:

• Column-based: ColumnChanging, ColumnChanged

• Row-based: RowChanging, RowChanged, RowDeleting, RowDeleted

• Table-based: TableClearing, TableCleared, TableNewRow

Generally, column-based and row-based events can be used to validate and control exist-
ing data. The TableNewRow event can be used to set values and such action items for any newly
entered rows before they have been added to the table.

Let’s first examine the sequence of events fired in the column-based and row-based events.
The code for this can be found in Example 6.2 in the associated code download. This example
starts where Example 6.1 left off. To keep the code cleaner, all the existing code for Example 6.1
has been moved into a method called SetupAndPopulateDataTable that simply returns the pre-
pared DataTable that you can start working on.

Assuming now that you have the productsTable set up, you first need to set up the various
event handlers. This can be seen in Listings 6-6 and 6-7.

5122ch06.qxd 8/23/05 3:15 PM Page 121

CHAPTER 6 ■ DATASETS122

1. Here and elsewhere in the book, the event handlers are marked static only because the main class
. This is not otherwise required.

Listing 6-6. Setting Up Various Event Handlers on a DataTable in C#

productsTable.ColumnChanged +=
new DataColumnChangeEventHandler(productsTable_ColumnChanged);

productsTable.ColumnChanging +=
new DataColumnChangeEventHandler(productsTable_ColumnChanging);

productsTable.RowChanged +=
new DataRowChangeEventHandler(productsTable_RowChanged);

productsTable.RowChanging +=
new DataRowChangeEventHandler(productsTable_RowChanging);

productsTable.RowDeleted +=
new DataRowChangeEventHandler(productsTable_RowDeleted);

productsTable.RowDeleting +=
new DataRowChangeEventHandler(productsTable_RowDeleting);

Listing 6-7. Setting Up Various Event Handlers on a DataTable in Visual Basic .NET

AddHandler productsTable.ColumnChanged, AddressOf productsTable_ColumnChanged
AddHandler productsTable.ColumnChanging, AddressOf productsTable_ColumnChanging
AddHandler productsTable.RowChanged, AddressOf productsTable_RowChanged
AddHandler productsTable.RowChanging, AddressOf productsTable_RowChanging
AddHandler productsTable.RowDeleted, AddressOf productsTable_RowDeleted
AddHandler productsTable.RowDeleting, AddressOf productsTable_RowDeleting

Next, you need to write implementations for the various event handlers though Visual
Studio might have already created the stubs for you. This can be seen in Listings 6-8 and 6-9.

Listing 6-8. Implementations for the Event Handlers in C# 1

private static void productsTable_ColumnChanged
(object sender, DataColumnChangeEventArgs e)

{
Console.WriteLine("productsTable_ColumnChanged");
Console.WriteLine(" Value: " + e.Row["Name"].ToString());
Console.WriteLine(" RowState: " + e.Row.RowState.ToString());

}

private static void productsTable_ColumnChanging
(object sender, DataColumnChangeEventArgs e)

{
Console.WriteLine("productsTable_ColumnChanging");
Console.WriteLine(" Value: " + e.Row["Name"].ToString());
Console.WriteLine(" RowState: " + e.Row.RowState.ToString());

}

5122ch06.qxd 8/23/05 3:15 PM Page 122

CHAPTER 6 ■ DATASETS 123

private static void productsTable_RowChanged
(object sender, DataRowChangeEventArgs e)

{
Console.WriteLine("productsTable_RowChanged");
Console.WriteLine(" Value: " + e.Row["Name"].ToString());
Console.WriteLine(" RowState: " + e.Row.RowState.ToString());

}

private static void productsTable_RowChanging
(object sender, DataRowChangeEventArgs e)

{
Console.WriteLine("productsTable_RowChanging");
Console.WriteLine(" Value: " + e.Row["Name"].ToString());
Console.WriteLine(" RowState: " + e.Row.RowState.ToString());

}

private static void productsTable_RowDeleted
(object sender, DataRowChangeEventArgs e)

{
Console.WriteLine("productsTable_RowDeleted");
Console.WriteLine(" RowState: " + e.Row.RowState.ToString());

}

private static void productsTable_RowDeleting
(object sender, DataRowChangeEventArgs e)

{
Console.WriteLine("productsTable_RowDeleting");
Console.WriteLine(" RowState: " + e.Row.RowState.ToString());

}

Listing 6-9. Implementations for the Event Handlers in Visual Basic .NET

Private Sub productsTable_ColumnChanged(ByVal sender As Object, _
ByVal e As DataColumnChangeEventArgs)
Console.WriteLine("productsTable_ColumnChanged.")
Console.WriteLine("Value: " & e.Row("Name").ToString())
Console.WriteLine("RowState: " & e.Row.RowState.ToString())

End Sub

Private Sub productsTable_ColumnChanging(ByVal sender As Object, _
ByVal e As DataColumnChangeEventArgs)
Console.WriteLine("productsTable_ColumnChanging.")
Console.WriteLine("Value: " & e.Row("Name").ToString())
Console.WriteLine("RowState: " & e.Row.RowState.ToString())

End Sub

Private Sub productsTable_RowChanged(ByVal sender As Object, _

5122ch06.qxd 8/23/05 3:15 PM Page 123

CHAPTER 6 ■ DATASETS124

Console.WriteLine("productsTable_RowChanged.")
Console.WriteLine("Value: " & e.Row("Name").ToString())
Console.WriteLine("RowState: " & e.Row.RowState.ToString())

End Sub

Private Sub productsTable_RowChanging(ByVal sender As Object, _
ByVal e As DataRowChangeEventArgs)
Console.WriteLine("productsTable_RowChanging.")
Console.WriteLine("Value: " & e.Row("Name").ToString())
Console.WriteLine("RowState: " & e.Row.RowState.ToString())

End Sub

Private Sub productsTable_RowDeleted(ByVal sender As Object, _
ByVal e As DataRowChangeEventArgs)
Console.WriteLine("productsTable_RowDeleted.")
Console.WriteLine("RowState: " & e.Row.RowState.ToString())

End Sub

Private Sub productsTable_RowDeleting(ByVal sender As Object, _
ByVal e As DataRowChangeEventArgs)
Console.WriteLine("productsTable_RowDeleting.")
Console.WriteLine("RowState: " & e.Row.RowState.ToString())

End Sub

And finally with the DataTable setup, you can now modify some data using the following
code. As you can see, in this case, you are modifying the column Name from the first row in the
DataTable:

C#
productsTable.Rows[0]["Name"] = "Pinto";

VB.NET
productsTable.Rows(0)("Name") = "Pinto"

which produces output as shown here:

productsTable_ColumnChanging
Value: Caterham Seven de Dion #0
RowState: Unchanged

productsTable_ColumnChanged
Value: Pinto
RowState: Unchanged

productsTable_RowChanging
Value: Pinto
RowState: Unchanged

productsTable_RowChanged
Value: Pinto
RowState: Modified

5122ch06.qxd 8/23/05 3:15 PM Page 124

CHAPTER 6 ■ DATASETS 125

If you try deleting a row using

productsTable.Rows[0].Delete() ;

the following output is produced:

productsTable_RowDeleting
RowState: Modified

productsTable_RowDeleted
RowState: Deleted

Hence, as you can see, the ColumnChanging, RowChanging, and RowDeleting events fire
before the actual change has occurred, and these can be used to validate or even reject the
proposed change. Whereas, the ColumnChanged, RowChanged, and RowDeleted events fire after
the actual change has occurred and can thus be used for cleanup purposes.

■Note Do closely note, however, that there is a minute difference between the behavior of ColumnChanging
and RowChanging. ColumnChanging occurs before the actual value change, and RowChanging occurs
before the RowState change.

As an exercise, you could also add event handlers for TableClearing and TableCleared
events, and run those with the DataTable.Clear() method. You’ll see similar behavior there.

You could also try your hand at a new event introduced in .NET 2.0: the TableNewRow event.
This is where you could include business logic in the creation of a new row. While all other events
allow you to work on a row that is being added, deleted, or modified when currently in the Row
collection of the table, this event allows you to modify its values based on custom business rules
at its creation. A good practical use for such an event is a row generator class that inherits from
DataTable. You might have written such a class to encapsulate your business logic, while gen-
erating a plain old DataRow that can be easily sent to the DataLayer as a part of the DataTable.

Relational Data
If a DataSet is like having a mini RDBMS in memory, a DataTable is the closest logical equivalent
of a table in such a database. Most databases also support the concept of being able to create
foreign-key constraints, which can be used to define relations between tables. As you can see
in the object model in Figure 6-1, a DataSet consists of a Tables collection (DataTableCollection),
and a Relations collection (DataRelationCollection). Thus, a DataSet can be referred to as
a collection of Tables and Relations. The minimum number of either Tables or Relations that
exist within a DataSet can be zero.

The Relations Collection
The DataSet.Relations property is an instance of the DataRelationCollection class. The Relations
collection contains DataRelation objects, which are used to create parent-child relationships
between DataTables in the DataSet. A primary key–foreign key relationship is an example of
this type of relation.

5122ch06.qxd 8/23/05 3:15 PM Page 125

CHAPTER 6 ■ DATASETS126

We can create a relation between two tables in a DataSet by invoking the DataSet.Relations.
Add() method. There are seven overloaded Add() methods:

• Add(DataRelation): Adds the specified DataRelation object to the collection.

• Add(DataColumn, DataColumn): Creates a DataRelation object in the collection based on
the two DataColumns. The first argument is the parent column, and the second is the child
column. The DataRelation is given a default name.

• VB.NET: Add(DataColumn(), DataColumn()) or C#: Add(DataColumn[], DataColumn[]):
Creates a DataRelation object in the collection based on the two DataColumn arrays. The
first argument is the parent column array, and the second is the child column array.
The DataRelation is given a default name.

• Add(String, DataColumn, DataColumn) As DataRelation: Creates a DataRelation object
in the collection with the specified string as the DataRelation.RelationName property.

• VB.NET: Add(String, DataColumn(), DataColumn()) or C#: Add(String, DataColumn[],
DataColumn[]): Creates a DataRelation object in the collection with the specified string
as the DataRelation.RelationName property.

• Add(String, DataColumn, DataColumn, Boolean): Creates a DataRelation object in
the collection with the specified string as the DataRelation.RelationName property. The
DataRelation is based on the two DataColumns. The Boolean argument indicates whether
to create constraints (the default setting is True).

• VB.NET: Add(String, DataColumn(), DataColumn(), Boolean) or C#: Add(String,
DataColumn[], DataColumn[], Boolean): Creates a DataRelation object in the collection
with the specified string as the DataRelation.RelationName property. The DataRelation
is based on the two DataColumn arrays. The Boolean argument indicates whether to create
constraints.

You can create a relationship in a DataSet using any of these overloaded methods. Here’s
an example using the overload that accepts a relation name, and the two DataColumns that
form the relation:

C#

//Create a relation between Customers and Orders.
myDataSet.Relations.Add("CustomersToOrders",

myDataSet.Tables["Customers"].Columns("CustomerID"],
myDataSet.Tables["Orders"].Columns["CustomerID"]) ;

VB.NET

' Create a relation between Customers and Orders
myDataSet.Relations.Add("CustomersToOrders", _

myDataSet.Tables("Customers").Columns("CustomerID"), _
myDataSet.Tables("Orders").Columns("CustomerID"))

This code invokes the Add() method of the myDataSet.Relations object to create a new
DataRelation object in the myDataSet.Relations collection. As a result, a new UniqueConstraint

is added to the Orders

5122ch06.qxd 8/23/05 3:15 PM Page 126

CHAPTER 6 ■ DATASETS 127

DataTable. The former (UniqueConstraint) ensures that all parent column values are unique in
the table, and the latter (ForeignKeyConstraint) ensures that an invalid CustomerID never
appears in the Orders table. By default, it also sets up cascading deletes and updates from
Customers to Orders records.

It’s also possible to construct the DataRelation object explicitly, and then add it to the
Relations collection. This is done using the overload that accepts a DataRelation directly, and
is demonstrated in the code here:

C#

// Create two DataColumns
DataColumn parentColumn ;
DataColumn childColumn ;
// Set the two columns to instances of the parent and child columns
parentColumn = myDataSet.Tables["Customers"].Columns["CustomerID"] ;
childColumn = myDataSet.Tables["Orders"].Columns["CustomerID"] ;

// Create a new DataRelation object
DataRelation customersToOrders = New DataRelation("CustomersToOrders",

parentColumn, childColumn) ;

// Add the DataRelation to the DataSet.Relations collection
myDataSet.Relations.Add(customersToOrders) ;

VB.NET

' Create two DataColumns
Dim parentColumn As DataColumn
Dim childColumn As DataColumn
' Set the two columns to instances of the parent and child columns
parentColumn = myDataSet.Tables("Customers").Columns("CustomerID")
childColumn = myDataSet.Tables("Orders").Columns("CustomerID")

' Create a new DataRelation object
Dim customersToOrders As New DataRelation(_

"CustomersToOrders", parentColumn, childColumn)

' Add the DataRelation to the DataSet.Relations collection
myDataSet.Relations.Add(customersToOrders)

Also, as mentioned in the list, a DataRelation can be constructed using an array of
DataColumns for both the parent and child columns. Imagine, for example, that there’s a table
of employees, and a table of managers. The Managers table contains data about the employees
who are also managers (this example assumes that the names of such employees are duplicated
in both the Employees table and the Managers table):

C#

// Create arrays of DataColumns for the relevant columns
DataColumn[] parentArray = new DataColumn[2];

5122ch06.qxd 8/23/05 3:15 PM Page 127

CHAPTER 6 ■ DATASETS128

parentArray[0] = myDataSet.Tables["Employees"].Columns["FirstName"] ;
parentArray[1] = myDataSet.Tables["Employees"].Columns["LastName"] ;

DataColumn[] childArray = new DataColumn[2];
childArray[0] = myDataSet.Tables["Managers"].Columns["FirstName"] ;
childArray[1] = myDataSet.Tables["Managers"].Columns["LastName"] ;

DataRelation empToMngr = New DataRelation("EmployeesToManagers", parentArray,
childArray) ;

myDataSet.Relations.Add(EmpToMngr) ;

VB.NET

' Create arrays of DataColumns for the relevant columns
Dim parentArray(2) As DataColumn
parentArray(0) = myDataSet.Tables("Employees").Columns("FirstName")
parentArray(1) = myDataSet.Tables("Employees").Columns("LastName")

Dim childArray(2) As DataColumn
childArray(0) = myDataSet.Tables("Managers").Columns("FirstName")
childArray(1) = myDataSet.Tables("Managers").Columns("LastName")

Dim empToMngr As New DataRelation(_
"EmployeesToManagers", parentArray, childArray)

myDataSet.Relations.Add(EmpToMngr)

Here, you’re constructing a DataRelation using a DataColumn array for the primary-key side
columns and foreign-key columns of the relationship. When the relationship is constructed,
a UniqueConstraint is added to the Employees table, enforcing a unique combination of first
and last names, and a ForeignKeyConstraint is added to the Managers table, enforcing cascading
deletes and updates across the relationship. Since adding a UniqueConstraint happens as a part
of adding a DataRelation, an important thing to keep in mind is that if the values in the primary-
key side table are not unique, you won’t be able to successfully add a DataRelation. Instead,
you’ll get an exception.

Putting It All Together
So far you have looked at the various constituents of a DataSet shown in Figure 6-1. You looked
at DataTables, DataRelations, and various Constraints. In Example 6.2, you saw that you can
easily create an in-memory DataTable without the need of a database. Note that all the classes
that have been discussed so far belong in the System.Data namespace. In other words, they are
not specific to any particular data provider. This means that OracleClient and SqlClient use
the same DataSet implementation. This goes inline with the disconnected nature of the DataSet.
Thus, if you quickly glance back at Figure 1-5 in Chapter 1 to the block that says “Disconnected
Objects,” that is where the DataSet and all it’s constituents introduced in this chapter sit.

Next, let’s look at an example to solidify our understanding of DataSets and how relations
and constraints work within them. The code can be found in the associated code download as
Example 6.3.

5122ch06.qxd 8/23/05 3:15 PM Page 128

CHAPTER 6 ■ DATASETS 129

The DataSet that will be created in this example has two tables in it. These are described
in Tables 6-8 and 6-9.

Table 6-8. The Animal Table

Property Description

AnimalID This is the primary key.

AnimalName String representation of the user’s name.

Table 6-9. The Pets Table

Property Description

PetID= This is the primary key.

AnimalID Has a foreign-key constraint with AnimalID.

PetName The name of the pet.

As indicated, AnimalID serves as a primary key for the Animal table and as a foreign-key
constraint between the Pets and Animal tables.

Example 6.3 provides you with a Windows Form that looks like what is shown in
Figure 6-2.

As you can see, there are two buttons: Create DataSet and DataBind, and Show XML. Cre-
ate DataSet and DataBind creates the bare DataSet schema, and binds the two tables to their
individual DataGridViews. Such a DataSet can be set up using the code shown in Listings 6-10
and 6-11. You can find this code in the CreateSchema method in Example 6.3 of the associated

Figure 6-2. Example 6.3’s user interface

5122ch06.qxd 8/23/05 3:15 PM Page 129

CHAPTER 6 ■ DATASETS130

Listing 6-10. Setting Up the Schema for petsData in C#

DataTable AnimalTable = new DataTable("Animal");
DataColumn myDataColumn;

myDataColumn = new DataColumn("AnimalID", typeof(System.Int32));
myDataColumn.AutoIncrement = true;
AnimalTable.Columns.Add(myDataColumn);

myDataColumn = new DataColumn("AnimalName", typeof(System.String));
AnimalTable.Columns.Add(myDataColumn);

DataTable petsTable = new DataTable("Pet");

myDataColumn = new DataColumn("PetID", typeof(System.Int32));
myDataColumn.AutoIncrement = true;
petsTable.Columns.Add(myDataColumn);

myDataColumn = new DataColumn("AnimalID", typeof(System.Int32));
petsTable.Columns.Add(myDataColumn);

myDataColumn = new DataColumn("PetName", typeof(System.String));
petsTable.Columns.Add(myDataColumn);

DataSet toReturn = new DataSet("petsData");
toReturn.Tables.Add(AnimalTable);
toReturn.Tables.Add(petsTable);
toReturn.Relations.Add(

new DataRelation("AnimalsPets",
AnimalTable.Columns["AnimalID"], petsTable.Columns["AnimalID"]));

return toReturn;

Listing 6-11. Setting Up the Schema for petsData in Visual Basic .NET

Dim AnimalTable As DataTable = New DataTable("Animal")
Dim myDataColumn As DataColumn

myDataColumn = New DataColumn("AnimalID", GetType(System.Int32))
myDataColumn.AutoIncrement = True
AnimalTable.Columns.Add(myDataColumn)

myDataColumn = New DataColumn("AnimalName", GetType(System.String))
AnimalTable.Columns.Add(myDataColumn)

Dim petsTable As DataTable = New DataTable("Pet")

5122ch06.qxd 8/23/05 3:15 PM Page 130

CHAPTER 6 ■ DATASETS 131

myDataColumn = New DataColumn("PetID", GetType(System.Int32))
myDataColumn.AutoIncrement = True
petsTable.Columns.Add(myDataColumn)

myDataColumn = New DataColumn("AnimalID", GetType(System.Int32))
petsTable.Columns.Add(myDataColumn)

myDataColumn = New DataColumn("PetName", GetType(System.String))
petsTable.Columns.Add(myDataColumn)

Dim toReturn As DataSet = New DataSet("petsData")
toReturn.Tables.Add(AnimalTable)
toReturn.Tables.Add(petsTable)
toReturn.Relations.Add(_

New DataRelation("AnimalsPets", _
AnimalTable.Columns("AnimalID"), petsTable.Columns("AnimalID")))

Return toReturn

It then data binds it with the appropriate grids, as shown in Listings 6-12 and 6-13.

Listing 6-12. Data Binding petsData in C#

petsData = CreateSchema();
petsGrid.DataSource = petsData.Tables["Pet"];
AnimalsGrid.DataSource = petsData.Tables["Animal"];

Listing 6-13. Data Binding petsData in Visual Basic .NET

petsData = CreateSchema()
petsGrid.DataSource = petsData.Tables("Pet")
AnimalsGrid.DataSource = petsData.Tables("Animal")

Show XML simply shows the contents of the DataSet as XML. This can be done using
either WriteXml or GetXml. Since GetXml directly returns the DataSet as an XML string, let’s use
that instead:

C#
MessageBox.Show(petsData.GetXml(), "DataSet Contents");

VB.NET
MessageBox.Show(petsData.GetXml(), "DataSet Contents")

Finally, there is a checkbox that sets the nested property on the relation:

C#

if (petsData != null)
{

petsData.Relations[0].Nested = nestedRelation.Checked;

5122ch06.qxd 8/23/05 3:15 PM Page 131

CHAPTER 6 ■ DATASETS132

Figure 6-3. Example 6.3 in action

VB.NET

If Not petsData Is Nothing Then
petsData.Relations(0).Nested = nestedRelation.Checked

End If

Once this code is put together and the example is run, it produces a Windows Form as
shown in Figure 6-2. Try adding some data as shown in Figure 6-3.

In editing the DataSet, you’ll notice that

• The primary keys PetID and AnimalID are automatically generated for you.

• If you try to enter data that violates the relation set up for you, you’ll get a System.Data.
InvalidConstraint and the form will not let you enter the invalid data.

You can view the DataSet’s contents at any time by clicking Show XML. One curious thing
to note, however, is the difference between the XML generated when the relation’s Nested
property is set to true versus when it is set to false (see Listings 6-14 and 6-15).

Listing 6-14. Contents of the DataSet with the Nested Property Set to false

<petsData>
<Animal>
<AnimalID>0</AnimalID>
<AnimalName>Dog</AnimalName>

</Animal>
<Animal>
<AnimalID>1</AnimalID>

5122ch06.qxd 8/23/05 3:15 PM Page 132

CHAPTER 6 ■ DATASETS 133

</Animal>
<Animal>
<AnimalID>2</AnimalID>
<AnimalName>Goldfish</AnimalName>

</Animal>
<petsTable>
<PetID>0</PetID>
<AnimalID>0</AnimalID>
<PetName>Tashu</PetName>

</petsTable>
<petsTable>
<PetID>1</PetID>
<AnimalID>0</AnimalID>
<PetName>Campy</PetName>

</petsTable>
<petsTable>
<PetID>2</PetID>
<AnimalID>1</AnimalID>
<PetName>Jimmy</PetName>

</petsTable>
</petsData>

Listing 6-15. Contents of the DataSet with the Nested Property Set to true

<petsData>
<Animal>
<AnimalID>0</AnimalID>
<AnimalName>Dog</AnimalName>
<petsTable>
<PetID>0</PetID>
<AnimalID>0</AnimalID>
<PetName>Tashu</PetName>

</petsTable>
<petsTable>
<PetID>1</PetID>
<AnimalID>0</AnimalID>

<PetName>Campy</PetName>
</petsTable>

</Animal>
<Animal>
<AnimalID>1</AnimalID>
<AnimalName>Parrot</AnimalName>
<petsTable>
<PetID>2</PetID>
<AnimalID>1</AnimalID>
<PetName>Jimmy</PetName>

</petsTable>

5122ch06.qxd 8/23/05 3:15 PM Page 133

CHAPTER 6 ■ DATASETS134

<Animal>
<AnimalID>2</AnimalID>
<AnimalName>Goldfish</AnimalName>

</Animal>
</petsData>

The subtle difference between the two is that the XML representation actually nests the
relation when the relation’s Nested property is set to true. This way, by setting up a DataRelation,
you can enforce referential integrity and also you can convert the structure of your data from
a relational structure to a hierarchical XML structure with ease. A DataRelation has other uses
besides data integrity, it also allows you to conveniently search through the various records in
various DataTables of a DataSet. You’ll see this using a many-to-many table relationship exam-
ple in Chapter 8, and compare it with other alternatives, such as DataViews, etc.

You might note that in Example 6.3 only a DataRelationwas set up, not a ForeignKeyConstraint,
or for that matter even a UniqueKeyConstraint. As explained previously, the UniqueKeyConstraint
is automatically set up for you when you marked a column as a PrimaryKey or set its
AutoIncrement to True.

In a similar fashion, a ForeignKeyConstraint is added for you automatically when you
set up a relation between the two tables. One of the things mentioned earlier was the ability
to specify an UpdateRule or DeleteRule on a given constraint. By default these values are set to
Cascade, so you could try changing the AnimalID for an Animal after a few Pet records have been
associated with the Animal; you’ll see that ADO.NET automatically cascades those changes for
you. This way your data sanctity is maintained with very little effort required from you.

Obviously, this data sanctity is maintained only in memory. There is still a world of prob-
lems to be solved when you try saving this data back into the database. This is discussed in
further depth in Chapter 10, but just as some food for thought, consider what would happen if
while remaining disconnected you added rows that satisfy a given foreign-key constraint, but
before you saved those rows in the database, some other user deleted the primary-key row out
of the database. (Uh oh!!) This is a much broader topic commonly referred to as concurrency.
While concurrency is discussed in depth in Chapters 9 and 10, always keep in mind while read-
ing this chapter that the in-memory party you are having with the DataSet eventually needs to
make it’s way back into persisted relational storage, typically a database. More on that in Chapters 9
and 10, for the moment let’s get back to the discussion of DataSets.

DataSets As Data Transfer Objects
Both DataSets and business objects have the ability to hold relational data. But there is one big
difference. DataSets are data transfer objects, that is, they are dumb buckets of data that help
you carry data from one point to another. They don’t contain semantic behavior of the con-
tents of the data; whereas, a business object is an object representation that abstracts logical
entities in the specific business domain the program is being written for.

In other words, business objects hold data for you in a convenient enough representation.
They allow you to view a typical database relational data structure as a more logical hierarchi-
cal object representation. These business objects could also have rules built inside of them for
validation purposes. Chapter 14 gives a good comparison of a business object versus a DataSet,
but it is wise to delay that discussion until you’re fully familiar with all aspects of ADO.NET.

5122ch06.qxd 8/23/05 3:15 PM Page 134

CHAPTER 6 ■ DATASETS 135

2. This discussion is bordering a discussion on Remoting. While this is not a Remoting book, you can
refer to Advanced .NET Remoting, Second Edition by Ingo Rammer and Mario Szpuszta (Apress, 2005)

Earlier in this chapter, you looked at various desired characteristics of the object that
would hold the responsibility of acting as the data carrier between various layers, processes,
and machines. You saw that the DataSet object that comes bundled as a part of the Microsoft
.NET Framework satisfies most of those requirements.

Frequently, you’d want to pass DataSets over Remoting or web-service boundaries. There
is an important performance trick involved in sending DataSets over such boundaries. The
problem is when DataSets are serialized—even if you use BinaryFormatter to serialize them,
by default they will always be serialized as XML.

■Note There are mainly two kinds of serialization in the .NET Framework. XML serialization and serializa-
tion done by a formatter that implements IFormatter. When I say a DataSet is serialized as XML, I mean
to say that even if you didn’t use XML serialization (hence you used BinaryFormatter which implements
IFormatter), the resultant output is still XML.

That leads to not only performance issues, but when you send “Time” data types in
strongly typed DataSets (covered later) over a Remoting interface that spans two time zones,
the time zone translation actually might occur twice.2

This is obviously a problem. Let’s see this using an example. The code for this example
can be found in the associated code download as Example 6.4, but I will mention the impor-
tant parts of the example here.

This example will create some sample data using a method called GiveMeFakeData() as
shown in Listings 6-16 and 6-17. This DataSet has only one DataTable with two columns and
a thousand rows.

Listing 6-16. GiveMeFakeData() in C#

public static DataSet GiveMeFakeData()
{

DataSet ds = new DataSet();
DataTable dt = new DataTable("Animal");
dt.Columns.Add(new DataColumn("AnimalID"));
dt.Columns.Add(new DataColumn("AnimalType"));

DataRow dr;
for (int i = 0; i <= 999; i++)
{

dr = dt.NewRow();
dr[0] = 1;
dr[1] = "Rabbit";
dt.Rows.Add(dr);

5122ch06.qxd 8/23/05 3:15 PM Page 135

CHAPTER 6 ■ DATASETS136

dr = dt.NewRow();
dr[0] = 2;
dr[1] = "Monkey";
dt.Rows.Add(dr);

dr = dt.NewRow();
dr[0] = 3;
dr[1] = "Donkey";
dt.Rows.Add(dr);

dr = dt.NewRow();
dr[0] = 4;
dr[1] = "Dog";
dt.Rows.Add(dr);

}

ds.Tables.Add(dt);

return ds;
}

Listing 6-17. GiveMeFakeData() in Visual Basic .NET

Function GiveMeFakeData() As DataSet
Dim ds As New DataSet()
Dim dt As New DataTable("Animal")
dt.Columns.Add(New DataColumn("AnimalID"))
dt.Columns.Add(New DataColumn("AnimalType"))

Dim dr As DataRow
Dim i As Integer
For i = 0 To 999

dr = dt.NewRow()
dr(0) = 1
dr(1) = "Rabbit"
dt.Rows.Add(dr)

dr = dt.NewRow()
dr(0) = 2
dr(1) = "Monkey"
dt.Rows.Add(dr)

dr = dt.NewRow()
dr(0) = 3
dr(1) = "Donkey"
dt.Rows.Add(dr)

5122ch06.qxd 8/23/05 3:15 PM Page 136

CHAPTER 6 ■ DATASETS 137

dr = dt.NewRow()
dr(0) = 4
dr(1) = "Dog"
dt.Rows.Add(dr)

Next i

ds.Tables.Add(dt)

Return ds
End Function

Next, this example attempts to Serialize and Deserialize this DataSet using the
BinaryFormatter, which is a standard formatter that comes with the .NET Framework. In one
case, it attempts to serialize it with the RemotingFormat set to SerializationFormat.Binary,
and in the other case, you can simply comment out that line and leave it to the default value of
SerializationFormat.Xml. In either case, the example does a rough performance count by
counting the number of ticks it takes to Deserialize such a DataSet. This can be seen in
Listings 6-18 and 6-19.

Listing 6-18. Serialization and Deserialization of a DataSet in C#

BinaryFormatter bf = new BinaryFormatter();
FileStream fs = new FileStream(

System.Environment.CurrentDirectory.ToString() + "\\ds.dat",
FileMode.OpenOrCreate);

DataSet ds = GiveMeFakeData() ;
ds.RemotingFormat = SerializationFormat.Binary;
bf.Serialize(fs, ds);
fs.Close();

// Check the deserialization performance.
fs = new FileStream(

System.Environment.CurrentDirectory.ToString() + "\\ds.dat",
FileMode.Open);

long nowTicks = DateTime.Now.Ticks;
DataSet ds2 = (DataSet)bf.Deserialize(fs);
long tickstotal = DateTime.Now.Ticks - nowticks ;
Console.WriteLine("Took me : " + tickstotal);
fs.Close();

Listing 6-19. Serialization and Deserialization of a DataSet in Visual Basic .NET

Dim bf As New BinaryFormatter()
Dim fs As New FileStream(_

System.Environment.CurrentDirectory.ToString() & _
"\ds.dat", FileMode.OpenOrCreate)

Dim ds As DataSet = GiveMeFakeData()

5122ch06.qxd 8/23/05 3:15 PM Page 137

CHAPTER 6 ■ DATASETS138

ds.RemotingFormat = SerializationFormat.Binary
bf.Serialize(fs, ds)
fs.Close()

' Check the deserialization performance.
fs = New FileStream(_

System.Environment.CurrentDirectory.ToString() & _
"\ds.dat", FileMode.Open)

Dim nowTicks As Long = DateTime.Now.Ticks
Dim ds2 As DataSet = CType(bf.Deserialize(fs), DataSet)
Dim tickstotal As Long = DateTime.Now.Ticks - nowticks
Console.WriteLine(("Took me : " & tickstotal))
fs.Close()

So first, run this example with RemotingFormat set to SerializationFormat.XML. This can
be toggled by modifying the bolded line in Listings 6-18 and 6-19. When this example is run, it
produces output that looks like

Took me : 1201728 ticks

Next, this example is run with RemotingFormat set to SerializationFormat.Binary. It pro-
duces output that looks like

Took me : 300432 ticks

The actual results may vary depending on the exact configuration of your machine and
other processes running at the time of the test, but the comparison will be similar. As you
can see the true binary serialization format is much faster than the default XML serialization
format. Since the serialized stream is stored to a file on the disk, you may also note that the
file size, hence the serialized stream size, is about 550KB in the case of default XML serializa-
tion, and about 55KB, or one-tenth in size, when using actual binary serialization enforced by
SerializationFormat.Binary. So when such data is sent over a limited bandwidth connection,
the difference will be even greater.

■Note The RemotingFormat property value defaults to SerializationFormat.XML. This is for backward
compatibility with ADO.NET 1.1.

If you open the serialized file with SerializationFormat.XML in Notepad, it looks like what
is shown in Figure 6-4.

5122ch06.qxd 8/23/05 3:15 PM Page 138

CHAPTER 6 ■ DATASETS 139

Figure 6-4. DataSet serialized as XML using the BinaryFormatter

And when the DataSet is serialized with SerializationFormat.Binary and the file is opened
in Notepad, it looks like what is shown in Figure 6-5.

inaryFormatter

5122ch06.qxd 8/23/05 3:15 PM Page 139

CHAPTER 6 ■ DATASETS140

In ADO.NET 1.1, SerializationFormat.XML was the only choice, thus even if you used
BinaryFormatter, the DataSet would still be serialized as XML, and you would pay the associ-
ated performance penalties.

■Tip A work-around for this problem exists for Framework 1.1 at http://support.microsoft.com/
default.aspx?scid=kb;en-us;829740.

Now that serialization isn’t such a problem with DataSets anymore, there does exist another
problem in DataSets that make them less than ideal for all situations: DataSets are not strongly
typed.

What this means is that if you had a DataSet that stored customer information, you would
have to access the customer row in a fashion similar to this:

C#
Int32 id = (Int32)customersDataset.Tables["Customers"].Rows[0]["CustomerId"] ;

VB.NET
Int32 id = CInt(customersDataset.Tables("Customers").Rows(0)("CustomerId"))

There are a few major problems with this approach:

• You need to remember the column names. Not only that but you need to spell them
correctly every time and the compiler can’t help you if you spell them incorrectly at
certain places. Usually such an error would be caught at runtime.

• There is an associated boxing/unboxing or conversion cost because DataSet will always
return values as an object. In this case, you had to convert the object to Int32.

• If, indeed, you get some data that doesn’t conform to what you were expecting, there’s
no way the DataSet can do that check for you.

These problems are solved by strongly typed DataSets. Specifically, the problem regarding
boxing/unboxing or conversion isn’t actually solved by strongly typed DataSets, but actually
masked because the generated code for strongly typed DataSets takes care of those issues for you.

Strongly Typed DataSets: An Introduction
So far, you’ve looked at how to use the DataSet class provided by the System.Data namespace.
You learned about the Rows collection and the Columns collection, and how to access individual
rows and columns of data within the DataSet. For example, in a typical DataSet, you might
access the first name of a customer like so:

C#

myRow = MyDataSet.Tables["Customers"].Rows[0];
Console.WriteLine(myRow["FirstName"]);

5122ch06.qxd 8/23/05 3:15 PM Page 140

CHAPTER 6 ■ DATASETS 141

VB.NET

myRow = MyDataSet.Tables("Customers").Rows(0)
Console.WriteLine(myRow("FirstName"))

By the time you are done with this chapter, you’ll be able to get access to your data in
a much more programmer- and reader-friendly fashion:

C#
Console.WriteLine(CustomerDataSet.Customers[0].FirstName);

VB.NET
Console.WriteLine(CustomerDataSet.Customers(0).FirstName)

As you can see, the second method is much easier to understand and write. The functional-
ity just described is made possible by a convention in the .NET Framework known as strongly
typed DataSets: classes that inherit from a DataSet giving them a strongly typed nature based
on an XSD structure you specify.

A typed DataSet is not a built-in member of the .NET Framework. As you will discover, it is
a generated class that inherits directly from the DataSet class, and allows properties and methods
to be customized from an XML schema that you specify. This class also contains other classes
for DataTable and DataRow objects that are enhanced in similar ways. As a result, you can cre-
ate schemas and classes for data that are customized precisely for your data, enabling you to
write data-access code more efficiently. Do note, however, that even though your code will be
up and running quicker, you will also be burdened eventually with keeping the structures of
your strongly typed DataSets up to date as your system changes. A good comparison of strongly
typed DataSets and DataSets is discussed in Chapter 14.

So, strongly typed DataSets need you to write XSD schemas. In fact, not every XSD schema
qualifies to be a DataSet, so it may be argued that you need to know specifically what is allowed
in an XML schema that controls what aspect of a DataSet.

The good news, however, is that for a majority of your needs, Visual Studio makes it extremely
easy to author strongly typed DataSets. So as you add a new DataTable, it creates and maintains
an XSD schema underneath for you.

However, it cannot hurt to learn what exactly the XSD under a strongly typed DataSet can
contain. An XML schema provides a rich definition of the data types, relationships, keys, and
constraints within the data it describes. There will be a discussion on how schemas and DataSets
fit together and how to create strongly typed DataSets later in this chapter. First, let’s have a brief
overview of some of the basic elements of XSD.

Overview of XSD
Before I mire you in a discussion about XSDs, I must add that if you are already familiar with
XSDs, you may feel free to skip this section and go directly to “DataSet Schemas.” This is because
Visual Studio makes it so easy to author strongly typed DataSets that for the most part you wouldn’t
need to know what is happening behind the scenes. However, just like anything, if you wish to
complete this one missing piece of the jigsaw puzzle in your understanding, feel free to come
back and read through this section.

5122ch06.qxd 8/23/05 3:15 PM Page 141

CHAPTER 6 ■ DATASETS142

If you did choose to stick with the XSD discussion, I should explain why I’m covering XSD
here. Relational database servers like SQL Server and Oracle all have their own internal and
proprietary formats for defining the structure of stored data. An Oracle table definition looks
nothing like an internal SQL Server table definition. ADO.NET DataSets, on the other hand,
need to work with every single database out there, and thus support a common set of features
that can be defined in XSDs. It’s important to note, however, that an in-memory DataSet does
not store either it’s structure or data as XML, it only supports easy conversion and compliance
between itself and XML.

The XML Schema Definition (XSD) language is an application of XML for describing data
structures. It’s particularly useful to us here because it allows applications to read and use
schema information when handling data. A strongly typed DataSet is a subclass of the (untyped)
DataSet class, generated using an XML schema and, therefore, tailored to that particular XML
schema.

The following overview of XSD should give you enough information to create and use
strongly typed DataSets. However, this is only a small part of what XSD can do, but it’s enough
to understand strongly typed DataSets.

Simple Types
An XML schema is an XML document that defines the structure of other XML documents by
specifying the structures and types of the elements that can be used in those documents. An
XML schema also identifies the constraints on the content of those other XML documents,
and describes the vocabulary (rules or grammar) that compliant XML documents must follow
in order to be considered valid against the XML schema.

For instance, if you see an XML file without a schema, you have to assume that every sin-
gle node’s data type is string. Or any node can contain any other node, as long as it is valid XML.
Thus, it’s difficult to program against that XML or even use it as a data interchange vehicle,
simply because the second party cannot definitely understand what data resides where.
These rules can be enforced either by an XML schema (XSD), or by using a Document Type
Definition (DTD).

One of the biggest disadvantages of using DTDs for constraining the behavior of instance
documents was that the DTD syntax was not XML, so not only did the programmer have to
learn a new syntax, but validating XML parsers had to know how to parse the DTD syntax as
well as XML. XML schemas are actually a dialect of XML, so any XML parser can interpret schema
information.

Putting all of this another way, the XSD elements in an XML schema control how various
elements and attributes can appear in a related XML document. In this section, you will start
a speedy overview of the XSD language by looking at the simple types—a part of XSD syntax that’s
used to define what types of data may appear in the content of an associated XML document.

Basic Data Types

The XSD standard defines several built-in data types, all of which are listed in Table 6-10.

5122ch06.qxd 8/23/05 3:15 PM Page 142

CHAPTER 6 ■ DATASETS 143

Table 6-10. Valid Data Types in an XSD Schema

Primitive XML Data Type Description

string Represents a character string.

Boolean Represents a true or false value.

decimal Represents numbers of arbitrary precision.

float Represents a single-precision, 32-bit floating point number.

double Represents a double-precision, 64-bit floating point number.

duration Represents a length of time.

dateTime Represents a specific point in time.

time Represents a given time of day.

date Represents a calendar date.

gYearMonth Represents a Gregorian month and Gregorian year.

gYear Represents a Gregorian year.

gMonthDay Represents a Gregorian month and Gregorian day. A specific date
that occurs once a year.

gDay Represents a Gregorian day of the month.

gMonth Represents a Gregorian month.

hexBinary Represents hex-encoded binary data.

base64Binary Represents Base64-encoded arbitrary binary data.

anyURI Represents any URI (as defined by RFC 2396)—may be absolute or
relative.

QName Represents a qualified name. Composed of a prefix and a local
name, separated by a colon. The prefix must be a namespace that’s
been defined by a namespace declaration.

NOTATION Represents a set of QNames.

To start making things a little clearer, the following is an example of an XSD file that
(among other things) utilizes a couple of the primitive types described in Table 6-10. You
might not understand all of the syntax at first, but the remainder will be described shortly. For
now, just take a look at the attribute declarations and their associated data types (in bold):

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema targetNamespace="http://tempuri.org/XMLSchema.xsd"

elementFormDefault="qualified"
xmlns="http://tempuri.org/XMLSchema.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="MyElement">
<xs:complexType>
<xs:attribute name="MyString" type="xs:string" />
<xs:attribute name="MyTime" type="xs:time" />
<xs:attribute name="MyBool" type="xs:boolean" />
<xs:attribute name="MyDecimal" type="xs:decimal" />

</xs:complexType>

5122ch06.qxd 8/23/05 3:15 PM Page 143

CHAPTER 6 ■ DATASETS144

This schema indicates that an element called <MyElement> can exist in an XML document
associated with it, and that the element will have four attributes of varying data types. The fol-
lowing XML is part of a document that conforms to the previous schema:

<MyElement MyString="Hello"
MyTime="12:00"
MyBool="true"
MyDecimal="3.851" />

You’ll learn more about <complexType> and <element> elements later in this overview section.

Attributes

As shown previously, attributes provide additional information about a given element. Attrib-
utes can only exist within the context of an element that they give additional information
about—they cannot contain child elements of their own. Attributes can be defined as being
any of the primitive XML data types in Table 6-10, or derived types such as positiveInteger.

The syntax for declaring an attribute in XSD is

<xs:attribute default = (value)
fixed = (value)
form = (qualified | unqualified)
id = ID
name = Name
ref = (reference qualified name)
type = (data type, qualified name)
use = (optional | prohibited | required)"

</xs:attribute>

The <element> element in the sample schema showed how you could nest attribute decla-
rations in order to assign them to a given element. Without going into much more detail about
the intricacies of attribute declarations here, let’s look at a few of the more important attributes
of the <attribute> element in XSD:

• form: Indicates whether the attribute needs to have a valid namespace prefix in the
instance document.

• type: The name of one of the primitive data types, or a derived data type.

• use: Describes how the attribute can be used. The default value is optional, which
indicates that the attribute is optional and can have any value (provided that the value
doesn’t contradict the type). You can also use this attribute to indicate that the attribute
is prohibited in the instance document, or is required to appear.

Enumerations

Enumerations provide a way for you to restrict the values available for the XML document to
those that you select. You can only provide enumerations for primitive data types, such as
strings and integers. Primitive data types are not to be confused with the simple type and
complex type that are defined in XML schemas. Primitive types can be compared with scalar
variables in most programming languages. They stand in contrast with classes or structs.

5122ch06.qxd 8/23/05 3:15 PM Page 144

CHAPTER 6 ■ DATASETS 145

You can create an enumeration by using an XSD <simpleType> element. Within the
<simpleType>, you create a <restriction> with a base attribute.

The base attribute of the <restriction> tag is set with the primitive data type on which
the restriction is placed. In the case of this sample, you’re creating an enumeration of strings.
So, at this point, your XSD fragment might look like this:

<xs:simpleType name="MyEnumeration">
<xs:restriction base="xs:string">
</xs:restriction>

</xs:simpleType>

From here, you can define any number of restrictions (placed inside the <restriction>
element) on the value that this new simple data type can accept. Keep in mind that the previ-
ous XSD snippet is defining a new data type that you are going to want to use as the data type
of an attribute later on.

As an example, let’s define an enumeration restriction that looks like this: any attribute
that’s given this type will only be able to take on the values red, white, and blue:

<xs:enumeration value="red" />
<xs:enumeration value="white" />
<xs:enumeration value="blue" />

The final schema, which indicates that the XML document can contain a <MyElement>
element with a MyEnum attribute and a MyString attribute, looks like this:

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema targetNamespace="http://tempuri.org/XMLSchema.xsd"

elementFormDefault="qualified"
xmlns="http://tempuri.org/XMLSchema.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="MyElement">
<xs:complexType>
<xs:attribute name="MyEnum" type="MyEnumeration" />
<xs:attribute name="MyString" type="xs:string" />

</xs:complexType>
</xs:element>
<xs:simpleType name="MyEnumeration">
<xs:restriction base="xs:string">
<xs:enumeration value="red" />
<xs:enumeration value="white" />
<xs:enumeration value="blue" />

</xs:restriction>
</xs:simpleType>

</xs:schema>

So, if you attempted to validate the following XML against this schema, the validation
would fail because the MyEnum attribute contains a value of purple, which isn’t allowed by the
enumeration you defined:

<MyElement MyEnum="purple" MyString="Hello" />

5122ch06.qxd 8/23/05 3:15 PM Page 145

CHAPTER 6 ■ DATASETS146

User-Defined Types
These are not to be confused with the User-Defined Types (UDTs) for SQL Server discussed in
Chapter 5. In the context of an XML schema, a user-defined type is a restriction that’s placed
on the content of an element or an attribute. As you saw previously, enumerations can be used
to create a kind of user-defined type, as they place a restriction on the values that primitive types
can use. A user-defined simple type will always restrict the contents of the element or attribute
to which it’s applied to a subset of the base type from which it’s derived. In other words, when
you create a user-defined simple type, you create a restriction on a primitive type.

The way in which individual restrictions are placed on primitive types for the purpose of
defining user-defined simple types is through XSD elements called facets.

Facets

Facets are elements that are used to define a legal set of values for a simple type (which can be
a user-defined simple type, or a primitive type like string or float). Constraining facets appear
as child elements of a <restriction> node, which is in turn a child of a <simpleType> node.
Table 6-11 is a list of the constraining facets that can be applied to a simple type (either built-in
or user-defined).

Table 6-11. Constraining Facets

Constraining Facet Description

enumeration As you have already seen, this facet constrains the value of a simple
type to a specified list of values.

fractionDigits Specifies the maximum number of allowable digits in the fractional
portion of the value.

length Specifies the number of units of length. The units are determined by
the base type of the simple type to which the facet is being applied. All
values must be exactly this length.

maxExclusive Maximum value. All values must be less than this value to qualify.

maxInclusive Maximum value. All values must be less than or equal to this value in
order to qualify.

maxLength Maximum number of units of length. Units are determined by data type.

minExclusive Minimum value. All values must be greater than this value to qualify.

minInclusive Minimum value. All values must be greater than or equal to this value to
qualify.

minLength Minimum allowed length of the value. Units of length depend on the
data type.

pattern Specifies a regular expression that all values must match. A favorite!

totalDigits Value must have a specific maximum number of total digits.

whiteSpace Indicates whether the element should preserve, replace, or collapse
whitespace.

5122ch06.qxd 8/23/05 3:15 PM Page 146

CHAPTER 6 ■ DATASETS 147

Complex Types
Complex types in XML schemas are used to declare the attributes that can be placed on an
element. They can also be used to define the names, nature, and behavior of an element’s
child nodes (if any). If an element in the instance document is going to be anything other than
simple (meaning that it contains no child elements, no attributes, and has only a basic data
type as its contents), then you must declare it as a complex type in the schema.

Let’s take a look at a fairly simple XML document with just a two-level hierarchy:

<Book>
<Title>Pro ADO.NET</Title>
<Publisher>Apress Ltd</Publisher>

</Book>

The top-level element [the DocumentElement, if you’re used to DOM (Document Object
Model) programming] is the <Book> element. It has two child elements: <Title> and <Publisher>.
Based on the definition of a complex type, the <Book> element is complex, but both the <Title>
and <Publisher> elements are simple (they are based on basic data types and have no attributes
or child elements).

Let’s create a portion of a schema that represents this hierarchy. Whenever you declare
a complex type, you need to use the <complexType> XSD element:

<xs:element name="Book">
<xs:complexType>
<xs:sequence>
<xs:element name="Title" type="xs:string" />
<xs:element name="Publisher" type="xs:string" />

</xs:sequence>
</xs:complexType>

</xs:element>

The mixed Attribute

The <complexType> element’s mixed attribute allows the content of a given element to contain
a mixture of simple character data and child nodes. This attribute is extremely helpful in mix-
ing markup tags with standard prose, such as defining reference links and information within
the context of a magazine article, a book review, or any other form of content.

You could make a slight change to the previous schema and modify the <complexType>
element to include the mixed="true" attribute, as follows:

<xs:element name="Book">
<xs:complexType mixed="true">
<xs:sequence>
<xs:element name="Title" type="xs:string" />
<xs:element name="Publisher" type="xs:string" />

</xs:sequence>
</xs:complexType>

</xs:element>

5122ch06.qxd 8/23/05 3:15 PM Page 147

CHAPTER 6 ■ DATASETS148

You could then write a valid XML document that contains mixed content, like this:

<Book>
The title of this book is <Title>Pro ADO.NET</Title> and
the publisher of the book is <Publisher>Apress Ltd</Publisher>.

</Book>

Mixed content is very often seen in business-to-business (B2B) document exchanges. For
example, if a media provider supplied movie reviews to dozens of online movie retailers, they
could provide those reviews with mixed content, marking up the portions containing data that
could be accessed or searched for, such as the rating or the title of the movie. In general, how-
ever, mixed content is best avoided if possible, due to the complexities it adds to parsing code.
This is because data tags are mixed with the data, and that can never be good.

Element Groups

There are only a few more things left to cover before you get into the specifics of how schemas
affect DataSet objects. One of those things is element groups. Any time that a set of more than
one element appears as a child of another element, it’s considered to be an element group.
There are four main XSD elements for defining the behavior of element groups:

• The <all> element

• The <choice> element

• The <sequence> element

• The <group> element

The <all> Element The <all> element indicates that all of the child elements declared beneath it
can exist in the instance document, in any order. Here’s how the book schema might change to
accommodate such a thing:

<xs:element name="Book">
<xs:complexType>
<xs:all>
<xs:element name="Title" type="xs:string" />
<xs:element name="Publisher" type="xs:string" />

</xs:all>
</xs:complexType>

</xs:element>

The <choice> Element The <choice> element indicates that one and only one of its child ele-
ments can exist in the instance document. Therefore, if you modify the book schema to use
a <choice> element, you can have either a <Title> element or a <Publisher> element in the
instance document, but validation will fail if you have both:

<xs:element name="Book">
<xs:complexType>
<xs:choice>

5122ch06.qxd 8/23/05 3:15 PM Page 148

CHAPTER 6 ■ DATASETS 149

<xs:element name="Title" type="xs:string" />
<xs:element name="Publisher" type="xs:string" />

</xs:choice>
</xs:complexType>

</xs:element>

The <sequence> Element The <sequence> element indicates that the order in which the child
elements appear in an instance document must be the same as the order in which those ele-
ments are declared. The following is a modified book schema using the <sequence> element:

<xs:element name="Book">
<xs:complexType>
<xs:sequence>
<xs:element name="Title" type="xs:string" />
<xs:element name="Publisher" type="xs:string" />

</xs:sequence>
</xs:complexType>

</xs:element>

This means that if you try to validate the following XML document against this schema,
the validation will fail, because the instance document contains the child elements in the
wrong order:

<Book>
<Publisher>Apress Ltd</Publisher>
<Title>Pro ADO.NET</Title>

</Book>

The <group> Element The <group> element provides a method for naming a group of elements
or attributes. This becomes exceedingly useful if the same grouping will appear in more than
one place. For example, if you have an instance document that contains both customers and
contacts, then you might want a reusable group of elements for the name, address, and phone
number. The <group> element can contain an <all> element, a <choice> element, or a <sequence>
element. Here’s an example portion of a schema that utilizes a <group>:

<xs:group name="ContactInfo">
<xs:all>
<xs:element name="Address1" type="xs:string" />
<xs:element name="Address2" type="xs:string" />
<xs:element name="City" type="xs:string" />
<xs:element name="State" type="xs:string" />

</xs:all>
</xs:group>
<xs:element name="Contact">
<xs:complexType>
<xs:group ref="ContactInfo" />
<xs:element name="Company" type="xs:string" />

5122ch06.qxd 8/23/05 3:15 PM Page 149

CHAPTER 6 ■ DATASETS150

</xs:complexType>
</xs:element>
<xs:element name="Customer">
<xs:complexType>
<xs:group ref="ContactInfo" />
<xs:element name="Status" type="xs:string" />

</xs:complexType>
</xs:element>

You can see how the ContactInfo grouping of elements was reused for two different par-
ent elements, without having to retype the information.

Attribute Groups

This same idea of reusing groups can be applied to attributes just as easily as it can be applied
to elements. If, for example, you wanted to convert the book description XML document so that
the title and publisher become attributes of the <Book> element, you can group those attributes
as follows, allowing them to be reused throughout the schema:

<xs:attributeGroup name="BookDetails">
<xs:attribute name="Title" type="xs:string" />
<xs:attribute name="Publisher" type="xs:string" />

</xs:attributeGroup>

<xs:element name="Book">
<xs:attributeGroup ref="BookDetails" />

</xs:element>

So, the XML instance document for the new schema looks like this:

<Book Title="Pro ADO.NET" Publisher="Apress Ltd" />

XSD Annotation
One of the biggest benefits of XML schemas is that they are written in human-readable form.
Compilers and applications can interpret them for use in data manipulation scenarios, while
the programmers using those schemas can read them without recourse to a translator.

Sometimes, schemas will be sent to business partners to ensure that everyone is format-
ting their data properly. Other times, schemas are generated by an application architect and
then provided to the programmers who write the actual code. No matter what the reason, it’s
extremely helpful to have the ability to embed documentation and additional information into
the schema itself, rather than having the programmers search for it elsewhere.

XML schemas provide two ways of annotating a schema. You can either annotate your
schema with documentation that’s designed to be read by a human examining the schema, or
you can use annotation that’s designed to provide additional detailed information to the program
or process that’s interpreting the schema. In fact, all annotation for an XML schema occurs within
the <annotation> element. The two different types of annotation occur as child elements of that
parent. The <annotation> element itself should occur as the first child of the element to which
the annotation applies.

5122ch06.qxd 8/23/05 3:15 PM Page 150

CHAPTER 6 ■ DATASETS 151

The <documentation> Element

The <documentation> element contains human-readable information that’s intended for the
audience of the XML schema file. Here’s a quick example of a modified schema for the book
document that contains some documentation:

<xs:element name="Book">
<xs:annotation>
<xs:documentation>
This book element contains information about a single book. It
should contain the full title and the official name of the
publisher.

</xs:documentation>
</xs:annotation>

<xs:complexType>
<xs:sequence>
<xs:element name="Title" type="xs:string" />
<xs:element name="Publisher" type="xs:string" />

</xs:sequence>
</xs:complexType>

</xs:element>

The <appinfo> Element

The <appinfo> element provides a way for the schema author to supply additional informa-
tion to an application interpreting the schema. This kind of information might include script
code, filenames, switches, or flags of some kind indicating parameters for processing. As with
the <documentation> element, <appinfo> always occurs within an <annotation> element.

DataSet Schemas
Whether you read the previous “Overview of XSD” section or you decided that you could skip
over that section because you were already familiar with XSDs, it’s about time I started discussing
how XSDs apply to DataSets.

This next section, then, is going to cover XML schemas as they apply to DataSet objects,
covering the XSD elements and structures that relate directly to various DataSet behaviors and
configurations.

Schema Translation
Before you get going, it’s important to bear in mind that in previous examples, you have already
manipulated and interrogated various DataSets’ schemas without knowing anything at all about
XSD, and you’ll be doing more in the same vein later in the book. There are plenty of occasions
when it’s not necessary to know about the underlying XML schema in order to do useful work
with ADO.NET.

Here, then, you’ll read about how XML schemas are translated into the entities that DataSets
expose to their clients: tables, rows, columns, relationships, keys, and constraints. While it’s
theoretically possible for you to accomplish everything you need by simply dragging a table

5122ch06.qxd 8/23/05 3:15 PM Page 151

CHAPTER 6 ■ DATASETS152

from a database connection in Visual Studio .NET onto a new DataSet class and never looking
at the underlying XSD, it may not be practical to do so. For example, there are many occasions
when the structure in a database doesn’t reflect the structure you want in your DataSet.

Having a thorough knowledge of which elements in XSD produce which behaviors in
a DataSet can save you time, effort, redundant code, and the problem of Wizard-generated
code getting close to your desired result, but not being exactly what you want. It’s a good,
defensive programming tactic to assume that a Wizard is just a starting point, and that any
Wizard-generated code will have to be modified before it’s ready to use. Dragging a table defi-
nition from SQL Server onto the design surface of the Visual Studio .NET DataSet designer might
be sufficient to get the job done, but you can accomplish quite a bit more with some knowledge
of the underlying details. However, try to limit changes done by hand to only the XSD portion.
This is so because the C# or VB.NET code generated by MSDataSetGenerator (or XSD.exe) will
end up overwriting your changes. Since strongly typed DataSets are implemented as partial
classes, you should implement a parallel partial class that will not get overwritten every time
the XSD schema changes.

Generating Tables and Columns

Here you are going to read about how to indicate tables, rows, and columns with XSD. In an
XSD representation, every DataSet must have a single root element, which indicates the DataSet
itself. It’s beneath this root element that you can supply your definitions for the tables and
columns of your DataSet.

Tables occur as complex elements beneath the root element. Columns appear as child
elements of the complex elements indicating the tables.

Let’s take the simple book schema from earlier in the chapter and make it into a DataSet
schema. The first thing you need to do is define the outermost element—the DataSet itself.
Let’s call it <BookDataSet>. Beneath that, create an element called <Books>, and lower still
beneath that create two elements: <Title> and <Publisher>. Let’s take a look at the modified
XSD to produce a working DataSet (BookDataSet.xsd):

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema id="BookDataSet"

targetNamespace="urn:apress-proadonet-chapter6-BookDataSet.xsd"
elementFormDefault="qualified"
xmlns="urn:apress-proadonet-chapter6-BookDataSet.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

<xs:element name="BookDataSet" msdata:IsDataSet="true">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="Books">
<xs:complexType>
<xs:sequence>
<xs:element name="Title" type="xs:string" minOccurs="0" />
<xs:element name="Publisher" type="xs:string" minOccurs="0" />

</xs:sequence>
</xs:complexType>

5122ch06.qxd 8/23/05 3:15 PM Page 152

CHAPTER 6 ■ DATASETS 153

</xs:element>
</xs:choice>

</xs:complexType>
</xs:element>

</xs:schema>

There are a couple of new things here that might immediately jump out at you. The first
is that an ID is assigned to the schema. Also, you’ll see that there is an elementFormDefault
attribute with the value qualified. This means that, by default, all elements within the schema
must be qualified with their appropriate namespace prefix. You’ll also notice that a target
namespace has been defined for instance documents of this XML schema. While you could
get away with leaving this blank, it’s a good idea to give this information in order to avoid any
potential collisions when transferring DataSets between domains, machines, or platforms.

Looking deeper into the schema, you’ll notice that you can specify an unlimited number of
<Books> elements, which then contain a sequence of elements called <Title> and <Publisher>,
in that order. You could create a Books.xml document for our sample application to read that
looks like this:

<BookDataSet xmlns="urn:apress-proadonet-chapter6-BookDataSet.xsd">
<Books>
<Title>Pro ADO.NET</Title>
<Publisher>Apress Ltd</Publisher>

</Books>
<Books>
<Title>Professional .NET Framework</Title>
<Publisher>Apress Ltd</Publisher>

</Books>
</BookDataSet>

Listings 6-20 and 6-21 demonstrate a part of a small console application that creates an
ordinary DataSet, reads the XSD file (BookDataSet.xsd), loads the Books.xml file using the
ReadXml method, and then prints the information in the XML file to the console, using the
relational paradigm of tables, columns, and rows. This can be found in the associated code
download as Example 6.5. The BookDataSet.xsd and Books.xml files are both in the bin directory
beneath the project.

Listing 6-20. Loading DataSet Data and Schema from XML and XSD in C#

DataSet bookDataSet = new DataSet();
BookDataSet.ReadXmlSchema("BookDataSet.xsd");
BookDataSet.ReadXml("Books.xml");

Console.WriteLine("Recent Books:");
Console.WriteLine("-------------");

foreach (DataRow xRow in BookDataSet.Tables["Books"].Rows)
{

Console.WriteLine("{0} by {1}", xRow["Title"], xRow["Publisher"]);
}

5122ch06.qxd 8/23/05 3:15 PM Page 153

CHAPTER 6 ■ DATASETS154

Listing 6-21. Loading Dataset Data and Schema from XML and XSD in Visual Basic .NET

Dim bookDataSet As DataSet = New DataSet()
BookDataSet.ReadXmlSchema("BookDataSet.xsd")
BookDataSet.ReadXml("Books.xml")

Console.WriteLine("Recent Books:")
Console.WriteLine("-------------")
For Each xRow as DataRow In BookDataSet.Tables("Books").Rows

Console.WriteLine("{0} by {1}", xRow("Title"), xRow("Publisher"))
Next

When this code is run, it produces output that looks like

Recent Books:

Pro ADO.NET by Apress Ltd
Professional .NET Framework by Apress Ltd

Constraints
As you know, constraints are rules enforced on the contents of a DataSet. It’s entirely possible
to use nothing but the DataSet methods to create, modify, and enforce constraints, but you
should also know what constraints look like in the underlying XSD that your DataSets work
with. There are several constraint types that you can enforce on the data contained within
a DataSet, via its associated schema.

Key Constraints

You can use the <key> element in an XML schema to enforce key constraints on data contained
within the DataSet. A key constraint must be unique throughout the schema instance, and
cannot have null values.

The following addition to the BookDataSet.xsd schema creates a key on the Title column:

<xs:key name="KeyTitle">
<xs:selector xpath=".//Books" />
<xs:field xpath="Title" />

</xs:key>

The <selector> element contains an xpath attribute, which indicates to the DataSet the
XPath query to run in order to locate the table on which the key applies. The next element,
<field>, also contains an XPath query, which indicates to the DataSet how to locate the field
on which the key applies (relative to the table’s element).

Unique Constraints

A unique constraint (<unique>) is slightly more forgiving and less strict than a key constraint.
A unique constraint requires only that data should be unique, if it exists. Individual columns
can specify whether or not they allow nulls, overriding some of the default behavior of the
unique constraint. You could just as easily have indicated a unique constraint on the Title
column with the following XSD fragment:

5122ch06.qxd 8/23/05 3:15 PM Page 154

CHAPTER 6 ■ DATASETS 155

<xs:unique name="KeyTitle">
<xs:selector xpath=".//Books" />
<xsd:field xpath="Title" />

</xs:unique>

Foreign Keys (<keyref>) and Relationships

<keyref> elements within an XML schema provide a facility for declaring links within the doc-
ument. The functionality they establish is similar in nature to that of foreign-key relationships
in relational databases like SQL Server. If a DataSet encounters a <keyref> element when load-
ing a schema, the DataSet will create an appropriate foreign-key constraint. It will also create
a parent-child relationship (discussed shortly).

This example creates a new table in our DataSet called BookReviews. Then, the <keyref>
element is used to create a foreign-key relationship between the BookReviews table and the
Books table. To make things easier (and more realistic), a BookID column is also added. This
code can be found in Example 6.6 of the associated code download.

Here’s the new BookDataSet.xsd file for Example 6.6 (you’ll have to find the
BookDataSet.xsd on the file system as it is not added as a part of the project in Example 6.6):

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema id="BookDataSet"

targetNamespace="urn:apress-proadonet-chapter6-BookDataSet.xsd"
elementFormDefault="qualified"
xmlns="urn:apress-proadonet-chapter6-BookDataSet.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

<xs:element name="BookDataSet" msdata:IsDataSet="true">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="Books">
<xs:complexType>
<xs:sequence>
<xs:element name="BookID" type="xs:integer" minOccurs="1" />
<xs:element name="Title" type="xs:string" minOccurs="1" />
<xs:element name="Publisher" type="xs:string" minOccurs="1" />

</xs:sequence>
</xs:complexType>

</xs:element>
..... continued below

To this point, everything should look pretty familiar. You’ll notice that the BookID column
has been added. BookID is an integer column that must appear any time a <Books> element
appears (minOccurs="1"). In other words, in the DataSet, this would be not nullable. Next, a new
definition for a table is created. Remembering that a table in XSD is nothing more than an
element that contains more elements, it’s pretty easy to do:

..... continued from above

5122ch06.qxd 8/23/05 3:15 PM Page 155

CHAPTER 6 ■ DATASETS156

<xs:complexType>
<xs:sequence>
<xs:element name="BookID" type="xs:integer" minOccurs="1" />
<xs:element name="Rating" type="xs:integer" minOccurs="1" />
<xs:element name="Review" type="xs:string" minOccurs="0" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:choice>

</xs:complexType>

After that, some more familiar-looking code. You went over the <key> element earlier: the
xpath attribute of the <selector> element indicates the Books table, while the xpath attribute
for the <field> indicates the BookID column:

<xs:key name="KeyTitle">
<xs:selector xpath=".//Books" />
<xs:field xpath="BookID" />

</xs:key>

Finally, a <keyref> element is used to indicate that you’re creating a foreign key originat-
ing from the BookID column of the BookReviews table, referring to the <key> element named
KeyTitle:

<xs:keyref name="KeyTitleRef" refer="KeyTitle">
<xs:selector xpath=".//BookReviews" />
<xs:field xpath="BookID" />

</xs:keyref>
</xs:element>

</xs:schema>

With the XSD file in place, you can next write the code to read the XSD and the XML into
a DataSet. This code can be found in Listings 6-22 and 6-23.

Listing 6-22. Loading Schema and Data for a Relational DataSet in C#

DataSet bookDataSet = new DataSet();

BookDataSet.ReadXmlSchema("BookDataSet.xsd");
BookDataSet.ReadXml("Books.xml");

Console.WriteLine("Relations Created:");

foreach (DataRelation xRelation in BookDataSet.Relations)
{

Console.WriteLine(xRelation.RelationName);
}

Console.WriteLine("Apress Books");

5122ch06.qxd 8/23/05 3:15 PM Page 156

CHAPTER 6 ■ DATASETS 157

Listing 6-23. Loading Schema and Data for a Relational DataSet in Visual Basic .NET

Dim BookDataSet As New DataSet()

BookDataSet.ReadXmlSchema("BookDataSet.xsd")
BookDataSet.ReadXml("Books.xml")

Console.WriteLine("Relations Created:")
Dim xRelation As DataRelation
For Each xRelation In BookDataSet.Relations
Console.WriteLine(xRelation.RelationName)

Next

Console.WriteLine("Apress Books")
Console.WriteLine("----------")
Console.WriteLine()

Programmers like proof. To prove that a relationship in the DataSet has been created with
exactly the same name as the <keyref> element in the XSD file, you can iterate through the
Relations collection, printing out the name of the relationship. You’ll see that there is indeed
a relationship called KeyTitleRef in the DataSet immediately after the schema is loaded:

C#

foreach (DataRow xRow in BookDataSet.Tables["Books"].Rows)
{

Console.WriteLine(xRow["Title"]);
......
}

VB.NET

For Each xRow as DataRow In BookDataSet.Tables("Books").Rows
Console.WriteLine(xRow("Title"))

......
Next

So far, this is pretty straightforward: just iterate through each of the rows in the DataSet,
and print out the value in the Title column for each of the rows:

C#

foreach (DataRow xRow in BookDataSet.Tables["Books"].Rows)
{

Console.WriteLine(xRow["Title"]);
// Obtain child rows using the KeyTitleRef relation
foreach (DataRow zRow in xRow.GetChildRows("KeyTitleRef"))
{

Console.WriteLine(" {0}", zRow["Rating"]);
}

5122ch06.qxd 8/23/05 3:15 PM Page 157

CHAPTER 6 ■ DATASETS158

VB.NET

For Each xRow as DataRow In BookDataSet.Tables("Books").Rows
Console.WriteLine(xRow("Title"))
' Obtain child rows using the KeyTitleRef relation
For Each zRow as DataRow In xRow.GetChildRows("KeyTitleRef")

Console.WriteLine(" {0}", zRow("Rating"))
Next

Next

The GetChildRows() method obtains a list of child rows of a given row, utilizing a relationship.
You can specify either the name of the relationship or a DataRelation object. You can optionally
specify a row version to further filter the results returned by querying the relation. In the
source XML document, the information is stored flat, in two separate tables. With the use of
GetChildRows(), you’re actually forcing a hierarchical traversal of the information in the DataSet.

When you’re all done, you’re presented with console output like the following, showing
each of the titles and the rating of each reviewer, indented to help display the hierarchy of the
row relationships:

Relations Created:
KeyTitleRef

Apress Books

Pro ADO.NET
5
1

Professional .NET Framework
4
2

So that you can see where the numbers are coming from, let’s take a look at the updated
Books.xml file that now contains information for the BookReviews table:

<BookDataSet xmlns="urn:apress-proadonet-chapter6-BookDataSet.xsd">
<Books>
<BookID>1</BookID>
<Title>Pro ADO.NET</Title>
<Publisher>Apress Ltd</Publisher>

</Books>
<Books>
<BookID>2</BookID>
<Title>Professional .NET Framework</Title>
<Publisher>Apress Ltd</Publisher>

</Books>

The Books table information should look pretty familiar. Next, however, the contents of the
BookReviews table is listed. Each row in the latter table is defined by a <BookReviews> element:

5122ch06.qxd 8/23/05 3:15 PM Page 158

CHAPTER 6 ■ DATASETS 159

<BookReviews>
<BookID>1</BookID>
<Rating>5</Rating>
<Review>This book was by far one of the best books on .NET ever

written!</Review>
</BookReviews>
<BookReviews>
<BookID>1</BookID>
<Rating>1</Rating>
<Review>I'm not sure this could be classified as a technical manual. It

is worth more as a paperweight</Review>
</BookReviews>
<BookReviews>
<BookID>2</BookID>
<Rating>4</Rating>
<Review>Top Notch! Excellent book! I especially liked the chapter on

strongly typed datasets and XSD schemas!</Review>
</BookReviews>
<BookReviews>
<BookID>2</BookID>
<Rating>2</Rating>
<Review>I liked the introduction. That's it.</Review>

</BookReviews>
</BookDataSet>

■Note Even though the presence of foreign keys and relationships in a DataSet’s schema can indicate
a hierarchical relationship, the data does not have to appear to be nested in the instance document. This can
be controlled by the “nested” property on a DataRelation as seen before in Example 6.3.

Building Strongly Typed DataSets
So far, you’ve walked through some of the more commonly used features that are available to
you in XSD, and you’ve learned how various elements in XML schemas affect the way in which
DataSets behave. You’ve seen how to control the data types of individual columns, and how to
represent multiple tables, columns, indexes, and constraints within a DataSet.

In truth, a lot of what you’ve covered with regard to XSD and DataSet schemas you could
theoretically survive without, but knowing the internals of how your tools are working is always
helpful. While most of the examples so far (and throughout this chapter) deal with using DataSets
and XML data, all of this information can be applied to DataSets used in conjunction with
relational databases, or DataTables used in conjunction with relational databases. The essential
point to remember is that whether the data came from an XML document, a relational database,
or some other provider, the schemas still have the same format. It’s really immaterial how the
DataSet or DataTable was filled.

5122ch06.qxd 8/23/05 3:15 PM Page 159

CHAPTER 6 ■ DATASETS160

In short, strongly typed DataSets let you turn the following lines of code:

C#

myRow = myDataSet.Tables["Customers"].Rows[0]
Console.WriteLine(myRow["FirstName"])

VB.NET

myRow = myDataSet.Tables("Customers").Rows(0)
Console.WriteLine(myRow("FirstName"))

into this short, easy-to-read line of code:

C#

Console.WriteLine(CustomerDataSet.Customers[0].FirstName) ;

VB.NET

Console.WriteLine(CustomerDataSet.Customers(0).FirstName)

This change is made possible by the strong support in the .NET Framework for inheri-
tance and clear, logical object hierarchies. The essential concept behind a strongly typed
DataSet is that a new class is created that derives from the DataSet class. This new class
implements properties and methods that are strongly typed, based on the XSD schema that
was used in order to generate it.

When this derived class is instantiated, it will provide logically named properties of integer
type (if your schema called for integer columns), and further logically named properties that
appear as arrays of strongly typed rows. So, rather than dealing with DataRows and DataTables,
you end up dealing with task-specialized concepts such as a CustomersRow or a CustomersTable,
which may contain columns called FirstName or LastName, rather than forcing you to employ
difficult-to-use array indices/indexer accessors.

In .NET, there are two (equally valid) approaches to creating strongly typed DataSets. You
can create them visually using a designer through the tools provided within Visual Studio .NET,
or you can use command-line utilities and compiler arguments. Both approaches will be cov-
ered here, and you can pick the one that best fits your skills, style, and preferences.

Building Typed DataSets in Visual Studio .NET
Visual Studio .NET provides an incredibly easy, point-and-click approach to creating strongly
typed DataSets. It’s such a natural extension of Visual Studio .NET that if you’re using it to
develop your application, there’s no sensible reason not to use it. To start out, let’s take the
concept from the “books and book reviews” example and develop a strongly typed DataSet for
it in Visual Studio .NET:

1. As usual, start out by creating a new console application, this time named Example 6.7.

2. Next, right-click on the project name, select Add ➤ Add New Item, and then select the
DataSet icon and type in BookDataSet.xsd as the filename.

3. From the Toolbox, drag two DataTables into open areas of the design surface. From
there, you can use the visual interface to add columns to each DataTable you dropped

5122ch06.qxd 8/23/05 3:15 PM Page 160

CHAPTER 6 ■ DATASETS 161

Figure 6-6. Strongly typed XSD DataSet

4. Create the columns according to the columns used in Example 6.7 (Books and
BookReviews).

5. Then, finish it off by creating a primary key called KeyBookID on the BookID column in
the Books table.

6. At this point, what you have is two completely disjointed and unrelated tables. Now
for the fun stuff: the relationship. From the Toolbox, drag a Relation onto the designer,
hovering over any of the elements (or whitespace) in the BookReviews element (table).
When you let go, you’ll see a dialog prompting you for more information about the
relation (keyref). Change the name of the keyref to KeyBookIDRef. As there’s already
a key in one of the tables, and there are identically named columns in each table, the
dialog comes populated with all of the information you need to form the parent-child
relationship. You can confirm the dialog and generate the code. Your designer should
look something like Figure 6-6.

7. Finally, in the Properties window, change the targetNamespace property of the schema
to urn:apress-proadonet-chapter6-BookDataSet.xsd, and attributeFormDefault to
(Default).

■Note One thing you should keep in mind is that the namespace of the data in the XML you’re reading
absolutely must be the same as the target namespace of this schema. Also, this namespace is case sensitive.

Now, take a look at the XSD for your visually designed, strongly typed DataSet (see
Listing 6-24).

Listing 6-24. XSD for the Visually Designed BooksDataSet Strongly Typed DataSet

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema id="BookDataSet"

targetNamespace="urn:apress-proadonet-chapter6-BookDataSet.xsd"
elementFormDefault="qualified"
xmlns="urn:apress-proadonet-chapter6-BookDataSet.xsd"
xmlns:mstns="urn:apress-proadonet-chapter6-BookDataSet.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

<xs:element name="BookDataSet" msdata:IsDataSet="true">

5122ch06.qxd 8/23/05 3:15 PM Page 161

CHAPTER 6 ■ DATASETS162

<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="Books">
<xs:complexType>
<xs:sequence>
<xs:element name="BookID" type="xs:integer" minOccurs="0" />
<xs:element name="Title" type="xs:string" minOccurs="0" />
<xs:element name="Publisher" type="xs:string" minOccurs="0" />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="BookReviews">
<xs:complexType>
<xs:sequence>
<xs:element name="BookID" type="xs:integer" minOccurs="0" />
<xs:element name="Rating" type="xs:integer" minOccurs="0" />
<xs:element name="Review" type="xs:string" minOccurs="0" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:choice>

</xs:complexType>
<xs:key name="KeyBookID">
<xs:selector xpath=".//mstns:Books" />
<xs:field xpath="mstns:BookID" />

</xs:key>
<xs:keyref name="KeyBookIDRef" refer="KeyBookID">
<xs:selector xpath=".//mstns:BookReviews" />
<xs:field xpath="mstns:BookID" />

</xs:keyref>
</xs:element>

</xs:schema>

It should come as no surprise that this looks remarkably similar to the document that you
built manually during the schema overview. The only real difference is the use of the mstns
namespace to link things together (tns is shorthand for “this namespace”).

Now enter some code into the main class of the console application to generate the same
output as our previous example, but fully utilizing the features of a class that you actually did
nothing to generate, other than define the schema. This code can be found in Listings 6-25
and 6-26.

Listing 6-25. Working with a Strongly Typed DataSet in C#

BookDataSet myDataSet = new BookDataSet();
myDataSet.ReadXml("Books.xml");

Console.WriteLine("Relations Found:");
foreach (DataRelation xRelation in myDataSet.Relations)

5122ch06.qxd 8/23/05 3:15 PM Page 162

CHAPTER 6 ■ DATASETS 163

{
Console.WriteLine(xRelation.RelationName);

}

Console.WriteLine("Apress Books and Reviews");
Console.WriteLine("----------------------");

Listing 6-26. Working with a Strongly Typed DataSet in Visual Basic .NET

Dim myDS As New BookDataSet()
myDataSet.ReadXml("Books.xml")

Console.WriteLine("Relations Found:")
Dim xRelation As DataRelation
For Each xRelation In myDS.Relations

Console.WriteLine(xRelation.RelationName)
Next

Console.WriteLine("Apress Books and Reviews")
Console.WriteLine("----------------------")

Notice here that you aren’t instantiating a DataSet, but a class named BookDataSet. The
Books.xml file you are using here is the same as the one you used in the last example, which
should be copied to the bin (C#) or bin\debug (VB.NET) directory for this project. Just like last
time, you dump the relationships defined in the DataSet to the console:

C#
foreach (BookDataSet.BooksRow book in myDataSet.Books.Rows)

VB.NET
For Each book As BookDataSet.BooksRow In myDataSet.Books.Rows

This is where it gets almost enjoyable to write the code. Instead of iterating through the
rows of some table object that you reached through an ordinal or name, you can index through
each of the BooksRow objects in the strongly typed DataSet’s Books.Rows collection. It’s much
easier to read, and much easier for the programmer to write:

C#

Console.WriteLine(book.Title);

foreach (BookDataSet.BookReviewsRow review in book.GetBookReviewsRows())
{

Console.WriteLine(" {0}", review.Rating);
}

5122ch06.qxd 8/23/05 3:15 PM Page 163

CHAPTER 6 ■ DATASETS164

VB.NET

Console.WriteLine(book.Title)

For Each review As BookDataSet.BookReviewsRow In book.GetBookReviewsRows()
Console.WriteLine(" {0}", review.Rating)

Next

The code generator for the strongly typed DataSet will actually generate properly typed
properties for each of the columns in a table. Here you can see that the example is printing out
the value of Book.Title, rather than the following code or something similarly complex:

C#

Tables["Books"].Rows[0]["Title"] ;

VB.NET

Tables("Books").Rows(0)("Title")

Also note that instead of invoking the GetChildRows method, you are actually calling
GetBookReviewsRows(), which the strongly typed DataSet implemented for you. This method
returns an array of BookReviewsRow objects.

After you’ve placed all the code into your solution (or you’ve loaded the Example 6.7 project
from the code download), rebuild it and then make sure that Show All Files is selected from the
Project menu. You should see that the BookDataSet.xsd file has some child items. Expand them,
and you’ll see that a BookDataSet.Designer.cs/BookDataSet.Designer.vb file has been generated
for you. This is the actual class definition that the example uses as the strongly typed DataSet.

If you open the BookDataSet.xsd file in Notepad, you would immediately notice that the
Books table is represented by the following element:

<xs:element name="Books">
<xs:complexType>
<xs:sequence>
<xs:element name="BookID" type="xs:integer" minOccurs="1" />
<xs:element name="Title" type="xs:string" minOccurs="1" />
<xs:element name="Publisher" type="xs:string" minOccurs="1" />

</xs:sequence>
</xs:complexType>
</xs:element>

Also, you would note that the BookReviews table is defined by the following element:

<xs:element name="BookReviews">
<xs:complexType>
<xs:sequence>
<xs:element name="BookID" type="xs:integer" minOccurs="1" />
<xs:element name="Rating" type="xs:integer" minOccurs="1" />
<xs:element name="Review" type="xs:string" minOccurs="0" />

</xs:sequence>
</xs:complexType>

5122ch06.qxd 8/23/05 3:15 PM Page 164

CHAPTER 6 ■ DATASETS 165

And the relationship between the two is defined by the following xs:keyref and xs:key
elements:

<xs:key name="KeyTitle">
<xs:selector xpath=".//Books" />
<xs:field xpath="BookID" />

</xs:key>
<xs:keyref name="KeyTitleRef" refer="KeyTitle">
<xs:selector xpath=".//BookReviews" />
<xs:field xpath="BookID" />

</xs:keyref>

Let’s take a look at the console output generated by this sample. It should look extremely
similar to Example 6.6, but the key thing to remember is that this DataSet isn’t generic—it has
been derived and specialized to work only with Books and BookReviews, according to our
schema:

Relations Found:
KeyBookIDRef
Apress Books and Reviews

Pro ADO.NET
5
1

Professional .NET Framework
4
2

The code for BookDataSet.Designer.cs/BookDataSet.Designer.vb is too long to look at
here in its entirety (though it’s of course available in the code download for this chapter), but
it’s certainly worth taking a look at a few key points. The first thing you’ll see is the Books prop-
erty, which is a strongly typed wrapper around some inherent DataSet functionality. Here is
the BookDataSet class’s definition of the Books property:

C#

public BooksDataTable Books {
get {

return this.tableBooks;
}

}

VB.NET

Public ReadOnly Property Books() As BooksDataTable
Get

Return Me.tableBooks
End Get

End Property

5122ch06.qxd 8/23/05 3:15 PM Page 165

CHAPTER 6 ■ DATASETS166

Like so many properties, this is just a wrapper around a private member variable. The key
thing to note here is the data type of the property: it’s actually a nested class called BooksDataTable,
which is another dynamically generated class deriving from the DataTable class.

Now let’s take a look at another piece of “magic” that the strongly typed DataSet is per-
forming on your behalf: the invocation of GetChildRows() through the GetBookReviewsRows()
method (a member of the BookDataSet.BooksRow class):

C#

public BookReviewsRow[] GetBookReviewsRows() {
return

((BookReviewsRow[])(this.GetChildRows(this.Table.ChildRelations["KeyTitleRef"])));
}

VB.NET

Public Function GetBookReviewsRows() As BookReviewsRow()
Return CType(Me.GetChildRows(_

Me.Table.ChildRelations("KeyBookIDRef")), BookReviewsRow())
End Function

This function locates a DataRelation object by pulling the KeyBookIDRef item out of
the ChildRelations collection. It then pulls the child rows by passing the relation object to the
GetChildRows() function, changing the type of the resulting array of DataRow objects to an
array of BookReviewsRow objects. As with all of the items in the strongly typed DataSet, this
function is visible through intellisense in Visual Studio .NET, dramatically reducing your
chances of mistyping the name of the child row’s relation name.

One more useful feature of the typed DataSet is its strongly typed properties. Let’s take
a look at the Title property of the BooksRow class:

C#

public string Title {
get {

return ((string)(this[this.tableBooks.TitleColumn]));
}
set {

this[this.tableBooks.TitleColumn] = value;
}

}

VB.NET

Public Property Title As String
Get
Try
Return CType(Me(Me.tableBooks.TitleColumn), String)

Catch e As InvalidCastException
Throw New StrongTypingException(_

"Cannot get value because it is DBNull.", e)

5122ch06.qxd 8/23/05 3:15 PM Page 166

CHAPTER 6 ■ DATASETS 167

End Get
Set
Me(Me.tableBooks.TitleColumn) = value

End Set
End Property

This property is made possible by an override for the indexer (the Item property) in the
DataRow class that BooksRow inherits from. It allows an actual column object to be supplied
(specifically, a DataColumn object, or, as in this case, an object that inherits from DataColumn),
rather than an ordinal or a string as a field identifier, on which to set and get values.

Building Typed DataSets Manually
Now that you have looked at how to make strongly typed DataSets through Visual Studio .NET,
which automatically makes them available to the rest of the project, let’s look at how to do it
the “hard” way. Of course, that’s a misnomer, because there’s really nothing hard about using
command-line tools to create your own strongly typed DataSets.

You shouldn’t confuse “manually” with the process of writing all of the code for the DataSet
class yourself. Even without Visual Studio .NET, there’s still a tool called XSD.exe that automates
generation of the class file. This approach is useful for batch code generation, typical in enter-
prise deployment or automated build environments. For the “manual” example, you will build
the same example you have already built under Visual Studio .NET, though all of the compilation,
code editing, and DataSet generation will be done from the command line and Notepad (or any
other text editor).

The first thing that needs to be done is to create a new directory called Example 6.8. Into
this, copy the BookDataSet.xsd file that you built containing the definitions for the Books table,
the BookReviews table, the keys, and the keyref parent-child relationship.

Then, write a batch file to build a strongly typed DataSet. It’s called BuildDS.cmd; the contents
of this batch file are as shown:

C#

xsd /d /l:CS BookDataSet.xsd

VB.NET

xsd /d /l:VB BookDataSet.xsd

The batch file invokes a utility called XSD.exe, which is used to generate schema or class
files from a given source. For this statement to work, you have to either run it from where xsd
is in the same directory or where it is within the defined path. It can take a schema and either
convert it to classes or create a typed DataSet from it (the /d argument). Also, it can create an
XSD file from an XDR file to upgrade the schema definition. The /l version can specify the lan-
guage to generate the strongly typed DataSet in.

Running the BuildDS.bat file creates a version of the strongly typed DataSet exactly the
same as the one created through Visual Studio .NET. The same output for the Visual Basic
version is as shown in Figure 6-7.

5122ch06.qxd 8/23/05 3:15 PM Page 167

CHAPTER 6 ■ DATASETS168

Figure 6-7. Generating a strongly typed DataSet using command line

Typed DataSet Performance
You have seen plenty of stuff demonstrating how strongly typed DataSets make the jobs of cre-
ating and consuming DataSets far easier. Typed DataSets are easier to maintain, have strongly
typed accessors, provide rigid data validation, and, because they can still be serialized, can be
exposed as the return types of web service function calls.

It would be reasonable to ask, however, whether these things are any faster or slower
than regular DataSets. Unfortunately, the answer is far from clear. You may already know that
throwing exceptions incurs a slight overhead from the runtime, as does typecasting. All of the
properties and functions in a typed DataSet are wrapped in exception handling calls, and a great
many are wrapped with typecasting code. This leads some people to believe that they are slightly
less efficient than standard DataSets.

However, in any production application, you’ll be wrapping your DataSet use in exception
handling and typecasting code anyway, so the fact that the typed DataSet does this for you should
be considered an advantage, and not a performance drain.

Plus, performance is about code performance and developer performance. Strongly typed
DataSets make your code easier to develop and maintain. Those advantages are hard to ignore.

Annotating Typed DataSets
Earlier in the chapter, during the overview of some of the commonly used features of XSD, you
read about covered schema annotation. You saw then that annotation could take two forms:
the <documentation> element for human audiences, and the <appinfo> element. Here, you’ll
see another variety of (and use for) annotation that doesn’t use the XSD <annotation> element.

As you’ve seen in the previous examples, when you create a strongly typed DataSet using
the standard techniques, the names of that DataSet class’s properties, methods, relations, and
constraints will be created for you. If you’re going to be using a lot of typed DataSets, or you
plan on having them available for several other programmers or programming teams, you’ll be
pleased to know that you can obtain fine-grained control over the naming conventions and
automated facilities of the code generator for typed DataSet classes.

5122ch06.qxd 8/23/05 3:15 PM Page 168

CHAPTER 6 ■ DATASETS 169

This is accomplished by supplying attributes from two XML namespaces provided by Microsoft:
the first is the codegen namespace (defined by xmlns:codegen="urn:schemas-microsoft-com:
xml-msprop") and the second is the msdata namespace (defined by xmlns:msdata="urn:
schemas-microsoft-com:xml-msdata").

codegen
The codegen namespace contains a set of attributes that directly affect the code generation of
a DataSet. You can apply the codegen attributes to various elements of an XSD file, providing
fine-grained instructions to either XSD.exe or the VS.NET compiler on exactly how to generate
the new DataSet. There will be a sample of a Visual Studio .NET-annotated DataSet using these
new attributes at the end of this section.

All of this functionality can be controlled by programmatically modifying the properties
of the DataSet later on. However, if the functionality and control is built into the schema and
the typed DataSet in human-readable form, there can be no mistake about how the class cre-
ator intended it to function.

typedName

The typedName attribute indicates the name of an object, as it will appear in the new DataSet.
This attribute can be applied to DataTables, DataRows, properties, and DataSet events.

typedPlural

The typedPlural attribute will indicate the name of the object when a plurality of the object is
needed, as in the DataRowCollection or the DataTableCollection object.

typedParent

The typedParent attribute indicates the name of the object when it is referred to in a parent
relationship. Typed DataSets automatically generate accessor functions for retrieving parents
and children. For example, in the previous example, the GetBookReviewsRows() function was
a child accessor.

typedChildren

The typedChildren attribute indicates the name of the object when it is referred to in a child
relationship. As stated previously, typed DataSets generate both parent and child accessors,
usually with confusing or unwieldy names. Providing the typedChildren and typedParent
attributes generally makes for a much easier user experience in your typed DataSet.

nullValue

The nullValue attribute is an incredibly useful one. It allows you to define what action will be
taken in the DataSet when a DBNull value is encountered. The following is a list of the valid
values for the nullValue attribute:

• "replacement": Rather than indicating a behavior, you can simply indicate what value
your DataSet will store instead of DBNull.

• _throw: Throws an exception any time a DBNull is encountered on the related element

5122ch06.qxd 8/23/05 3:15 PM Page 169

CHAPTER 6 ■ DATASETS170

• _null: Returns a null (or throws an exception if a primitive type is encountered).

• _empty: Returns an object created from an empty constructor. For strings, it will return
String.Empty. For any other primitive type, it will throw an exception.

msdata
The msdata namespace is another namespace used by Microsoft to control the behavior of
a DataSet. It’s primarily concerned with the definition, naming, and control of keys and con-
straints. The next five sections cover the attributes that it defines.

ConstraintName

This is the name of the constraint as it will appear in the DataSet. This can apply to any kind of
constraint defined in XSD, such as a <key> or a <unique> constraint.

ConstraintOnly

The default behavior of the code generator is to create a relationship whenever a foreign-key
constraint is found. You can override this behavior and not create the relationship automatically
by using the ConstraintOnly flag. The syntax looks like this:

<element msdata:ConstraintOnly="true" />

UpdateRule

This attribute controls the behavior of related parent-child rows when an update is made to
a row. If not supplied, the default is set to Cascade. Otherwise, it can be set to None, SetDefault,
or SetNull, matching the settings as you earlier saw in this chapter:

• Cascade: Cascades the update across to all related rows.

• None: No action will be taken on related rows.

• SetDefault: All of the related rows affected by the update action will be set to their
default values, as indicated by their DefaultValue property.

• SetNull: All related rows will be set to DBNull as a result of the update action.

DeleteRule

The available values for this attribute function identically to those for the UpdateRule attribute,
with the exception that they are only applied when a delete action takes place.

Relationship

Like all good rules, there’s an exception to the statement made earlier about these annotations
not actually being in an <annotation> element. The <Relationship> element appears within an
<appinfo> annotation element. If you wish, you can use <Relationship> to define a parent-child
relationship as an alternative to using the key/keyref syntax. This is really a matter of preference,
and many XSD purists prefer to use the key/keyref syntax. In any case, the syntax looks like this:

5122ch06.qxd 8/23/05 3:15 PM Page 170

CHAPTER 6 ■ DATASETS 171

<xs:annotation>
<xs:appinfo>
<msdata:Relationship name="KeyBookIDRef"

msdata:parent="Books"
msdata:child="BookReviews"
msdata:parentkey="BookID"
msdata:childkey="BookID" />

</xs:appinfo>
</xs:annotation>

Annotated Typed DataSet Example
Now that you’ve seen how to annotate a DataSet in order to control how its code is generated
and to gain finer control over its behavior, constraints, and rules, let’s take a look at one in
action. For this example, we’re going to create a Windows Forms application called Example 6.9.
Add a new item to the project, choose DataSet as the type, and name it BookDataSet.xsd. Paste
the following annotated XSD into your new DataSet class XSD file:

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema id="BookDataSet"

targetNamespace="urn:apress-proadonet-chapter6-BookDataSet.xsd"
elementFormDefault="qualified"
xmlns="urn:apress-proadonet-chapter6-BookDataSet.xsd"
xmlns:mstns="urn:apress-proadonet-chapter6-BookDataSet.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema"

The next part is new. Visual Studio .NET puts the msdata namespace declaration into your
DataSet schemas for you, but you have to enter the following one manually in order to gain
access to the codegen namespace prefix:

xmlns:codegen="urn:schemas-microsoft-com:xml-msprop"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

<xs:element name="BookDataSet" msdata:IsDataSet="true">
<xs:complexType>
<xs:choice maxOccurs="unbounded">

Here’s a look at the first use of the codegen namespace. The following code is indicating
that the typedName of the Books element (which matches <Books> tags in the XML instance
document) is going to be called Book, and the typedPlural will be called Books:

<xs:element name="Books" codegen:typedName="Book"
codegen:typedPlural="Books">

<xs:complexType>
<xs:sequence>
<xs:element name="BookID" type="xs:integer" minOccurs="1" />
<xs:element name="Title" type="xs:string" minOccurs="1" />
<xs:element name="Publisher" type="xs:string" minOccurs="1" />

</xs:sequence>
</xs:complexType>

5122ch06.qxd 8/23/05 3:15 PM Page 171

CHAPTER 6 ■ DATASETS172

As with the <Books> tags, you are placing some logical naming conventions onto the indi-
vidual items. A single row of the BookReviews table will now be considered a BookReview, rather
than a BookReviews:

<xs:element name="BookReviews" codegen:typedName="BookReview"
codegen:typedPlural="BookReviews">

<xs:complexType>
<xs:sequence>
<xs:element name="BookID" type="xs:integer" minOccurs="0" />
<xs:element name="Rating" type="xs:integer" minOccurs="0" />
<xs:element name="Review" type="xs:string" minOccurs="0" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:choice>

</xs:complexType>

<xs:key name="KeyBookID">
<xs:selector xpath=".//mstns:Books" />
<xs:field xpath="mstns:BookID" />

</xs:key>

Finally, in the XSD file, there are a couple of really interesting things going on. The first is
that the DataGridView control uses the name of the relationship to provide a visual link to the
child tables. Therefore, you need to make sure now that this name will look good in the UI!
Also, we’ve effectively renamed the GetBookReviewsRows() function that you saw earlier to
Reviews():

<xs:keyref name="Reviews" refer="KeyBookID"
codegen:typedParent="Book"
codegen:typedChildren="Reviews">

<xs:selector xpath=".//mstns:BookReviews" />
<xs:field xpath="mstns:BookID" />

</xs:keyref>
</xs:element>

</xs:schema>

Next, let’s come to the form for the application. Change the title of the form (the Text
property) to Annotated Typed DataSet Binding Example. The form needs to contain two con-
trols: a DataGridView control called dgBooks, and a button called btnSumScores with the text
Sum Scores. You also need to add a private field to the form called Books, of BookDataSet type:

C#

private BookDataSet books;

VB.NET

Private books As BookDataSet

5122ch06.qxd 8/23/05 3:15 PM Page 172

CHAPTER 6 ■ DATASETS 173

Now you have the constructor or the Form_load event of the form, which you need to mod-
ify to load the XML data for the form (the Books.xml file you saw earlier, which is copied to the
root directory of the application):

C#

public Form1()
{

InitializeComponent();
books = new BookDataSet();
books.ReadXml("Books.xml");
datagridBooks.DataSource = books.Books;

}

VB.NET

Private Sub Form1_Load(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles MyBase.Load
books = New BookDataSet()
books.ReadXml("Books.xml")
datagridBooks.DataSource = books.Books

End Sub

Also, to show you how incredibly straightforward our new annotated class is, let’s rig up
the Sum Scores button to display a message box containing the sum of all of the scores of the
reviews. You could just iterate through the Reviews table, but instead let’s use the For...Each
syntax to demonstrate just how close the code syntax is to how you might describe the func-
tionality out loud to another programmer:

C#

private void btnSumScores_Click(object sender, EventArgs e)
{

int sum = 0;
...
}

VB.NET

Private Sub btnSumScores_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnSumScores.Click
Dim sum As Integer = 0

...
End Sub

This is the beauty of typed DataSets. Not only do you have accessors without (visibly)
using array indices or collections, but also everything is named appropriately and everything
is strongly typed, so if you attempt to use the wrong data type, an exception will be thrown.
Iterating through a hierarchy of data has never been this easy:

5122ch06.qxd 8/23/05 3:15 PM Page 173

CHAPTER 6 ■ DATASETS174

Figure 6-8. Annotated typed DataSet binding example

C#

foreach (BookDataSet.Book book in books.Books)
{

foreach (BookDataSet.BookReview review in book.Reviews())
{

sum += Convert.ToInt32(review.Rating);
}

}
MessageBox.Show(this, "Score Total: " + sum.ToString());

VB.NET

For Each Book as BookDataSet.Book In Books.Books
For Each review as BookDataSet.BookReview In Book.Reviews()

sum += CInt(review.Rating)
Next

Next
MessageBox.Show(Me, "Score Total: " + sum.ToString())

Figure 6-8 shows just how much nicer everything looks when things have been annotated
and given human- and programmer-readable names.

Summary
This chapter introduced you to the centerpiece of ADO.NET’s disconnected architecture—the
DataSet.

In this chapter, you then looked at various constituents of the DataSet object. You looked
at DataTables, DataRows, DataColumns, DataRelations, etc. You saw many practical examples
elucidating the usage of all of these objects. It was also noted that a lot of concepts mentioned

5122ch06.qxd 8/23/05 3:15 PM Page 174

CHAPTER 6 ■ DATASETS 175

for the DataSet are equally applicable to the DataTable object. This will become clearer as you
subject the DataSet or DataTable to real-world scenarios that involve connecting to a data
source.

Further on in this chapter, you saw a brief overview of the most common features of the XSD
language. You read about the importance of this review of XSD as you delved into the structure
of the DataSet and saw how it interprets XSD to form its internal data structure of columns,
tables, constraints, keys, and relations.

After understanding how a DataSet interacts directly with XML schema information, you
used such a schema to derive your own DataSet subclass that provided a strongly typed object
model on top of a specific data structure.

Next, you learned how to provide additional information and instructions to the code
generator, allowing you fine-grained control over the generation of the DataSet-derived classes.
Finally, a strongly typed DataSet class was databound to a DataGridView demonstrating how
the control handled the embedded hierarchical structure of the DataSet.

It may be notable, however, that none of the discussion presented in this chapter involved
any sort of connection with any data source. This is critical to understand that a DataSet has
nothing to do with any particular database, it lends itself to be equally useful to any specific
data provider/data source.

Now that you have read about the connected part of ADO.NET in Chapters 4 and 5 and
have been introduced to the centerpiece of the disconnected part of ADO.NET in this chapter,
Chapter 6 will introduce you to the part of ADO.NET that acts as a gatekeeper between the
disconnected and connected worlds: the DataAdapter.

After discussing filling a DataSet (or DataTable), the discussion will briefly return to the
purely disconnected world and introduce an equally important object in ADO.NET, the DataView.
This will be followed by a discussion of updating the data source in both connected and discon-
nected architectures addressing issues such as concurrency, etc.

5122ch06.qxd 8/23/05 3:15 PM Page 175

5122ch06.qxd 8/23/05 3:15 PM Page 176

177

C H A P T E R 7

■ ■ ■

Fetching Data: The DataAdapter

So far you’ve been introduced to the various parts that make up ADO.NET. You read about
how ADO.NET splits up data access between connected and disconnected portions and why it
chooses to do so. In Chapters 4 and 5 you read about the connected part of ADO.NET. You read
about how a connection is established, and how you can execute commands and fetch results
out of the database in a connected fashion using a data reader.

Chapter 6 introduced you to the various objects, such as DataSet, DataTable, DataRow,
DataRelation, and so on that comprise the purely disconnected data access part within ADO.NET.
Various examples were given how DataSets can be used to hold a logical representation of your
data model in both a strongly typed and non-strongly typed fashion.

Just as a data reader allows you to fetch data from a given data source, there exists an object
in ADO.NET that acts as a bridge between the purely disconnected world of ADO.NET compris-
ing the DataSet, DataTable, etc. and the connected world of the DBCommand objects that wrap
various SQL statements: this object is the DataAdapter.

A DataAdapter not only lets you fill a DataSet or DataTable from the given data source, it
also provides you with a convenient mechanism to persist, or save the changes back, into the
database. This is usually achieved by specifying various command objects as properties on the
DataAdapter object.

But before you look at updating the data source using a data adapter, first let’s discuss
fetching data using a data adapter.

What Is a DataAdapter?
As the name implies, a DataAdapter is the bridge between the connected and disconnected
parts of ADO.NET. A DataAdapter is the object that lets you use connected objects, such as
DbCommand, to fill and work with disconnected objects, such as the DataSet. As you have already
seen in Chapters 4 and 5, in order to interrogate or interact with your data source, you need an
object derived from DbConnection. Typically, this would be an instance of a SqlConnection,
OracleConnection, or something similar. On an open and available object that is derived from
DbConnection, you can send commands using an object that is derived from DbCommand. A DbCommand
has the option of being able to retrieve the result set as a DbDataReader (such as SqlDataReader
or OracleDataReader), or it may return a scalar value instead. Such commands may even be
used to perform Data Manipulation Language (DML) on the database.

5122ch07.qxd 8/23/05 3:16 PM Page 177

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER178

ataAdapter in ADO.NET

However, one of the things pointed out in Chapter 4 was the immense benefit of connec-
tion pooling in a multiuser, highly concurrent application environment. Since a data reader
operates in a firehose read-only/forward-only manner, it ends up holding a connection open
for its operation lifetime. Holding a connection open for an inordinately long time generally
has a negative impact on connection pooling.

In Chapter 6, you read about various objects that form the disconnected architecture of
ADO.NET. Objects such as DataSets, DataTables, DataRows, etc. help you hold a subset of the data
in a relational form, similar to what you would find in the database. However, these objects,
particularly the DataSet and DataTable, need to be filled using some mechanism.

ADO.NET employs the DbCommand object to abstract and hold the queries you wish to execute
on the data source. The DbCommand object contains the information about what DbConnection it
will employ in order to execute itself. The DataAdapter object is responsible for employing
a DbCommand and acting as a gatekeeper/bridge between the connected world of DbCommand and
DbConnection, and the disconnected world of DataTable and DataSet.

Structure of a DataAdapter
In Chapter 2 (specifically, Figure 2-7), you read about data adapters implementing the IDataAdapter
and IDbDataAdapter interfaces without going into further detail. In fact, it’s not the case that the
various data adapters simply contain implementations of these interfaces’ methods. Though
that’s effectively the outcome, there are a couple of stages in between.

The .NET Framework class hierarchy contains an abstract or MustInherit class that provider-
specific data adapters inherit from called System.Data.Common.DbDataAdapter. It’s the DbDataAdapter
class that implements the IDbDataAdapter interface. The DbDataAdapter class provides the basic
facilities for constructing a disconnected data-access mechanism to fill a DataSet or DataTable
object and to update a data source.

The DbDataAdapter class in turn inherits from yet another class called the System.Data.Common.
DataAdapter class, which in turn implements the IDataAdapter interface.

Figure 7-1 demonstrates the structure of two commonly used data adapters: the
SqlDataAdapter and OracleDataAdapter in ADO.NET.

5122ch07.qxd 8/23/05 3:16 PM Page 178

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER 179

In addition to Figure 7-1, you can also refer back to Figure 2-7 to understand how the vari-
ous DataAdapter classes and various DbCommand classes work together.

It’s also notable that the DataAdapter class in turn inherits from System.ComponentModel.
Component. Therefore, the DataAdapter, by virtue of being a Component, can be hosted in any
object that implements the IContainer interface. What this means is that a DataAdapter can be
visually edited and worked upon in containers such as the Visual Studio IDE at design time, as
you’ll see later in this chapter.

Putting DataAdapters to Use
Now that you are familiar with the structure of DataAdapters in ADO.NET, rather than examin-
ing each method and property enforced by various interfaces that a DataAdapter implements,
let’s instead focus on the practical usage of DataAdapters.

DataAdapters can be used for both querying and/or updating the underlying data source.
In this chapter, however, the main focus of discussion will be fetching data from the underly-
ing data source. Once you have a good handle on fetching data, you can move on to working
with it in disconnected mode in Chapter 8, followed by updating data, which is discussed in
Chapters 9, 10, and 11.

Querying most major data sources involves the execution of a SQL query wrapped inside
a DbCommand object. This has already been illustrated in Chapter 5, but first let’s set up the database
that the exercises of this chapter will run on.

Setting Up the Data Source
The exercises in this chapter, like the rest of the book, will demonstrate working examples running
on a local instance of SQL Server 2005, or a local access database using the OleDb data provider.
However, it’s important to note that there are certain subtle differences between individual data
providers. Specifically for the OracleClient .NET data provider, the relevant differences will be
elucidated with the necessary code examples wherever applicable.

So for the examples in this chapter, the data source being used is a database called Test
that can be easily created on your local instance of SQL Server 2005. To accomplish this, use
the following script through SQL Server Management Studio:

Create Database Test

Next, you need to create a simple table structure that can be queried. For this purpose,
you can create three tables with a many-to-many relationship between them: UserTable,
PermissionsTable, and UserPermissionsTable. You can find the scripts for creating and
populating them with data in the associated code download for this chapter in
CreateTestDatabase.Sql (please see the Downloads section of the Apress website at
http://www.apress.com), but the table structures are shown in Figure 7-2.

5122ch07.qxd 8/23/05 3:16 PM Page 179

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER180

Figure 7-3. Enabling the Data Sources window

Figure 7-2. Table structure for examples

You can then fill the tables with some sample data.

Querying One Table: Point and Click
Now that you have data to query, let’s write a quick sample as Exercise 7.1, which demonstrates
getting the contents of one table in a disconnected fashion. For sample purposes, the discussion
will concentrate on the UserTable:

1. Start by creating a Windows Forms project. Name it Exercise 7.1 and change the main
form’s text to Exercise 7.1.

2. Enable the Data Sources window for your project in Visual Studio 2005. If that window
is not directly available, you can enable it using the Data ➤ Show Data Sources menu item
as shown in Figure 7-3.

5122ch07.qxd 8/23/05 3:16 PM Page 180

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER 181

Figure 7-4. Choosing the appropriate data source (in our case “Database”)

3. Once the Data Sources window is enabled, click the Add New Data Source icon on the
top (or click the hyperlink in the window if available), and point the new database con-
nection to the Test database on your local SQL Server 2005 instance. If you wish to use
a SQL Server instance on the network, or an alternate data source such as Oracle, you
need to use a different connection string and possibly different objects, but the overall
pattern remains the same. Choosing the Test database on your local SQL Server 2005
instance is shown in Figures 7-4 and 7-5.

5122ch07.qxd 8/23/05 3:16 PM Page 181

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER182

Figure 7-5. Choosing the right database

4. When prompted to “Choose your database objects,” under Tables choose the
UserTable as shown in Figure 7-6 and then click Finish.

5122ch07.qxd 8/23/05 3:16 PM Page 182

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER 183

Figure 7-6. Choosing the database objects

Figure 7-7. Choosing the display mode for UserTable

5. You should now see the testDataSet and UserTable under the Data Sources window. At
this point, you have the option of showing the UserTable in a DataGridView control, or
as individual controls, or even in a custom control. This is shown in Figure 7-7.

For this example, we’ll go with the Details mode. As an exercise, you can simply set the
UserTable to DataGridView, then drag and drop the table to the form’s surface.

5122ch07.qxd 8/23/05 3:16 PM Page 183

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER184

Figure 7-10. The final running application

6. Ensure that UserTable is set to Details mode as shown in Figure 7-7.

7. One by one, choose the relevant controls you wish to display—in this case, FirstName
and LastName—then drag and drop them to the surface of the application’s form. You’ll
notice that Visual Studio 2005 has added four objects in the component tray. These are
shown in Figure 7-8.

Also, after slight aesthetic resizing and positioning of various controls on the form, it now
looks like as shown in Figure 7-9.

8. Compile and execute the application. You should see output as seen in Figure 7-10.

But wait a minute. You didn’t write any code!
Indeed you didn’t. But Visual Studio did. If you enable Show All Files (Project ➤ Show All Files),

you’ll see a number of files that are maintained by Visual Studio for you. In this example, you’ll
notice that Visual Studio has added code for you mainly in the Form1.Designer.cs file and the

Figure 7-8. Objects added for you automatically in the component tray

Figure 7-9. The final form in Design mode

5122ch07.qxd 8/23/05 3:16 PM Page 184

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER 185

Figure 7-11. The form in Design mode

Form1.resx file. Also, it added an App.Config to save a connection string as you had instructed
it to do so in steps 3 and 4. And in the code that you see in Form1.cs, Visual Studio added just
one line of code to fill the DataTable.

Even though such an application can be developed using point and click, whenever you
design an enterprise-level application, you might have to pass DataTables to various classes
that might formulate XSD messages or business-object representations of your data. Thus, in
many situations, you should be able to actually write code yourself and fill a DataTable or DataSet.

Querying One Table: Writing Code
In Exercise 7.2, you’ll create functionality very similar to Exercise 7.1; where in Exercise 7.1 you
created code by pointing and clicking, in Exercise 7.2 you’ll actually write code yourself. You’ll
see that by writing such code, you have better control over how the database is queried and when
the retrieved DataTable is databound to the UI. This is where you’ll need to interact with
a DataAdapter object instance. The code for this exercise can be found in the relevant code
download for this chapter in Exercise 7.2. Or you can simply follow the steps here to create such
an application:

1. Start by creating a Windows Forms application. Name it Exercise 7.2 and change the main
form’s text to Exercise 7.2.

2. On the main form for the newly added exercise, add a DataGridView and name it
datagridView.

3. Next, add two buttons: buttonFillData with the text Fill Data, and buttonBind with the
text DataBind. Your Windows Form, after a few resizing and control placement adjustments,
should look like Figure 7-11.

5122ch07.qxd 8/23/05 3:16 PM Page 185

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER186

4. Now, go to the code for the form. To do this, right-click on the form and choose View
Code. You’ll see the partial class implementation for Form1.cs (or .vb). Over here, add
using/Imports statements for System.Data and System.Data.SqlClient. Also, add a pri-
vate variable to the class called userTable of type DataTable and instantiate it in the
constructor, as shown here:

C#

partial class Form1 : Form
{

private DataTable userTable;

public Form1()
{

InitializeComponent();
userTable = new DataTable();

}
...
}

VB.NET

Public Class Form1
Private userData As New DataTable

...
End Class

5. Now, back to the form’s designer: double-click Fill Data (buttonFillData) to create an
event handler for its click event. In this event handler, write code to populate the DataTable.
This is shown in Listings 7-1 and 7-2.

Listing 7-1. Filling userTable Programmatically in C#

private void buttonFillData_Click(object sender, EventArgs e)
{

// Never hard code connection strings.
// Usually you would get this from a config file
string connectionString =
"Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI;" ;

using (SqlConnection testConnection = new SqlConnection(connectionString))
{

SqlCommand testCommand = testConnection.CreateCommand();
testCommand.CommandText = "Select FirstName, LastName from userTable";
SqlDataAdapter dataAdapter = new SqlDataAdapter(testCommand);
dataAdapter.Fill(userTable);

} // testConnection.Dispose called automatically.

5122ch07.qxd 8/23/05 3:16 PM Page 186

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER 187

Listing 7-2. Filling userTable Programmatically in Visual Basic .NET

Private Sub buttonFillData_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _

Handles buttonFillData.Click
Dim connectionString As String
connectionString = _

"Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI;"
Using testConnection As SqlConnection = New SqlConnection(connectionString)

Dim testCommand As SqlCommand = testConnection.CreateCommand()
testCommand.CommandText = "Select FirstName, LastName from UserTable"
Dim dataAdapter As New SqlDataAdapter(testCommand)
dataAdapter.Fill(userData)

End Using
End Sub

6. Again from the form’s designer, double-click DataBind (buttonBind) to create an event
handler for its click event. In this event handler, write code to data bind the DataGridView
to the userTable. In this event handler, write the following code:

C#

private void buttonBind_Click(object sender, EventArgs e)
{

datagridView.DataSource = userTable;
}

VB.NET

Private Sub buttonBind_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles buttonBind.Click
datagridView.DataSource = userData

End Sub

7. Compile and run the application. You should see a window similar to the one shown in
Figure 7-12.

5122ch07.qxd 8/23/05 3:16 PM Page 187

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER188

Figure 7-12. The final running application

8. As an exercise, change the userTable DataTable to a DataSet, and make suitable changes
to the DataBind code. You’ll note that the DataAdapter is able to Fill both a DataTable
and a DataSet.

Unlike Exercise 7.1, this exercise involved writing some code. Let’s dissect the code and
try to understand what exactly was done.

The first part was obviously to set up the connection. This was done using the following code:

C#

using (SqlConnection testConnection = new SqlConnection(connectionString))
{
...
}

VB.NET

Using testConnection As SqlConnection = New SqlConnection(connectionString)
...
End Using

The next part was creating a SqlCommand for the underlying Microsoft SQL Server 2005
database (this has been extensively covered in Chapter 5):

C#

SqlCommand testCommand = testConnection.CreateCommand();
testCommand.CommandText = "Select FirstName, LastName from userTable";

5122ch07.qxd 8/23/05 3:16 PM Page 188

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER 189

VB.NET

Dim testCommand As SqlCommand = testConnection.CreateCommand()
testCommand.CommandText = "Select FirstName, LastName from UserTable"

The next step was to create a data adapter. This was done using the following statement:

C#
SqlDataAdapter dataAdapter = new SqlDataAdapter(testCommand);

VB.NET
Dim dataAdapter As New SqlDataAdapter(testCommand)

The SqlDataAdapter constructor supports four overloads. The overload used here
(SqlDataAdapte(testCommand)) lets you specify a command with a connection setup in the
constructor itself. The other three overloads available are as follows:

• SqlDataAdapter(): This sets up a bare instance of a SqlDataAdapter. The command with
a valid connection now must be specified in the SelectCommandproperty. In Chapter 9, where
updating data is discussed, you’ll come across three more properties of a SqlDataAdapter
object: the InsertCommand, DeleteCommand, and UpdateCommand properties, which also use
SqlCommand type variables used for updating the data back to the data source. They can-
not be specified via the constructor, but they can be specified as properties on the
SqlDataAdapter object, once it is created.

• SqlDataAdapter(string commandText, SqlConnection connection): This overload lets
you specify the command being used to fill the DataSet/DataTable as a string and the
connection it will be filled from.

• SqlDataAdapter(string commandText, string connectionString): This overload lets
you specify both the command and the relevant connection as strings; thus, you can
specify all the necessary information in one line of code without instantiating any extra
objects yourself.

And finally, with the data adapter ready, all the application had to do was fill the DataTable
using the Fill method. This was done using the following code statement:

C#
dataAdapter.Fill(userTable);

VB.NET
dataAdapter.Fill(userTable)

Do note, however, that the data adapter’s Fill method can be used to fill either a DataSet
or a DataTable. So if, in a particular instance, your needs are met by a single DataTable, you should
use that instead of a DataSet with one table in it because the single DataTable has a smaller
memory footprint.

Another point to notice about this code is that the underlying SqlConnection was never
explicitly opened. This is quite interesting because the SqlDataAdapter doesn’t need an already
open connection. As a matter of fact, as a part of the Fill operation, SqlDataAdapter would

le.

5122ch07.qxd 8/23/05 3:16 PM Page 189

190 CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER

1. This, in fact, depends on the actual .NET data provider and the underlying data source. So certain data
readers might not allow you to fetch multiple result sets in one database hit; but for the sake of discussion,
let’s assume that they do let you fetch multiple result sets, as is the case in SQL Server or Oracle or any
other “serious” database product.

This allows for the best connection pooling scenario (see Chapter 4) because the cardinal rule
of connection pooling—“open as late as possible, close as early as you can”—was followed. If,
indeed, for some reason you were to pass in an open connection instead, the SqlDataAdapter
would have used the open connection, and left it open.

Thus, the SqlDataAdapter always leaves the connection in the same state it took it as.
As previously mentioned, the DataAdapter.Fillmethod has the ability to fill either a DataTable

or a DataSet. You should try and use a DataTable when your design allows you to do so for
single table operations.

However, not every database query operation can be a single result set. You might want to
return more than one result set in one database hit. This was also discussed in context of a data
reader in Chapter 5. Just as a data reader has the ability to fetch multiple result sets in one data-
base hit,1 the DataAdapter object also can fill an entire DataSet in one database hit.

Let’s examine this using an example.

Filling DataSets: More Than One Table
As discussed in Chapter 6, just as a DataTable works for one single table, a DataSet has the ability
to not only store multiple tables, but also relations between them. The magic occurs within the
command text for the supplied relevant derived DbCommand. As a matter of fact, you can simply
use Exercise 7.2’s code and replace DataTable with a DataSet and make the appropriate change
to the CommandText so you’d now be filling a DataSet with multiple tables instead of one. Obvi-
ously, you cannot simply bind a DataSet directly to a DataGridView kind of control, so the display
logic would change too, but that will be discussed shortly. The code for filling the DataSet instead
of a DataTable is shown in Listings 7-3 and 7-4. The userData variable now is of DataSet type.

Listing 7-3. Filling a DataSet Programmatically in C#

private void buttonFillData_Click(object sender, EventArgs e)
{

// Never hard code connection strings.
// Usually you would get this from a config file
string connectionString =
"Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI;" ;

using (SqlConnection testConnection = new SqlConnection(connectionString))
{

SqlCommand testCommand = testConnection.CreateCommand();
testCommand.CommandText = "Select FirstName, LastName from userTable;" +

" Select PermissionType from PermissionsTable";
SqlDataAdapter dataAdapter = new SqlDataAdapter(testCommand);
dataAdapter.Fill(userData);

} // testConnection.Dispose called automatically.
}

5122ch07.qxd 8/23/05 3:16 PM Page 190

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER 191

Listing 7-4. Filling a DataSet Programmatically in Visual Basic .NET

Private Sub buttonFillData_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _

Handles buttonFillData.Click
Dim connectionString As String
connectionString = _

"Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI;"
Using testConnection As SqlConnection = New SqlConnection(connectionString)

Dim testCommand As SqlCommand = testConnection.CreateCommand()
testCommand.CommandText = "Select FirstName, LastName from userTable;" &

" Select PermissionType from PermissionsTable"
Dim dataAdapter As New SqlDataAdapter(testCommand)
dataAdapter.Fill(userData)

End Using
End Sub

Listings 7-3 and 7-4 are for the Microsoft SQL Server data provider. Even though they use
dynamic SQL, you could have achieved the same thing using a stored procedure too. An example
of such a stored procedure is shown in Listing 7-5.

Listing 7-5. Microsoft SQL Server Stored Procedure Returning Multiple Results

Create Procedure GetMultipleResults
As
Begin

Select FirstName, LastName from userTable;
Select PermissionType from PermissionsTable;

End

As already mentioned in Chapter 5 with regard to data readers, in Oracle you can achieve
the same result using a stored procedure with multiple REF CURSORs. This is shown in Listing 7-6.
Of course getting a single result back from an Oracle stored procedure would simply involve
returning only one REF CURSOR.

Listing 7-6. Oracle Package and Stored Procedure Returning Multiple Results

CREATE OR REPLACE PACKAGE USERPERMSPKG AS
TYPE RESULTCURR IS REF CURSOR;
PROCEDURE GETUSERPERMS (USERCUR OUT RESULTCURR,

PERMSCUR OUT RESULTCURR);
END USERPERMSPKG;

CREATE OR REPLACE PACKAGE BODY USERPERMSPKG AS
PROCEDURE GETUSERPERMS (USERCUR OUT RESULTCURR,

PERMSCUR OUT RESULTCURR)
IS
LOCALUSERCUR RESULTCURR;
LOCALPERMSCUR RESULTCURR;

5122ch07.qxd 8/23/05 3:16 PM Page 191

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER192

BEGIN
OPEN LOCALUSERCUR FOR

SELECT FIRSTNAME, LASTNAME FROM USERTABLE;
OPEN LOCALPERMSCUR FOR

SELECT PERMISSIONTYPE FROM PERMISSIONSTABLE;

USERCUR := LOCALUSERCUR;
PERMSCUR := LOCALPERMSCUR;

END GETUSERPERMS;
END USERPERMSPKG;
/

So by simply swapping a DataTable for a DataSet, and the appropriate command text, you
can now easily fill a DataSet instead of a DataTable. In Oracle, however, you have to perform
an extra step of specifying additional parameters of OracleType.Cursor type to the relevant
SelectCommand on the OracleDataAdapter. This can be easily done using the code shown here:

C#

dataAdapter.SelectCommand.Parameters.Add(
new OracleParameter["USERCUR", OracleType.Cursor]);

dataAdapter.SelectCommand.Parameters[0].Direction = ParameterDirection.Output;
dataAdapter.SelectCommand.Parameters.Add(

new OracleParameter["PERMSCUR", OracleType.Cursor]);
dataAdapter.SelectCommand.Parameters[1].Direction = ParameterDirection.Output;

VB.NET

dataAdapter.SelectCommand.Parameters.Add(_
New OracleParameter("USERCUR", OracleType.Cursor))

dataAdapter.SelectCommand.Parameters(0).Direction = ParameterDirection.Output
dataAdapter.SelectCommand.Parameters.Add(_

New OracleParameter("PERMSCUR", OracleType.Cursor))
dataAdapter.SelectCommand.Parameters(1).Direction = ParameterDirection.Output

But it gets even more interesting than this!
A DataSet might contain multiple DataTables filled in from different data sources. Or, you

might not want to load all the data in one shot, but you might still want to maintain relationships
between various DataTables while being disconnected. Since you cannot (easily at least) create
DataRelations between two DataTables in different DataSets, you’d probably need a mechanism
to fill in the DataSet using two different DbCommands, in two different database hits.

Let’s examine this behavior using an example, Exercise 7.3. The code for this example can
be found in the associated code download for Exercise 7.3:

1. Begin by creating a new Windows Forms application project. Name it Exercise 7.3 and
change the main form’s text to Exercise 7.3.

2. Place a combo box control called comboTables, a DataGridView control called datagridView,
and two buttons called buttonUserData and buttonPermData with text properties set to
Fill User Data and Fill Permissions Data, respectively. Your UI should look like Figure 7-13.

5122ch07.qxd 8/23/05 3:16 PM Page 192

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER 193

Figure 7-13. DataSet UI fill example in Design mode

The intention here is to be able to provide the user with a combo box full of various
DataTables available in the DataSet. The DataGridView datagridView control shows the
currently selected DataTable, and the two buttons allow you to fill in the DataSet one by
one. Let’s skip a Data Bind button here because the combo box will serve that purpose.

3. Add a private variable of DataSet type. Call it myData:

C#

partial class Form1 : Form
{

private DataSet myData;

public Form1()
{

InitializeComponent();
myData = new DataSet();

}
...
}

VB.NET

Public Class Form1
Private myData As New DataSet

...

5122ch07.qxd 8/23/05 3:16 PM Page 193

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER194

4. Now in the event handler for buttonUserData’s click event, add the code shown in
Listings 7-7 and 7-8.

Listing 7-7. Filling a DataSet with the UserTable in C#

private void buttonUserData_Click(object sender, EventArgs e)
{

// If there is a data source, remove it.
datagridView.DataSource = null;
// Never hard code connection strings.
// Usually you would get this from a config file
string connectionString =
"Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI;";

using (SqlConnection testConnection = new SqlConnection(connectionString))
{

SqlCommand testCommand = testConnection.CreateCommand();
testCommand.CommandText = "Select * from userTable";
SqlDataAdapter dataAdapter = new SqlDataAdapter(testCommand);

dataAdapter.Fill(myData, "UserTable");
} // testConnection.Dispose called automatically.
UpdateComboBox();

}

Listing 7-8. Filling a DataSet with the UserTable in Visual Basic .NET

Private Sub buttonUserData_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles buttonUserData.Click
' If there is a data source, remove it.
datagridView.DataSource = Nothing
' Never hard code connection strings.
' Usually you would get this from a config file
Dim connectionString As String = _
"Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI;"

Using testConnection As SqlConnection = New SqlConnection(connectionString)
Dim testCommand As SqlCommand = testConnection.CreateCommand()
testCommand.CommandText = "Select * from userTable"
Dim dataAdapter As New SqlDataAdapter(testCommand)

dataAdapter.Fill(myData, "UserTable")
End Using ' testConnection.Dispose called automatically.
UpdateComboBox()

End Sub

5122ch07.qxd 8/23/05 3:16 PM Page 194

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER 195

This code loads the UserTable into the DataSet, and also calls a method named
UpdateComboBox, which is responsible for keeping the DataSet and comboTables in sync.
The code for UpdateComboBox is shown in Listings 7-9 and 7-10.

Listing 7-9. Code to Keep the Combo Box and DataSet in Sync in C#

private void UpdateComboBox()
{

comboTables.Items.Clear();
foreach (DataTable tbl in myData.Tables)
{

comboTables.Items.Add(tbl.TableName);
}

}

Listing 7-10. Code to Keep the Combo Box and DataSet in Sync in Visual Basic .NET

Private Sub UpdateComboBox()
comboTables.Items.Clear()
For Each tbl As DataTable In myData.Tables

comboTables.Items.Add(tbl.TableName)
Next

End Sub

5. In the event handler for buttonPermData’s click event, add code exactly the same as that
for buttonUserData’s click event, but change the CommandText to

Select PermissionType from PermissionsTable

and the dataAdapter.Fill statement to

C#
dataAdapter.Fill(myData, "PermissionsTable");

VB.NET
dataAdapter.Fill(myData, "PermissionsTable")

6. You’re almost done. Now you need to hook up the combo box’s SelectedIndexChanged
event to toggle datagridView’s current binding to a particular DataTable. This is shown
in Listings 7-11 and 7-12.

Listing 7-11. Binding the DataGridView with the Right Table in C#

private void comboTables_SelectedIndexChanged(object sender, EventArgs e)
{

datagridView.DataSource = myData.Tables[comboTables.SelectedIndex];
}

5122ch07.qxd 8/23/05 3:16 PM Page 195

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER196

Figure 7-14. DataSet UI fill example with tables filled

Listing 7-12. Binding the DataGridView with the Right Table in Visual Basic .NET

Private Sub comboTables_SelectedIndexChanged(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles comboTables.SelectedIndexChanged
datagridView.DataSource = myData.Tables(comboTables.SelectedIndex)

End Sub

7. Compile and run the application. Click the buttonUserData button. You’ll see the combo
box populated with one DataTable: the UserTable.

8. Click the buttonPermData button. You’ll see that the PermissionsTable is also loaded
into the DataSet. The final running application can be seen in Figure 7-14.

One interesting thing to note in Exercise 7.3 is that if you click either of the two buttons
repeatedly, the DataAdapter simply adds the rows over and over again. This is probably not
what you would want in repeated “refreshes” of the DataSet.

To understand how you can prevent this from happening, you need to examine what
causes this behavior in the first place. When the DataAdapter looks to fill an already full DataSet,
it has no way of identifying which rows being filled are already present in the DataSet. There’s
no primary key to look up and verify with. The DataSet is missing the schema information.

Aha!! Thus to solve this issue, all you need to do is specify the schema, right?
Yes, that’s all you need to do, but it gets easier than this; even though you could do it the

hard way, you don’t quite have to specify the full schema yourself. You can query the data
source and fill the schema instead.

Querying Database Schema
In Exercise 7.3, you looked at an example that demonstrated filling a DataSet repeatedly from

epeated “refreshes” of the

5122ch07.qxd 8/23/05 3:16 PM Page 196

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER 197

data, the DataAdapter keeps adding more and more rows, i.e., it really doesn’t refresh, it simply
adds more rows.

The DataAdapter is unable to identify duplicate rows, because there is no schema informa-
tion that clearly discerns primary keys and UniqueKeyConstraints in the DataTables within the
DataSet.

This can be easily alleviated by having schema information in the DataTable. As a matter
of fact, you don’t really have to specify schema information; for simpler cases, you can just query
the underlying schema information right from the database. Let’s examine this in a code
example in Exercise 7.4.

1. Begin by creating a new Windows Forms application project. Name it Exercise 7.4 and
change the main form’s text to Exercise 7.4. Also, add a private DataSet variable called
myData.

2. On the main form, drop two buttons. Name them buttonSchema and buttonData with
text properties set to Fill Schema and Fill Data, respectively. Also, drop a WebBrowser
control. Name it xmlBrowser.

In this example, buttonSchema will be used to query the database for the DataSet schema,
and once the schema is loaded, buttonData will be used to fetch data from the database.
Also, since the DataGridView control is unable to show us schema information, this example
drops a notch by showing you the contents of the DataSet directly in XML. This allows
you to view schema information and data information, i.e., entire DataSet information
directly as XML loaded in the xmlBrowser control. Your form should look like what is
shown in Figure 7-15.

3. In the click event handler for buttonData, enter code as shown in Listings 7-13 and 7-14.
This code is no different than what you have seen earlier for filling the data. Note that as
compared to Exercise 7.3, a different overload of the Fill method is being used. You no
longer need to explicitly name your table when doing a Fill. This is because the DataSet

Figure 7-15. DataSet schema and data fill form in Design mode

5122ch07.qxd 8/23/05 3:16 PM Page 197

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER198

has schema information in it, so you are no longer required to explicitly divide the data
in two tables; the DataAdapter now can read the schema and channel the data properly
into the correct DataTables. (As an exercise, you could replace Fill(myData,"UserTable")
with Fill(myData) in Exercise 7.3 and notice that the example no longer works correctly.)

Listing 7-13. Filling a DataSet in C#

private void buttonData_Click(object sender, EventArgs e)
{

string connectionString =
"Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI;";

using (SqlConnection testConnection = new SqlConnection(connectionString))
{

SqlCommand testCommand = testConnection.CreateCommand();
testCommand.CommandText =
"Select * from userTable; Select * from permissionsTable";

SqlDataAdapter dataAdapter = new SqlDataAdapter(testCommand);

dataAdapter.Fill(myData);
} // testConnection.Dispose called automatically.
DisplayContents() ;

}

Listing 7-14. Filling a DataSet in Visual Basic .NET

Private Sub buttonData_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles buttonData.Click
Dim connectionString As String = _
"Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI;"

Using testConnection As SqlConnection = New SqlConnection(connectionString)
Dim testCommand As SqlCommand = testConnection.CreateCommand()
testCommand.CommandText = _
"Select * from userTable; Select * from permissionsTable"

Dim dataAdapter As New SqlDataAdapter(testCommand)

dataAdapter.Fill(myData)
End Using
' testConnection.Dispose called automatically.
DisplayContents()

End Sub

5122ch07.qxd 8/23/05 3:16 PM Page 198

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER 199

4. Similarly, in the click event handler for buttonSchema, add the code shown in Listings 7-15
and 7-16. Note that all you did was swap the Fill method call to FillSchema. The sec-
ond parameter specified will be examined in further detail shortly, but for now it’s enough
to understand that the second parameter specifies the DataAdapter to use the table names
as defined by the source, and not map them to something else (you can specify such map-
pings using the TableMappings property, but more on that in Exercise 7.6).

Listing 7-15. Filling a DataSet Schema in C#

private void buttonSchema_Click(object sender, EventArgs e)
{

string connectionString =
"Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI;";

using (SqlConnection testConnection = new SqlConnection(connectionString))
{

SqlCommand testCommand = testConnection.CreateCommand();
testCommand.CommandText =

"Select * from userTable; Select * from permissionsTable";
SqlDataAdapter dataAdapter = new SqlDataAdapter(testCommand);

dataAdapter.FillSchema(myData, SchemaType.Source);
} // testConnection.Dispose called automatically.
DisplayContents() ;

}

Listing 7-16. Filling a DataSet Schema in Visual Basic .NET

Private Sub buttonSchema_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles buttonSchema.Click
Dim connectionString As String = _
"Data Source=(local);Initial Catalog=Test;Integrated Security=SSPI;"

Using testConnection As SqlConnection = New SqlConnection(connectionString)
Dim testCommand As SqlCommand = testConnection.CreateCommand()
testCommand.CommandText = _

"Select * from userTable; Select * from permissionsTable"
Dim dataAdapter As New SqlDataAdapter(testCommand)

dataAdapter.FillSchema(myData, SchemaType.Source)
End Using
' testConnection.Dispose called automatically.
DisplayContents()

End Sub

5122ch07.qxd 8/23/05 3:16 PM Page 199

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER200

5. You might have noticed a call to a method named DisplayContents at the end of both
the Fill and FillSchema listings. That method is responsible for displaying the contents
of the DataSet as XML in the xmlBrowser control. The code for that can be seen in
Listings 7-17 and 7-18.

Listing 7-17. Displaying the Contents of a DataSet in C#

private void DisplayContents()
{

myData.WriteXml(Application.StartupPath + "\\myData.Xml",
XmlWriteMode.WriteSchema) ;

xmlBrowser.Navigate(Application.StartupPath + "\\myData.Xml") ;
}

Listing 7-18. Displaying the Contents of a DataSet in Visual Basic .NET

Private Sub DisplayContents()
myData.WriteXml(Application.StartupPath & _
"\myData.Xml", XmlWriteMode.WriteSchema)
xmlBrowser.Navigate(Application.StartupPath & "\myData.Xml")

End Sub

6. Compile and run the application. Click Fill Schema and then Fill Data. Then click Fill
Data repeatedly—you’ll notice that unlike Exercise 7.3, because you have the schema
information preloaded, the DataAdapter is able to discern duplicate rows and not add
them. This can be seen in Figure 7-16. (Some of the elements have been collapsed to
reduce the size of the image, but you can always run the associated example in the code
download to view the full data.)

5122ch07.qxd 8/23/05 3:16 PM Page 200

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER 201

Figure 7-16. DataSet schema and data example with the schema loaded

7. Now re-run the application and instead of clicking Fill Schema, click Fill Data multiple
times. What do you see? You’ll notice that like Exercise 7.3, because the schema informa-
tion is not loaded (since you didn’t click Fill Schema), the DataAdapter keeps adding
duplicate rows incorrectly. This can be seen in Figure 7-17. (Note that all nodes have
been collapsed except one to demonstrate the repeated rows.)

5122ch07.qxd 8/23/05 3:16 PM Page 201

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER202

Figure 7-18. The “Cannot load schema with incorrect data” exception

8. Finally, run the application, click Fill Data twice (to load incorrect data), and now try and
add a schema to the DataSet by clicking Fill Schema. You should see an exception as shown
in Figure 7-18.

Figure 7-17. DataSet schema and data example without the schema loaded

5122ch07.qxd 8/23/05 3:16 PM Page 202

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER 203

For those of you with keen eyes, you might have noticed that the CommandText property of
testCommand was changed. Instead of specifying column names or a batched query, the
CommandText was changed to accept all columns including the primary key by specifying * for
the columns. This is where the magic occurs. The primary key in the result set causes FillSchema
to set a UniqueConstraint on the necessary column, and thus prevents the DataAdapter from
filling in incorrect data. This can be seen in the schema in Listing 7-19.

Listing 7-19. Primary Key Specified in the Schema

<xs:unique name="Constraint1" msdata:PrimaryKey="true">
<xs:selector xpath=".//Table" />
<xs:field xpath="UserID" />

</xs:unique>
<xs:unique name="Table1_Constraint1" msdata:ConstraintName="Constraint1"

msdata:PrimaryKey="true">
<xs:selector xpath=".//Table1" />
<xs:field xpath="PermissionID" />

</xs:unique>

Thus, you can see that FillSchema allows you to preserve your data sanctity by filling in
a schema for you right from the database. It alleviates the need for you to write complex XSD
schemas. It also makes your life easier by not requiring you to keep the XSDs in sync with the
database, as the database structure might change with time. Though in a production application,
you’d probably do better if you store/cache the schemas somewhere and not execute FillSchema
for every new DataSet creation.

REFRESHING DATA IN A REAL-WORLD APPLICATION

So you’re able to refresh your disconnected data cache by specifying a schema right? Well, this approach is
simplistic, akin to a frictionless surface used in a physics book. Too bad in the real world a frictionless surface
doesn’t exist.

Before I start discussing a surface with friction in the real world, I should mention that the following
paragraphs talk about updating data and concurrency. These topics are covered in Chapters 9, 10, and 11, so
if this seems like too much information to digest at this point, you can come back and read this section later.

In the real world, between refreshes of data, you would have to worry about issues such as saving the
data between refreshes, informing the user about specific rows that failed to be saved (due to concurrency
violations or otherwise), and most importantly, it’s quite possible that the user might have the DataSet
databound with a UI. In this case, while it’s certainly possible to fully refresh the DataSet and repopulate the
UI, that might be an expensive operation for larger DataSets or, at the very least, the user might lose some
of his changes. Another situation could be a web service on a low bandwidth connection where, due to band-
width restrictions, ferrying the entire DataSet at every single request is just not an option.

The approach you should take instead in that circumstance is to extract only a subset of the entire
DataSet. This subset can then be merged with the original DataSet using the Merge method. The subset
will contain the changed rows that you were trying to save back to the database. These can be extracted
using the GetChanges method at the client side before sending the DataSet to the DataAdapter. As you’ll
see in Chapters 9, 10, and 11, these rows come back from the DataAdapter with information regarding
success or failure of their save operation.

5122ch07.qxd 8/23/05 3:16 PM Page 203

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER204

2. Think about it, how can a DataSet contain information about DataRows that are not in the DataSet in
the first place? Deleted rows are not a part of your result set, thus, they are absent from the DataSet.

This subset would also contain any new rows inserted or modified by any other user while your user
was disconnected from the database and busy modifying his disconnected data cache. Given that your
DataSet has a schema associated with itself, the added and modified rows are easily reconciled because
information regarding these rows is present in the subset DataSet.

The information that the subset DataSet will not, and cannot possibly contain is information about
deleted rows2—that is, rows that were fetched in your disconnected cache in the first request, but were sub-
sequently deleted from the database by some other user while you were blissfully ignorant of the changes by
virtue of being disconnected from the database.

It’s for this purpose that you can leverage the IndexOf method on DataRowCollection to clearly
identify if any DataRows have moved upward. Upward movement of a DataRow’s index signifies that the
DataRow immediately before itself has been deleted from the database; thus, you need to write code to
remove them from your disconnected cache.

This way you can keep your disconnected data cache refreshed, including deleted records, without hav-
ing to ferry huge amounts of data back and forth every time between your database and your DataSet. Or if
your DataSet isn’t too large, you could simply use a schema and keep reloading your entire DataSet every
time, and avoid all this hassle.

In Exercise 7.4, one of the parameters specified to the FillSchema method was the mapping
method used. You could specify either the mapping to be defined elsewhere, or you could instruct
the DataAdapter to use the mapping specified in the source of the data. Next, let’s examine
mapping of various table and column names in detail.

Mapping
Frequently, the names that objects in a database have are inappropriate for a particular appli-
cation. For example, you might want to provide a web service for English-speaking Americans
using a database with a Spanish table and column names. You can map different names to one
another—so that your code can refer to objects by the name you choose, regardless of the names
they have in the database.

SQL has a built-in feature for mapping column names: the AS keyword. To be precise, that
mechanism is referred to as aliasing, not mapping, but the end effect is the same. Many of you
might already be familiar with this method, and in some cases it can be the simplest solution.
Its use and shortcomings will be discussed shortly.

ADO.NET provides a built-in mapping solution using the DataTableMapping and
DataColumnMapping objects, which provide a far more comprehensive solution.

Using the SQL AS Keyword
Before you look at the mapping facilities provided by ADO.NET, let’s have a look at the traditional
mapping (aliasing) methods provided by the SQL language.

5122ch07.qxd 8/23/05 3:16 PM Page 204

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER 205

In Exercise 7.5, you load a DataSet with data from an imaginary database with very terse
column names. Then you can use the SQL AS keyword to alias these short names to longer,
more meaningful names for use in your application. Then the rows are written to the console
using these aliased names. The code for this example can be downloaded from Exercise 7.5.

1. Begin by creating a ConsoleApplication. Name it Exercise 7.5.

2. In the Sub Main or static void main, define a connection object. This time, let’s be dif-
ferent and use the OleDb data provider interrogating an access database instead.

C#

OleDbConnection dbConn =
new OleDbConnection(
"Provider=Microsoft.Jet.OLEDB.4.0;Password=;" +
"User ID=Admin;Data Source=..\\..\\db.mdb");

VB.NET

' Define a connection object
Dim dbConn As New _

OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Password=;User ID=Admin;Data Source=..\db.mdb")

3. Next, create a data adapter to retrieve records from the database.

C#

// Create a data adapter to retrieve records from db
string selectQuery =
"SELECT ID AS UserID, fn AS FirstName, " +
"ln AS LastName, cty AS City, st AS State FROM tabUsers";
OleDbDataAdapter usersDataAdapter = new OleDbDataAdapter(selectQuery, dbConn);

VB.NET

' Create a data adapter to retrieve records from db
Dim selectQuery As String = _

"SELECT ID AS UserID, fn AS FirstName, " & _
"ln AS LastName, cty AS City, st AS State FROM tabUsers"

Dim usersDataAdapter As New OleDbDataAdapter(selectQuery, dbConn)

4. Fill the DataSet.

C#

DataSet usersDataSet = new DataSet("Users");
usersDataAdapter.Fill(usersDataSet);

5122ch07.qxd 8/23/05 3:16 PM Page 205

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER206

VB.NET

Dim usersDataSet As New DataSet("Users")
usersDataAdapter.Fill(usersDataSet)

5. Finally, go through the rows one by one and print their values to Console.

C#

// Go through the records and print them using the aliased names
foreach (DataRow userRow in usersDataSet.Tables[0].Rows)
{
Console.WriteLine(

"ID: {0}, FirstName: {1}, LastName: {2}, City: {3}, State: {4}",
userRow["UserID"], userRow["FirstName"],
userRow["LastName"], userRow["City"], userRow["State"]);

}

VB.NET

' Go through the records and print them using the aliased names
For Each userRow As DataRow In usersDataSet.Tables(0).Rows

Console.WriteLine(_
"ID: {0}, FirstName: {1}, LastName: {2}, City: {3}, State: {4}", _

userRow("UserID"), userRow("FirstName"), _
userRow("LastName"), userRow("City"), userRow("State"))

Next

This method has succeeded in giving us new column names, which in many cases will be
enough; however, it does not automatically map table names. You need to do that by using the
DataTable’s TableName property.

The Fill() method provided by the DataAdapter object doesn’t create mapping classes
when it encounters the aliased column names. In fact, the database software, not .NET, handles
the aliasing.

The ADO.NET Mapping Mechanism
Now let’s take a look at the new mapping mechanisms provided by ADO.NET. The objects will
be introduced by using mappings when filling a DataSet. The same concepts can be applied
to using mappings when making updates to the data source, but those will be discussed in
Chapters 9 and 10.

There is a big difference between the SQL aliasing method and the ADO.NET mapping
method. For instance, the mapping objects allow developers to manage DataSet data and
schemas that have been created using XML documents and XML schemas. With the SQL AS key-
word, you can use the aliased column names only when you deal with the database and records.

In short, aliasing refers to renaming a column in the result set, whereas mapping refers to
establishing a one-to-one translation between a result set’s column name and a DataColumn’s
name.

5122ch07.qxd 8/23/05 3:16 PM Page 206

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER 207

Using Mapping When Retrieving Data
When you fill a DataSet, the data adapter looks at its own TableMappings property to see if the
developer has defined mapping rules. By default, the TableMappings property is empty, so the
same column names used in the database are used in the relevant DataTables.

Let’s take a look at how you can use the ADO.NET mapping mechanism to rename very
terse column names in a DataSet to more meaningful alternatives. In Exercise 7.6, the same
Microsoft Access database used in Exercise 7.5 will be used.

To use ADO.NET mappings, you need to create a DataTableMapping object. This object enables
you to map between two names for the same table, and also contains the ColumnMappings prop-
erty—a collection of DataColumnMapping objects that map between names of the column in the
table. Once you have created this object and added all of the required column mappings, you can
add it to the DataAdapter object’s TableMappings property.

Let’s look at an example that puts this into practice.
To keep the new code clear, a separate method will be used to handle the mapping:

DoDataMappings. The code, which can be downloaded from Exercise 7.6, is extremely similar to
Exercise 7.5, so only the outline of the code is shown in Listings 7-20 and 7-21.

Listing 7-20. Using TableMappings in ADO.NET Using C#

// Define a connection object
...
// Create a data adapter object to retrieve records from Db
DoDataMappings(usersDataAdapter);
// Fill the dataset
...
// go through the records and print them using the mapped names
...

Listing 7-21. Using TableMappings in ADO.NET Using Visual Basic .NET

' Define a connection object
...
' Create a data adapter to retrieve records from DB
...
DoDataMapping(usersDataAdapter)
' Fill the dataset
...
' Go through the records and print them using the mapped names
...

Notice the call to DoDataMappings, which comes before calling the data adapter’s Fill
method. This method means that although you have retrieved columns from the database
with names like ln and cty, you can refer to them as LastName and City. Let’s take a look at the
DoDataMappings method now.

You start by declaring DataColumnMapping objects. Create a new DataColumnMapping
object for each database column that you want to map to a DataSet column, as shown in
Listings 7-22 and 7-23.

5122ch07.qxd 8/23/05 3:16 PM Page 207

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER208

Listing 7-22. Using C#: The DoDataMappings Method, Declaring DataColumnMapping Objects

public void DoDataMappings(OleDbDataAdapter dataAdapter)
{

try
{

// Define each column to map
DataColumnMapping userIDColumnMap = new DataColumnMapping("ID", "UserID");
DataColumnMapping fNameColumnMap = new DataColumnMapping("fn", "FirstName");
DataColumnMapping lNameColumnMap = new DataColumnMapping("ln", "LastName");
DataColumnMapping cityColumnMap = new DataColumnMapping("cty", "City");
DataColumnMapping stateColumnMap = new DataColumnMapping("st", "State");

Listing 7-23. Using Visual Basic .NET: The DoDataMappings Method, Declaring
DataColumnMapping Objects

Public Sub DoDataMappings(dataAdapter As OleDbDataAdapter)
Try

' Define each column to map
Dim userIDColumnMap As New DataColumnMapping("ID", "UserID")
Dim fNameColumnMap As New DataColumnMapping("fn", "FirstName")
Dim lNameColumnMap As New DataColumnMapping("ln", "LastName")
Dim cityColumnMap As New DataColumnMapping("cty", "City")
Dim stateColumnMap As New DataColumnMapping("st", "State")

The DataColumnMapping object contains the relation between the column within the data-
base and the column inside the DataSet. You can construct it by providing two strings: the first
string specifies the column name in the data source; the second string defines the column name
that will appear in the DataSet.

Once you have created these DataColumnMapping objects, you can create a DataTableMapping
object and add the DataColumnMapping objects to it, as shown in Listings 7-24 and 7-25.

Listing 7-24. Using C#: The DoDataMappings Method, Creating the usersMapping Object

// Define the table containing the mapped columns
DataTableMapping usersMapping = new DataTableMapping("Table", "tabUsers");
usersMapping.ColumnMappings.Add(userIDColumnMap);
usersMapping.ColumnMappings.Add(fNameColumnMap);
usersMapping.ColumnMappings.Add(lNameColumnMap);
usersMapping.ColumnMappings.Add(cityColumnMap);
usersMapping.ColumnMappings.Add(stateColumnMap);

Listing 7-25. Using Visual Basic .NET: The DoDataMappings Method, Creating the
usersMapping Object

' Define the table containing the mapped columns
Dim usersMapping As New DataTableMapping("Table", "tabUsers")
usersMapping.ColumnMappings.Add(userIDColumnMap)
usersMapping.ColumnMappings.Add(fNameColumnMap)

5122ch07.qxd 8/23/05 3:16 PM Page 208

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER 209

usersMapping.ColumnMappings.Add(lNameColumnMap)
usersMapping.ColumnMappings.Add(cityColumnMap)
usersMapping.ColumnMappings.Add(stateColumnMap)

The DataTableMapping object has a constructor that takes two strings. The first specifies
the name of the source table and is case sensitive. This name must correspond to the table name
used during the filling or updating process accomplished by the DataAdapter object. If you don’t
specify a source table name, you must use the default name assigned by the DataAdapter
object: Table.

The second parameter is the DataTable object’s name in the DataSet. The DataTableMapping
object exposes the ColumnMappings collection property that must contain every column you
want to map from the database to the DataSet.

Finally, we add the DataTableMapping object to the TableMappings property of the data
adapter. Now when we fill the DataSet, the data adapter will find the DataTableMapping in its
TableMappings collection and use it, as shown in Listings 7-26 and 7-27.

Listing 7-26. Using C#: The DoDataMappings Method, Adding the Table Mapping to the Data
Adapter

// Activate the mapping mechanism
dataAdapter.TableMappings.Add(usersMapping);

}
catch (Exception ex)
{

// An error occurred. Show the error message
Console.WriteLine(ex.Message);

}
}

Listing 7-27. Using Visual Basic .NET: The DoDataMappings Method, Adding the Table Mapping
to the Data Adapter

' Activate the mapping mechanism
dataAdapter.TableMappings.Add(usersMapping)

Catch ex As Exception
' An error occurred. Show the error message
Console.WriteLine(ex.Message)

End Try
End Sub

This has taken quite a bit more code than just using the SQL AS keyword, but this approach
works much better with disconnected data since this is an ADO.NET solution, not a SQL Server
or an Oracle database solution. The good news is that there is a shorter way to use the data map-
ping objects—you just looked at the longer version to get a better idea of what is happening.
The bad news is that it’s still not quite as short as using the AS keyword. Let’s look at a shortened
version of the DoDataMappings method in Listings 7-28 and 7-29.

5122ch07.qxd 8/23/05 3:16 PM Page 209

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER210

Listing 7-28. Using TableMappings in ADO.NET Using C#: The Shortened DoDataMappings
Method

private static void DoDataMappings(OleDbDataAdapter dataAdapter)
{

try
{

// Define an array of columns to map.
DataColumnMapping[] mappedColumns = {

new DataColumnMapping("ID", "UserID"),
new DataColumnMapping("fn", "FirstName"),
new DataColumnMapping("ln", "LastName"),
new DataColumnMapping("cty", "City"),
new DataColumnMapping("st", "State")

};

// Define the table containing the mapped columns.
DataTableMapping usersTableMapping = new DataTableMapping("Table", _

"tabUsers", mappedColumns);

// Activate the mapping mechanism.
dataAdapter.TableMappings.Add(usersTableMapping);

}
catch (Exception ex)
{

Console.WriteLine(ex.ToString());
}

}

Listing 7-29. Using TableMappings in ADO.NET Using Visual Basic .NET: The Shortened
DoDataMappings Method

Sub DoDataMappings(ByVal dataAdapter As OleDbDataAdapter)
Try

' Define an array of column to map
Dim mappedColumns() As DataColumnMapping = { _

New DataColumnMapping("ID", "UserID"), _
New DataColumnMapping("fn", "FirstName"), _
New DataColumnMapping("ln", "LastName"), _
New DataColumnMapping("cty", "City"), _
New DataColumnMapping("st", "State")}

' Define the table containing the mapped columns
Dim usersTableMapping As New DataTableMapping("Table", "tabUsers", _

mappedColumns)

5122ch07.qxd 8/23/05 3:16 PM Page 210

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER 211

' Activate the mapping mechanism
dataAdapter.TableMappings.Add(usersTableMapping)

Catch ex As Exception

' An error occurred. Show the error message
Console.WriteLine(ex.Message)

End Try
End Sub

This time you simply create an array of DataColumnMapping objects instead of declaring them
all separately. You then use another DataTableMapping constructor that accepts an array of
DataColumnMapping objects in the constructor, rather than adding each DataColumnMapping
separately.

There are no substantial differences between using one method over the other. The first
case requires more code, but it’s slightly more readable than the second one; however, with
a few clear comments, the shorter version is perfectly understandable.

MissingMappingAction and MissingSchemaAction

You just saw that when the data adapter fills a DataSet, it checks to see what table mappings
have been specified. If none have been specified, then it uses the original names. However,
this is only the default. You can also choose how you want the data adapter to react if it meets
columns that you have no specified mappings for. The MissingMappingAction property of the
data adapter has three settings:

• Passthrough (the default): If a mapping is not specified, the data adapter will assume the
name is the same in the data source and the DataSet.

• Error: If a mapping is not specified, the data adapter will raise a System.Exception.

• Ignore: If a mapping is not specified, the DataAdapter object will ignore that column.

Moreover, when the Fill() and the Update() methods are used, you can choose what the data
adapter should do when a DataSet schema doesn’t meet expectations. The MissingSchemaAction
property of the data adapter can accept four values:

• Add (default option): When the schema is missing for the current column, the data adapter
will create it and add it to the DataSet object without creating information on primary
keys or unique columns.

• AddWithKey: This is the same as the Add option, but with the difference that primary keys
and unique columns will be created. Remember that the identity column will be created
without identity seed and identity increment values. You should add them after the
Fill() or the Update() calls.

• Ignore: When the schema is missing for the current column, the data adapter will ignore
it and continue analyzing the other columns.

• Error: When the schema is missing for the current column, the data adapter will raise
an exception.

These settings also apply when using the data adapter to update a data source, which will

5122ch07.qxd 8/23/05 3:16 PM Page 211

CHAPTER 7 ■ FETCHING DATA: THE DATAADAPTER212

Summary
This chapter introduced you to the bridge between the connected and disconnected worlds
within ADO.NET—the DataAdapter object. Just as Chapter 5 was concerned with fetching data
in a connected mode, this chapter used DbCommand objects specified to the DataAdapter object
to fill DataTables and DataSets.

You saw the various ways to fill either a DataSet or a DataTable. You also saw the importance
of a schema present in a DataSet. You saw how the presence of a schema in a DataSet helps the
DataAdapter make correct decisions when filling the data.

Finally, you saw how to use mapping to make code easier to read and modify, and how to
map column and table names so that data can be passed easily between different data sources.

You saw how to use the AS keyword in SQL, which is a simple but inflexible way to
achieve column mappings and really doesn’t help you do table mappings, after which the
ADO.NET mapping objects were discussed. The DataAdapter object’s ColumnMappings property
and the DataColumnMapping and DataTableMapping classes were demonstrated with a couple
of examples.

Now that you have seen the objects required to hold disconnected data and how to fill
data in those objects, the next chapter covers being able to work with the disconnected data
objects once you have filled them from the data source. Our discussion will move to sorting,
searching, and filtering disconnected data per your application’s logic and requirements.

5122ch07.qxd 8/23/05 3:16 PM Page 212

213

C H A P T E R 8

■ ■ ■

Sorting, Searching, and
Filtering

In the last two chapters, you examined various objects that allow you to fetch data from a data
source and store it in a disconnected manner within your application. You saw how DataSets
allow you to represent a disconnected cache of relational data in memory. If a DataSet is a rela-
tional representation of data, then DataTables along with various constraints provide you with
a representation of tabular data extracted out of a data source, and DataRelations allow you to
create relational structures between DataTables.

The other relational representation of data you’ll frequently come across is any com-
mon modern-day relational database management system (RDBMS). However, a DataSet is
not a database. It’s merely a surrogate that allows you to keep data in a portable cache while
remaining disconnected from the underlying data source. It’s like a mini in-memory database
represented by an object instance. What this means to you as an application developer is
that instead of relying on some flavor of the popular structured query language (SQL), you
have to rely upon a method of working with disconnected data using an object model instead.

ADO.NET allows you to perform several operations on these structures, such as sorting,
searching, and filtering on this in-memory relational structure, using an object representation
rather than a database engine. This chapter will discuss the various objects and facilities ADO.NET
provides that allow you to sort, search, and filter disconnected data held in a DataSet or
DataTable object.

The discussion will first focus on the DataTable and DataSet objects themselves, and will
elucidate with examples of what facilities these objects provide for you to work with the data
contained within them. Then a new object will be introduced, the DataView object, which is
a view on a DataTable but has varied uses in a typical Windows Forms or ASP.NET application.

■Note It’s tempting to think of the relationship between a DataView and a DataTable as the same as
the relationship between a database view and a database table. That simile is close and helpful in under-
standing the concept, but it’s not exactly the same. While a DataTable is simply tabular data which might
be the result of a join between one or more tables from the underlying data source, a DataView lets you
create a view on only one DataTable as a subset of the rows (and not columns), whereas a database view
lets you create tabular data as a subset of both rows and columns from one or more tables. Therefore,
a DataTable and a DataView aren’t exactly like a Table or a View, but they are similar.

5122ch08.qxd 8/23/05 5:27 PM Page 213

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING214

Figure 8-1. Data structure for Customers/Products scenario

Finally to cap it off, this chapter will finish with a discussion on the best friend of DataSets—
XML. A DataSet is easily convertible into XML and vice versa, and .NET does provide various
objects to help the to-and-fro conversion and to help you leverage the power of both XML and
DataSets in either.

Since this chapter concentrates on a purely disconnected discussion and, because discon-
nected objects once filled out of the data source are not specific to an individual data source
anymore, it’s not specific to any specific data provider or database (such as Oracle or MySQL),
the concepts presented here can be easily applied verbatim to any data source.

As a matter of fact, to emphasize this point, the examples presented in this chapter don’t
use any specific data source. Instead, they use a hand-crafted disconnected DataSet, so let’s begin
by setting up that first.

Setting Up the Data Source
This chapter concerns itself with working with disconnected data, so ideally the disconnected
data example being set up must be flexible and generic enough to prove itself as a basis for all
examples concerning the various situations you might face in your programming experience.

The disconnected data being used in most of the examples in this book will use a simple
Customers/Products scenario. There could be many products and there could be many customers.
Also, there is a many-to-many mapping between the customers and products in another table
called CustomerProducts, as shown in Figure 8-1.

Frequently, references will be made to a strongly typed DataSet implementation for this
scenario, so you might want to set up both a strongly typed DataSet and a basic DataSet.

Also, as you have already learned in Chapter 6, this DataSet data structure can be easily
filled with data in a disconnected mode. You can refer back to Chapter 6 on how to fill such
a DataSet, but the code for filling the DataSet can be seen in Listings 8-1 and 8-2. The same

5122ch08.qxd 8/23/05 3:17 PM Page 214

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING 215

code can also be used to fill the strongly typed DataSet. You can find this code, and the associ-
ated strongly typed DataSet, in the associated code download under the CreateDataSet class
library project (see the Downloads section of the Apress website at http://www.apress.com).
As you can see, instead of loading the DataSet line-by-line programmatically, all that the code
does is simply read an XML file into the DataSet.

Listing 8-1. Setting Up the DataSet in C#

public static DataSet FillDataset(string xmlFile)
{

DataSet ds = new DataSet();
ds.ReadXml(xmlFile);
return ds;

}

public static CustProd FillStrongDataSet(string xmlFile)
{

CustProd ds = new CustProd();
ds.ReadXml(xmlFile);
return ds;

}

Listing 8-2. Setting Up the DataSet in Visual Basic .NET

Public Shared Function FillDataset(ByVal xmlFile As String) As DataSet
Dim ds As New DataSet()
ds.ReadXml(xmlFile)
Return ds

End Function

Public Shared Function FillStrongDataSet(ByVal xmlFile As String) As CustProd
Dim ds As New CustProd()
ds.ReadXml(xmlFile)
Return ds

End Function

An easy way to create the loaded XML file would be to simply use another Windows appli-
cation called EditData (that you can find in the code download as well); simply add in some
values to the DataSet that has been set up. A sample of the data is shown in Figure 8-2. Even
though the exercises in this chapter use the data presented here, you can enter any data you
wish. This application is built upon the concepts you have learned in Chapter 6, but feel free
to look through the code in the associated code download as well.

5122ch08.qxd 8/23/05 3:17 PM Page 215

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING216

Now that the data source is set up, let’s examine the various facilities the DataTable object
provides that help you work with disconnected data easily.

Working in a DataTable
The DataTable object is an in-memory representation of tabular data. It can be filled as a result
of a join between one or more tables in a database. What that means is that the data inside
a DataTable is logically arranged with in-memory data structures that represent columns and
rows. Also, there could be various constraints specified on the DataTable helping to keep the
integrity of the data. Specifically, as you saw in Chapter 6, referential integrity is enforced using
foreign-key constraints and data integrity is enforced using unique constraints.

Figure 8-2. Sample data for this chapter

5122ch08.qxd 8/23/05 3:17 PM Page 216

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING 217

Now another representation of tabular data is a table in an RDBMS. A table in a database
will let you find a particular row using a syntax such as

Select * from products where productid = 1

Or, it might let you select a number of rows by specifying a query that looks like

Select * from products where productname like '%MP%'

Also, it could allow you to sort the results in a manner similar to

Select * from products where productname like '%MP%' order by price

Most databases will even let you query calculated columns such as

Select price + (price * tax) as totalprice from products

So essentially, a DataTable being the representation of tabular data in an in-memory object
should allow you to find, select, sort, and determine calculated columns in a result set.

Also, because a DataTable works with disconnected data in an ASP.NET application or
a Windows Forms application (or maybe a Windows service), it needs to do a little bit more
than just what tabular data in a database, that is database tables, would provide. Because
a DataTable is intended to be a disconnected cache of tabular data (with the ultimate goal of
being able to persist changes that were done in a disconnected fashion back to the database),
a DataTable also would need to preserve row histories for the changes done on it. And for certain
situations, it must let you query for only the changed rows or for rows in a particular RowState
(available as a property on a DataRow).

And finally, there are many events available on the DataTable object to facilitate your working
with disconnected data.

Finding a Row
Frequently in typical application programming logic, you’d need to run a query against the data-
base and fetch details for a particular ID or primary key: such as fetch details for a particular cus-
tomer. This process is called finding a row. In the case of a database, you’d simply execute a SQL
query, but a DataTable is not a table inside a database and cannot use a SQL query and a database
engine to help itself do this job.

However, the DataTable.Rows or the DataRowCollection object provides you with a method
called Find for this very purpose. One important thing to remember when using the Find
method is that it allows you to find rows by operating only on the column that contains the
primary-key values. So in a basic DataTable (not strongly typed), you would either need to load
a schema or manually specify the primary key in code before Find can work. This is shown in
Listings 8-3 and 8-4 or can be seen in the associated code download for this chapter in Exercise 8.1.

Listing 8-3. Using Find to Identify One DataRow Using a Basic DataTable in C#

// Base DataTable
DataTable myTable = DataSetFiller.FillDataset(dataFilePath).Tables[0] ;
// Set Primary Key
myTable.PrimaryKey = new DataColumn[] { myTable.Columns["CustomerID"] };
DataRow dr = myTable.Rows.Find("2");

5122ch08.qxd 8/23/05 3:17 PM Page 217

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING218

if (dr != null)
{

Console.WriteLine("Find a row using a base DataSet");
ShowDataRow(dr);

}

Listing 8-4. Using Find to Identify One DataRow Using a Basic DataTable in Visual Basic .NET

' Base DataTable
Dim myTable As DataTable = DataSetFiller.FillDataset(dataFilePath).Tables(0)
' Set Primary Key
myTable.PrimaryKey = New DataColumn() _

{myTable.Columns("CustomerID")}

Dim dr As DataRow = myTable.Rows.Find("2")
If dr IsNot Nothing Then

Console.WriteLine("Find a row using a base DataSet")
ShowDataRow(dr)

End If

Also, once you do find the row, you can iterate through the contents of the row using the
code shown in Listings 8-5 and 8-6.

Listing 8-5. Displaying the Contents of One Row in C#

static void ShowDataRow(DataRow dr)
{

foreach (DataColumn dc in dr.Table.Columns)
{

Console.Write(dr[dc] + " ");
}
Console.Write("\n\n");

}

Listing 8-6. Displaying the Contents of One Row in Visual Basic .NET

Sub ShowDataRow(ByVal dr As DataRow)
For Each dc As DataColumn In dr.Table.Columns

Console.Write(dr(dc) & " ")
Next
Console.WriteLine("")

End Sub

However, strongly typed DataSets make it a lot simpler. Not only do they provide you with
a simpler way of accessing individual column values after a row has been found, but they also pro-
vide you with an easy way of finding the row by naming it in a familiar way that identifies the pri-
mary key. In our case, the method of concern would be FindByCustomerID, clearly telling you that
this Find method will find using CustomerID. It gets even better; instead of specifying an object as
a parameter to the Find method, you can simply specify in Int32 as shown in Listings 8-7 and 8-8.

5122ch08.qxd 8/23/05 3:17 PM Page 218

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING 219

Listing 8-7. Using FindByCustomerID Using a Strongly Typed DataTable in C#

// Strongly typed DataSet
CustProd.CustomersDataTable myStrongDataTable =
DataSetFiller.FillStrongDataSet(dataFilePath).Customers;

CustProd.CustomersRow cr = myStrongDataTable.FindByCustomerID(2);
if (cr != null)
{

Console.WriteLine("Find a row using a strongly typed DataSet");
Console.WriteLine(cr.CustomerID + " " + cr.FirstName + " " + cr.LastName);

}

Listing 8-8. Using FindByCustomerID Using a Strongly Typed DataTable in Visual Basic .NET

' Strongly typed DataSet
Dim myStrongDataTable As CustProd.CustomersDataTable =_

DataSetFiller.FillStrongDataSet(dataFilePath).Customers
Dim cr As CustProd.CustomersRow = myStrongDataTable.FindByCustomerID(2)
If cr IsNot Nothing Then

Console.WriteLine("Find a row using a strongly typed DataSet")
Console.WriteLine(cr.CustomerID & " " & cr.FirstName & " " & cr.LastName)

End If

However, being able to find one row using the primary key is clearly not enough. In many
instances, you might need to find an entire collection of rows and the criteria specified as the
filter for those rows, for example, might include a wildcard search.

Selecting a Number of Rows
In a database that allows you to query a number of rows from a given table, you’d generally include
the search criterion as a where clause.

So, for instance, if you wished to query for all Customers whose name starts with Jo, you
could write a query that looks something like this:

Select * from Customers where FirstName Like 'Jo%' ;

As it turns out, selecting from a DataTable is not much different. The DataTable object
contains a method called Select, and all you really need to do is specify the where clause from
the previous query as a parameter to the Select method. Thus, a call to the Select method would
look like this:

C#
DataRow[] drs = myTable.Select("FirstName Like 'Jo%'");

VB.NET
Dim drs() As DataRow = myTable.Select("FirstName Like 'Jo%'")

The full code would look like as shown in Listings 8-9 and 8-10, or it can be found in
Exercise 8.2.

5122ch08.qxd 8/23/05 3:17 PM Page 219

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING220

Listing 8-9. Using Select to Find Multiple Rows Matching a Criterion in C#

static void Main(string[] args)
{

DataTable myTable = DataSetFiller.FillDataset(dataFilePath).Tables[0];
DataRow[] drs = myTable.Select("FirstName Like 'Jo%'");
if (drs != null)
{

Console.WriteLine("Find rows using a base DataSet");
foreach (DataRow dr in drs)
{

ShowDataRow(dr);
}

}
}

Listing 8-10. Using Select to Find Multiple Rows Matching a Criterion in Visual Basic .NET

Sub Main()
Dim myTable As DataTable = DataSetFiller.FillDataset(dataFilePath).Tables(0)
Dim drs() As DataRow = myTable.Select("FirstName Like 'Jo%'")
If drs IsNot Nothing Then

For Each dr as DataRow In drs
ShowDataRow(dr)

Next
End If

End Sub

Another thing that a database lets you do is return the results in a predefined sort order.
You could query the data to find all matching rows where LastName ends with OfJungle, but say
you want the results to be sorted by FirstName. This can be easily achieved by slightly modify-
ing the code shown in Listings 8-11 and 8-12. All you need to do is replace the call to Select with
a proper overload that allows you to specify a sort order. Also, you would have to replace the first
parameter (the where clause passed to the Select method) with the appropriate search string.
This can also be seen in Exercise 8.3 of the associated code download.

Listing 8-11. Using Select to Find Rows and Specify a Sort in C#

static void Main(string[] args)
{

DataTable myTable = DataSetFiller.FillDataset(dataFilePath).Tables[0];
DataRow[] drs = myTable.Select("LastName Like '%OfJungle'","FirstName ASC");
if (drs != null)
{

foreach (DataRow dr in drs)
{

ShowDataRow(dr);
}

}

5122ch08.qxd 8/23/05 3:17 PM Page 220

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING 221

Listing 8-12. Using Select to Find Rows and Specify a Sort in Visual Basic .NET

Sub Main()
Dim myTable As DataTable = DataSetFiller.FillDataset(dataFilePath).Tables(0)
Dim drs() As DataRow = _

myTable.Select("LastName Like '%OfJungle'", "FirstName ASC")
If drs IsNot Nothing Then

For Each dr As DataRow In drs
ShowDataRow(dr)

Next
End If

End Sub

If you run this code, the output produced will correctly fetch Tarzan and Jane as the
KingOfJungle and PrincessOfJungle, respectively. Now let’s say, Jane and Tarzan decide to marry
each other and Jane changes her last name to QueenOfJungle. This can be easily achieved using
the following code snippet:

C#

DataTable myTable = DataSetFiller.FillDataset(dataFilePath).Tables[0];
myTable.PrimaryKey = new DataColumn[] { myTable.Columns["CustomerID"] };
myTable.AcceptChanges();
DataRow janeRow = myTable.Rows.Find("5");
janeRow["LastName"] = "QueenOfJungle";

VB.NET

Dim myTable As DataTable = DataSetFiller.FillDataset(dataFilePath).Tables(0)
myTable.PrimaryKey = New DataColumn() _

{myTable.Columns("CustomerID")}
myTable.AcceptChanges()
Dim janeRow As DataRow = myTable.Rows.Find("5")
janeRow("LastName") = "QueenOfJungle"

An important thing to note here is that as changes are done to a DataRow object, the DataRow
maintains the previous values, and also maintains a RowState property as a DataRowState object.
As will be discussed in the next two chapters, this built-in facility of a DataRow is immensely
useful in working with disconnected data in the event of passing it over web services (or similar),
and persisting it to the original data source while taking care of concurrency.

But more on that shortly. For now, the application just needs to find the rows that have
changed. Hopefully, the only changed row would be the one that identifies Jane as the
QueenOfJungle. This can be easily done using the following statement:

C#
DataRow[] drs = myTable.Select("", "", DataViewRowState.ModifiedCurrent);

VB.NET
Dim drs() As DataRow = myTable.Select("", "", DataViewRowState.ModifiedCurrent)

5122ch08.qxd 8/23/05 3:17 PM Page 221

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING222

Thus, you pass in a DataViewRowState constant to identify the rows in a particular state
that you’re interested in querying. Even though DataViewRowState constants and DataRowState
constants will be covered in greater depth in Chapters 9 and 10, for now it’s sufficient to under-
stand that the previous statement allows you to find the modified rows in the DataTable. You
might also notice a call to AcceptChanges. This is important since when the DataSet or DataTable
is read from XML, the default RowState for all those newly added rows is DataRowState.Added.
By calling AcceptChanges, you effectively accept the suggested changes to the DataTable, and hence
change all the RowStates to UnChanged. You can find the full code for this example in Exercise 8.4.

Frequently in a database, you might have a certain piece of information that can be derived
definitively from a set of columns. In other words, you might need to calculate a certain column
on the fly as a part or expression based on other columns in the result set.

Expressions: Calculating Columns on the Fly
Sometimes you may want to make calculations from columns of a tabular result set that produce
values on the fly and appear as a column contained in the result. A real-world scenario would be
to say that the Products table contains a price column and a tax column; what if you wanted to
create a result set, with an additional column named “total price,” as Price + Price * TaxPercent?

This can be easily achieved in the database with a SQL query that looks like

Select
ProductID, Price, Tax, (Price + Price * TaxPercent) as TotalPrice

from Products;

Here, an expression is specified for TotalPrice. The database then calculates the TotalPrice
for each row and includes that in the result set for you.

You can easily achieve the same result in a DataTable by specifying an expression on a new
column you need to create. To emphasize the fact that this would be done on the fly for each
column on the DataTable, this next example shall use a DataTable databound to a DataGridView
on a Windows Forms application. This can be achieved in the following steps:

1. Start by creating a Windows Forms application. Name it Exercise 8.5. Also, change the
text on the main form of the application to Exercise 8.5.

2. Drop a DataGridView on the form, make sure its Dock property is set to Dock.Fill. This
will be named dataGridView1 by default.

3. In the Form1_Load event handler, which will be called when Form1 loads, add the code
shown in Listings 8-13 and 8-14.

Listing 8-13. Creating a Calculated Column in C#

DataSet customerProducts =
CreateDataSet.DataSetFiller.FillStrongDataSet(dataFilePath);
DataTable productsTable = customerProducts.Tables[1];

DataColumn totalPrice = new DataColumn("Total Price");
totalPrice.Expression = "Price + Price * TaxPercent";
productsTable.Columns.Add(totalPrice);

5122ch08.qxd 8/23/05 3:17 PM Page 222

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING 223

Figure 8-3. Calculated columns using the Expression property

Listing 8-14. Creating a Calculated Column in Visual Basic .NET

Dim customerProducts As DataSet = _
CreateDataSet.DataSetFiller.FillStrongDataSet(dataFilePath)

Dim productsTable As DataTable = customerProducts.Tables(1)

Dim totalPrice As DataColumn = New DataColumn("Total Price")
totalPrice.Expression = "Price + Price * TaxPercent"
productsTable.Columns.Add(totalPrice)
dataGridView1.DataSource = productsTable

4. Compile and run the application. You should see output as shown in Figure 8-3.

As you can see in Figure 8-3, the column TotalPrice is calculated properly as per the
expression you specified and is included in the DataTable. So what exactly is this code doing?

Well first of all, as you can see, the DataSet was filled using the FillStrongDataSet method
instead of the FillDataSet method. This is critical since, for expressions to work, they need the
data types set on the various columns. You cannot do a multiply operation using the * operand
on two System.String column types, which is the default column type for a basic DataColumn.
You could have instead chosen to specify the DataType property on a basic DataColumn; however,
such an operation needs to be done before it’s filled with data. This can be achieved easily using
the following lines of code:

C#

productsTable.Columns["Price"].DataType = typeof(System.Int32);
// Fill Data here

VB.NET

productsTable.Columns("Price").DataType = GetType(System.Int32)
' Fill Data here

Or, you could simply implicit cast a basic DataSet back from a strongly typed DataSet, which
is what is done in the following lines of code:

5122ch08.qxd 8/23/05 3:17 PM Page 223

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING224

C#

DataSet customerProducts =
CreateDataSet.DataSetFiller.FillStrongDataSet(dataFilePath);

VB.NET

Dim customerProducts As DataSet = _
CreateDataSet.DataSetFiller.FillStrongDataSet(dataFilePath)

Note that implicit casting doesn’t really require you to do anything, you can simply assign
an inherited object instance back to the base. With the DataTable set up, the next three lines
add a new column, totalPrice, set an expression on it, and add it to the DataTable:

C#

DataColumn totalPrice = new DataColumn("Total Price");
totalPrice.Expression = "Price + Price * TaxPercent";
productsTable.Columns.Add(totalPrice);

VB.NET

Dim totalPrice As DataColumn = New DataColumn("Total Price")
totalPrice.Expression = "Price + Price * TaxPercent"
productsTable.Columns.Add(totalPrice)

That’s it! The next line simply data binds the DataTable to the DataGridView to display the
results:

C#
dataGridView1.DataSource = productsTable;

VB.NET
dataGridView1.DataSource = productsTable

This approach works well for situations where you need to perform a calculation on every
row in a DataTable. In certain situations, however, you might need to perform aggregate calcu-
lations on the entire DataTable. Luckily for such cases, the DataTable supports a method called
Compute.

Performing Aggregate Calculations
Say you needed to perform a calculation over the rows of a table. In our case, say you needed
to add the Price column for all rows and come up with a total of prices for all products.

If this were a database, you could simply write a query that looks like this:

Select Sum(Price) from Products

This query would go over all the rows and sum up their Price columns one by one to return
a total. In a DataTable, however, you can achieve the same result using the Compute method. This
is demonstrated in Listings 8-15 and 8-16. In this code, btnSumPrices is a button which, when
clicked, computes the aggregate sum function on the Price column and puts the calculated

5122ch08.qxd 8/23/05 3:17 PM Page 224

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING 225

Listing 8-15. Using the Compute Method in C#

private void Form1_Load(object sender, EventArgs e)
{

DataSet customerProducts =
CreateDataSet.DataSetFiller.FillStrongDataSet(dataFilePath);

// productsTable is defined as a private variable in the class.
productsTable = customerProducts.Tables[1];

DataColumn totalPrice = new DataColumn("Total Price");
totalPrice.Expression = "Price + Price * TaxPercent";
productsTable.Columns.Add(totalPrice);
dataGridView1.DataSource = productsTable;

}

private void btnSumPrices_Click(object sender, EventArgs e)
{

string price = productsTable.Compute("Sum(Price)", "").ToString();
lblSumPrice.Text = "The total price is : " + price;

}

Listing 8-16. Using the Compute Method in Visual Basic .NET

Private Sub Form1_Load(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles MyBase.Load
Dim customerProducts As DataSet = _

CreateDataSet.DataSetFiller.FillStrongDataSet(dataFilePath)
' productsTable is defined as a private variable in the class.
productsTable = customerProducts.Tables(1)

Dim totalPrice As DataColumn = New DataColumn("Total Price")
totalPrice.Expression = "Price + Price * TaxPercent"
productsTable.Columns.Add(totalPrice)
dataGridView1.DataSource = productsTable

End Sub

Private Sub btnSumPrices_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles btnSumPrices.Click
Dim price As String = _

productsTable.Compute("Sum(Price)", "").ToString()
lblSumPrice.Text = "The total price is : " & price

End Sub

You can easily modify this code to include only a subset of rows based on a condition. For
instance, if instead you wished to calculate the Sum of all prices, where price was less than 500,
you could modify the previous code to include the following code:

5122ch08.qxd 8/23/05 3:17 PM Page 225

226 CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING

Figure 8-4. Aggregate values using the Compute method

C#
string price = productsTable.Compute("Sum(Price)", "Price < 500").ToString();

VB.NET

Dim price as String = _
productsTable.Compute("Sum(Price)", "Price < 500").ToString();

The final running application with the filter for a price less than 500 can be seen in
Figure 8-4, or can be found in the associated code download under Exercise 8.6.

Another important thing databases let you do is specify foreign-key constraints between
sets of fields in various tables. In many cases, in a database, you would specify joins to extract
result sets that are an aggregate between multiple tables based upon existing or assumed rela-
tionships. As already mentioned, if a DataTable is the representation of in-memory tabular data,
and thus a simile to a table in a database, then the closest simile to a relation would be the
DataRelation object.

Working with the DataRelation Object
Databases let you specify SQL queries with joins between tables. A DataSet does allow you to
define DataRelations between various tables, but doesn’t quite allow you to specify joins between
DataTables using a SQL query–like syntax. What it does allow you to do, however, is leverage spec-
ified DataRelations to find child rows for a parent row, or the parent row for any given child row.

Given the database structure that is being worked with in this chapter, one of the most com-
mon problems you might need to solve is “Which customer ordered what products?” Even though
that could be done as a JOIN in the database, what if you had to do that in a DataSet when you can-
not use SQL along with the power of a database engine?

As far as setting up relations goes, this can be mapped using a many-to-many relationship
in the DataSet, which is exactly what the CustProd strongly typed DataSet does. Refer back to
Figure 8-1; there is a table in the middle of Customers and Products called CustomerProducts
which, with the help of two many-to-one relationships, helps you map one many-to-many
relationship.

5122ch08.qxd 8/23/05 3:17 PM Page 226

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING 227

So for a given CustomerID, if you wished to find out what products have been ordered by the
customer, you could find that out in two steps:

1. Find the child rows for the particular CustomerID in the CustomerProducts table.

2. For each one of those child rows, find the relevant parent row from the Products table.

Let’s examine this in an example:

1. Create a new Windows Form application. Name it Exercise 8.7. Also, change the text on
the main form of the application to Exercise 8.7.

2. On this form drop three listboxes, which will be used to show the relevant rows from
each of the three tables. Name them lbCustomers, lbCustomerProducts, and lbProducts.
Also, drop two buttons to perform the two row-filtering steps mentioned previously.
Name these two buttons btnFilter1 and btnFilter2. Set their text properties to
“GetChildRows >>” and “GetParentRow >>”, respectively. The form should look like as
shown in Figure 8-5.

3. In the Form1_Load event handler, add the following code:

C#

private void Form1_Load(object sender, EventArgs e)
{

customerProducts =
CreateDataSet.DataSetFiller.FillStrongDataSet(dataFilePath);

foreach (DataRow dr in customerProducts.Tables["Customers"].Rows)
{

Figure 8-5. Many-to-many relationship mapping example form in Design view

5122ch08.qxd 8/23/05 3:17 PM Page 227

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING228

lbCustomers.Items.Add(
dr["CustomerID"] + ":" + dr["FirstName"] + " " + dr["LastName"]);

}
}

VB.NET

Private Sub Form1_Load(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles MyBase.Load
customerProducts = _

CreateDataSet.DataSetFiller.FillStrongDataSet(dataFilePath)
For Each dr As DataRow In customerProducts.Tables("Customers").Rows

lbCustomers.Items.Add(_
dr("CustomerID") & ":" & dr("FirstName") & " " & dr("LastName"))

Next
End Sub

This code loads the customerProducts DataSet as usual. You might note that once again
the code is using the FillStrongDataSet method instead. This is because it gives a con-
venient way to get a DataSet with preestablished relationships. If you didn’t have rela-
tionships defined in the DataSet, you could easily add them using a code snippet similar
to the one shown here (the ... signifies actual parameters you would need to pass in):

C#
customerProducts.Relations.Add(new DataRelation(...));

VB.NET
customerProducts.Relations.Add(new DataRelation(...))

4. Next, for a selected row in the lbCustomers listbox, if btnFilter1 is clicked, the application
needs to find out the child rows and populate those in the lbCustomersProducts listbox.
This is achieved using the GetChildRows method on the DataRow object. This is shown
in Listings 8-17 and 8-18.

Listing 8-17. Finding Child Rows for a Given Selected Row in C#

private void btnFilter1_Click(object sender, EventArgs e)
{

if (lbCustomers.SelectedIndex < 0)
{

return;
}
DataRow selectedRow =
customerProducts.Tables["Customers"].Rows[lbCustomers.SelectedIndex];

DataRow[] childRows =
selectedRow.GetChildRows(customerProducts.Relations[1]);
lbCustomerProducts.Items.Clear();
foreach (DataRow dr in childRows)

5122ch08.qxd 8/23/05 3:17 PM Page 228

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING 229

{
lbCustomerProducts.Items.Add(dr["CustomerProductID"]);

}
}

Listing 8-18. Finding Child Rows for a Given Selected Row in Visual Basic .NET

Private Sub btnFilter1_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles btnFilter1.Click
If lbCustomers.SelectedIndex < 0 Then

Return
End If
Dim selectedRow As DataRow = _

customerProducts.Tables("Customers").Rows(lbCustomers.SelectedIndex)
Dim childRows() As DataRow = _

selectedRow.GetChildRows(customerProducts.Relations(1))
lbCustomerProducts.Items.Clear()
Dim dr As DataRow
For Each dr In childRows

lbCustomerProducts.Items.Add(dr("CustomerProductID"))
Next

End Sub

As you can see in Listings 8-17 and 8-18, the first thing the code does is identify the
selected row using the following code:

C#

DataRow selectedRow =
customerProducts.Tables["Customers"].Rows[lbCustomers.SelectedIndex];

VB.NET

Dim selectedRow As DataRow = _
customerProducts.Tables("Customers").Rows(lbCustomers.SelectedIndex)

Once the selected row is identified, it then uses the GetChildRows method and
a DataRelation object, and is easily able to identify the child rows as a DataRow array.
This is shown in the following code:

C#
DataRow[] childRows = selectedRow.GetChildRows(customerProducts.Relations[1]);

VB.NET

Dim childRows() As DataRow = _
selectedRow.GetChildRows(customerProducts.Relations(1))

5122ch08.qxd 8/23/05 3:17 PM Page 229

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING230

5. Just as you were able to find ChildRows, you can easily find the ParentRow for any DataRow
using the GetParentRow method. That is what the application does when you click the
btnFilter2 button. For each identified row in the lbCustomerProducts listbox, it finds
the relevant ParentRow for each such row, and populates those into the lbProducts
listbox. The code for this can be seen in Listings 8-19 and 8-20.

Listing 8-19. Finding Parent Rows for Various Rows in C#

private void btnFilter2_Click(object sender, EventArgs e)
{

DataRow custProdRow;
DataRow prodRow;
DataTable custProdTable = customerProducts.Tables["CustomerProducts"] ;
lbProducts.Items.Clear();
foreach (object item in lbCustomerProducts.Items)
{

int custProdId = (int)item;
custProdRow = custProdTable.Rows.Find(custProdId);
prodRow = custProdRow.GetParentRow(customerProducts.Relations[0]);
lbProducts.Items.Add(ProdRow["ProductName"]);

}
}

Listing 8-20. Finding Parent Rows for Various Rows in Visual Basic .NET

Private Sub btnFilter2_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles btnFilter2.Click
Dim custProdRow As DataRow
Dim ProdRow As DataRow
Dim custProdTable As DataTable = _

customerProducts.Tables("CustomerProducts")
lbProducts.Items.Clear()
Dim item As Object
For Each item In lbCustomerProducts.Items

Dim custProdId As Integer = CType(item, Integer)
custProdRow = custProdTable.Rows.Find(custProdId)
ProdRow = custProdRow.GetParentRow(customerProducts.Relations(0))
lbProducts.Items.Add(ProdRow("ProductName"))

Next
End Sub

6. Compile and run the application. Select “Tarzan KingOfJungle” from lbCustomers and
click btnFilter1; you should see output as shown in Figure 8-6.

5122ch08.qxd 8/23/05 3:17 PM Page 230

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING 231

Figure 8-6. Filtered out rows identified as child rows of Tarzan

7. Next click btnFilter2 to filter out parent rows for all the rows identified as related to
Tarzan in lbCustomerProducts. Thus Tarzan has ordered the Dagger, Computer, and
Hamburger products. You can see this in the output shown in Figure 8-7.

So as you can see, DataRelations not only help you ensure referential integrity across
various DataTables, they also let you easily browse through rows across various DataTables in
a DataSet. Another interesting use of DataRelations is that they allow you to control the nest-
ing properties of the generated XML, if the nested property on a relation is set to true. (This
is explained in detail in Example 6.3 of Chapter 6 and won’t be covered here.)

Earlier in this chapter you saw the Select method on a DataTable that allows you to get
a subset of DataRows in a DataTable based on a specified criterion or predicate. Yet another
way (and possibly a much more flexible and useful way) of extracting a subset of rows from
a DataTable is the DataView object. Not only is the DataView object directly data bindable, but

Figure 8-7. Finding parent rows for all identified rows to get product details such as
ProductName

5122ch08.qxd 8/23/05 3:17 PM Page 231

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING232

it also allows you an easy mechanism to search, sort, and filter through records; however, what
a DataView gives you in addition to what a DataTable provides is the ability to restrict (based on
a specified criterion) your result set to a view that contains a subset of the total number of rows
in the DataTable.

As an exercise, you could try and build an application that answers the question “What other
customers ordered the products that Tarzan ordered?”

Working with the DataView Object
The DataView object is more than a replacement for the DataTable’s Select method. Not only
are the results of the Select method on a DataTable not directly data bindable, but it is also not
a very efficient method to query rows.

As has been mentioned, if a DataSet lets you represent in-memory relational data, then
a DataTable lets you represent in-memory tabular data, and a DataRelation lets you specify
relations between the tabular data. Carrying that simile forward, it’s tempting to think that the
DataView object, being a view on a DataTable object, is very much like a view on a table in the
database.

They are definitely similar, but there is a big difference. Views in a database will let you spec-
ify any arbitrary SQL query that serves as the basis for the view. That SQL query has the ability to
provide you with a subset of columns, or even any arbitrary combination of columns from any
arbitrary number of tables based upon a join. The big difference, however, is that DataViews will
only let you work on a DataTable—they will not let you select a subset of columns. All the columns
will be visible in the resulting DataView.

Also, just as a DataTable consists of DataRows, representing various rows in the DataTable,
a DataView consists of DataRowViews. You can reach the underlying table using the DataView.Table
property and the underlying row using the DataRowView.Row property.

Creating a DataView
A DataView can be created using any of the three constructor overloads it supports. The first con-
structor overload allows you to create a DataViewbut not specify any information. It looks like this:

C#
DataView myView = new DataView() ;

VB.NET
Dim myView as DataView = New DataView()

The second constructor directly ties the DataView to a DataTable. Once you have created
such a DataView, you can then set various other properties on the DataView to create a “view”
of the DataTable’s data. This looks like the following code snippet:

C#
DataView myView = new DataView(myTable) ;

VB.NET
Dim myView as DataView = New DataView(myTable)

5122ch08.qxd 8/23/05 3:17 PM Page 232

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING 233

The third and final constructor of DataViews allows you to specify all that information in
one line of code. It lets you specify not only the table, but also the sort, search, and RowState
filter criteria. This looks like the following code snippet:

C#

DataView dv =
new DataView(
productsTable, "ProductID = 1", "ProductName", DataViewRowState.Unchanged);

VB.NET

DataView dv = _
new DataView(_
productsTable, "ProductID = 1", "ProductName", DataViewRowState.Unchanged)

Thus, you can either use the third overload to specify all the necessary information in one
line of code, or you can use the following properties on the DataView object to convey the
necessary information:

• RowFilter: This property allows you to specify a selection criteria, similar to the one
passed in DataTable’s Select method, and allows you to filter the returned rows. For
instance, CustomerID =4 will return Tarzan per our data.

• Sort: This property allows you to specify a sort order on the returned results.

• RowStateFilter: As you are making changes to the DataTable, the DataTable maintains
a history of the changes you have done to one step in history. This property allows you
to specify a DataViewRowState and identify versions of data.

Other ways to search through the DataRowViews contained inside a DataView object are by
the Find and FindRows methods.

• Find: Works in a similar way as the DataTable.Rows.Find method, but not exactly the same.
It allows you to specify a criterion or predicate for searching over the columns mentioned
in the Sort property of the DataView. Sort and Find work hand in hand because the value
you specify as a filter to the Find method is evaluated against the sorted column only. It
allows you to identify the one row that matches that specified criterion. The one row
identified, however, is returned as an index of the row that matched the criterion.

• FindRows: Allows you to return a number of DataRowView objects that match a specified
search criterion. There are two major differences between FindRows and Find. First,
FindRows can return multiple DataRowView objects. Second, FindRows returns an array of
DataRowView objects, whereas Find would return an index integer.

Let’s solidify our understanding of the these concepts using an example. You can download
the final code for this example in the associated code download in Exercise 8.8, or you can simply
follow these steps and create one yourself. The intention here is fairly simple:

1. As usual, start by creating a Windows Forms application. Name it Exercise 8.8, and
change the text on the main form of the application to Exercise 8.8.

5122ch08.qxd 8/23/05 3:17 PM Page 233

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING234

Figure 8-8. DataView example’s main form in Design view

2. Put a DataGridView control on it (dgView) and four buttons. Set the names and text
properties of the buttons as follows:

• btnLoad, Load Data

• btnSort, Sort Data

• btnFilter, Filter Data

• btnFindRows, Find Rows

The form in Design view should look like as shown in Figure 8-8.

3. In this example, dgView will be databound to a DataView called CustomerView, which will be
based on the DataTable CustomerTable. The CustomerView will be loaded in the event han-
dler for the Load Data button. In the event handler for btnLoad, enter the following code:

C#

private void btnLoad_Click(object sender, EventArgs e)
{

CustomersTable =
CreateDataSet.DataSetFiller.FillDataset(dataFilePath).Tables["Customers"];
CustomersView = new DataView(CustomersTable);
dgView.DataSource = CustomersView;

}

VB.NET

Private Sub btnLoad_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _

5122ch08.qxd 8/23/05 3:17 PM Page 234

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING 235

Handles btnLoad.Click
CustomersTable = _
CreateDataSet.DataSetFiller.FillDataset(dataFilePath).Tables("Customers")
CustomersView = New DataView(CustomersTable)
dgView.DataSource = CustomersView

End Sub

Compile and run the application. When you click Load Data, the application should suc-
cessfully load the data of the Customers table and display it in the dgView DataGridView
control as shown in Figure 8-9.

4. Next, the application will try and sort the data on the FirstName column in ascending
order. In the event handler for btnSort, add the following code:

C#

private void btnSort_Click(object sender, EventArgs e)
{

CustomersView.Sort = "FirstName ASC";
}

VB.NET

Private Sub btnSort_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles btnSort.Click
CustomersView.Sort = "FirstName ASC"

End Sub

Figure 8-9. Data loaded in CustomersView DataView and databound to
a DataGridView control

5122ch08.qxd 8/23/05 3:17 PM Page 235

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING236

Figure 8-10. Data loaded and sorted in CustomersView DataView and databound to
a DataGridView control

Compile the application and run it. First click Load Data and then click Sort Data.
When you click Sort Data, you’ll note that dgView now shows you the various rows
sorted in ascending order. This should look like as shown in Figure 8-10.

5. Next, click Filter Data. The application will try and filter out the rows where the last
name ends in OfJungle. So as you saw before, the RowFilter you need to specify is
"LastName Like '%OfJungle'". This can be done in the following code snippet:

C#

private void btnFilter_Click(object sender, EventArgs e)
{

CustomersView.RowFilter = "LastName like '%OfJungle'" ;
}

VB.NET

Private Sub btnFilter_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles btnFilter.Click
CustomersView.RowFilter = "LastName like '%OfJungle'"

End Sub

Well since only Tarzan and Jane prefer to live in the jungle, the application correctly
shows you only two rows that matched the row filter specified. This can be seen in
Figure 8-11.

5122ch08.qxd 8/23/05 3:17 PM Page 236

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING 237

6. Finally, the application will find the rows based on the sort key. Since our sort key is
FirstName, let’s try and find the names of customers who match the FirstName “Tarzan”.
This can be done using the following code snippet:

C#

private void btnFindRows_Click(object sender, EventArgs e)
{

DataRowView[] drvs = CustomersView.FindRows("Tarzan");
foreach (DataRowView drv in drvs)
{

MessageBox.Show(
drv.Row["FirstName"] + " " + drv.Row["LastName"], "Selected Item");

}
}

VB.NET

Private Sub btnFindRows_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles btnFindRows.Click
Dim drvs() As DataRowView = CustomersView.FindRows("Tarzan")
Dim drv As DataRowView
For Each drv In drvs

MessageBox.Show(_
drv.Row("FirstName") & " " & drv.Row("LastName"), "Selected Item")

Next
End Sub

Figure 8-11. Data loaded, sorted, and filtered in CustomersView DataView and
databound to a DataGridView control

5122ch08.qxd 8/23/05 3:17 PM Page 237

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING238

Figure 8-12. Finding the customer whose first name is Tarzan

Figure 8-13. Attempting to execute FindRows without a sort specified—gives an exception

Compile and run the application. Click the Load Data, Sort Data, Filter Data, and Find
Rows buttons in succession; you should see a message box that looks like Figure 8-12.

7. Now just for giggles, run the application again. Load the data using the Load Data but-
ton, do not sort the data, filtering is optional, and try running FindRows without the data
sorted. You should see an exception as shown in Figure 8-13. VB.NET should show you
a similar exception.

Thus, as you can see, it’s critical that a sort order be specified on the columns that
either Find or FindRows will execute on.

8. As an exercise, you can easily replace FindRows with Find and get similar results. You
could also specify multiple columns in the sort order and specify multiple Find or
FindRows criteria using a different overload.

Both the DataTable and DataView objects also let you update the data referenced in them
akin to the ability to do so in a database using INSERT, UPDATE, and DELETE SQL DML statements.
This ability of DataView and DataSet objects will be covered in further depth in Chapter 9 where
updating data is introduced in both connected and disconnected scenarios.

5122ch08.qxd 8/23/05 3:17 PM Page 238

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING 239

Converting a DataView to a DataTable
A notable enhancement introduced in .NET 2.0 is that a method has been added to the
DataView object that easily lets you create a new DataTable based on the rows available in
a DataView. This is incredibly helpful in extracting a smaller set of the rows in a DataTable as
a brand new DataTable. The usage is fairly simple and is shown here:

C#

DataTable custProdTable = DataSetFiller.FillDataset(dataFilePath).Tables(2) ;
DataView view = new DataView[custProdTable];
view.RowFilter = "ProductID > 2";
DataTable subsetTable = view.ToTable[];
// or
DataTable subsetTable = view.ToTable["TableName"];

VB.NET

Dim custProdTable As DataTable = _
DataSetFiller.FillDataset(dataFilePath).Tables(2)

Dim view as DataView = New DataView(custProdTable)
view.RowFilter = "ProductID > 2"
Dim subsetTable as DataTable = view.ToTable()
' or
Dim subsetTable as DataTable = view.ToTable("TableName")

Either of these result in a DataTable with the same number of columns as the original
DataTable. There is, however, another overload that lets you limit the number of columns you
get back in the result set.

Where this method is incredibly useful is in finding distinct result sets, akin to the DISTINCT
keyword in SQL. For instance, if you wanted to find distinct ProductIDs in the CustomerProducts
table, you could easily achieve that using the following code snippet (note that the first parameter
to the ToTable method signifies that you want the resulting DataTable to contain distinct rows):

C#

DataTable custProdTable = DataSetFiller.FillDataset(dataFilePath).Tables(2) ;
DataView view = new DataView[custProdTable];
view.RowFilter = "ProductID > 2";
DataTable subsetTable = view.ToTable[true,"ProductID"];

VB.NET

Dim custProdTable As DataTable = _
DataSetFiller.FillDataset(dataFilePath).Tables(2)

Dim view as DataView = New DataView(custProdTable)
view.RowFilter = "ProductID > 2"
Dim subsetTable as DataTable = view.ToTable(True,"ProductID")

Of course, as you can see, this overload can also be used in extracting a DataTable with
fewer numbers of columns than the original. This can be done by changing the first parameter

ows, as shown here:

5122ch08.qxd 8/23/05 3:17 PM Page 239

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING240

C#

DataTable custProdTable = DataSetFiller.FillDataset(dataFilePath).Tables(2) ;
DataView view = new DataView[custProdTable];
view.RowFilter = "ProductID > 2";
DataTable subsetTable = view.ToTable[false, "CustomerID", "ProductID"];

VB.NET

Dim custProdTable As DataTable = _
DataSetFiller.FillDataset(dataFilePath).Tables(2)

Dim view as DataView = New DataView(custProdTable)
view.RowFilter = "ProductID > 2"
Dim subsetTable as DataTable = view.ToTable(False, "CustomerID", "ProductID")

Within the computer sphere of the world, the commonly accepted data interchange
language that most platforms and programming languages use is XML. XML can also be
referred to as the lingua franca of the computer world. As already explained in previous
chapters, the disconnected data objects, specifically the DataSet and DataTable objects, offer
easy workability with XML.

Leveraging XML to Work with Disconnected Data
DataSet and DataTable objects are good friends with XML. Earlier in Chapter 6, you reviewed
that one of the desirable features of the objects that might hold disconnected data for us is
that they are easily workable with XML. Indeed both the DataSet and DataTable are easily con-
vertible to and from XML. You have already seen some of this functionality in the form of the
ReadXml, WriteXml, ReadXmlSchema, WriteXmlSchema, and the GetXml (DataSet only) methods on
these objects. As a matter of fact, the data for all examples in this chapter is stored in an XML
file and we simply read it using the ReadXml method.

There is yet another interesting method on the DataSet object that has not been covered so
far: the InferXmlSchema method. You should avoid using this method in a production applica-
tion; InferXmlSchema will scan every value in your DataSet and come up with a schema that it
thinks fits your data. For maximum compatibility, InferXmlSchema will assume every column to
be a string, so not only won’t you get the schema you want, but it’s also a rather inefficient way
of generating schemas. Instead, you should prefer to specify your own schemas. If you cannot
specify your own schema, you could instead rely on the FillSchema method, but in a high-demand
application, you should avoid using the FillSchema method directly in production. Instead,
you could prepare a set of schemas ready to be read into the appropriate DataSets.

■Tip Schemas on DataSets are great, but you should specify them only if you need them. If you must
specify one, your first preference for performance reasons should be to specify them yourself and use the
ReadXmlSchema method. The second preference should be to use the FillSchema method, and third
preference should be to use InferXmlSchema method.

5122ch08.qxd 8/23/05 3:17 PM Page 240

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING 241

Another thing you saw was how the nested property on the DataRelation object affects the
XML generated by these methods.

Even though a much deeper coverage will be given to the facilities ADO.NET provides in
working with XML data in Chapter 12, there’s one object in the .NET Framework that allows you
to specifically work with disconnected data and XML: the XmlDataDocument object.

XmlDataDocument
Okay, so on one hand you have the DataSet object that is easily convertible into XML, and on
the other hand you have the XMLDocument object that has the ability to hold XML, which if in
the right format can be easily imported into a DataSet. So frequently you would end up with
two entirely disparate objects with really no common ground between them. You’d have doubling
up of your data and they will eventually get out of sync.

The object that has the ability to store both a DataSet and it’s XML representation, and
keep them both in sync for you, is the XmlDataDocument object. The XmlDataDocument object has
the ability to hold the data and expose it as an XmlDocument or a DataSet—whichever you prefer.

Let’s examine how XmlDataDocument works with the help of an example:

1. Start by creating a Window Forms application. Name it Exercise 8.9 and change the text
on the main form of the application to Exercise 8.9.

2. Add a DataGridView control and call it dgView. This will be used to display the contents
of the Customers DataTable.

3. Next, add a WebBrowser control, name it xmlViewer. This will be used to display the data
in the XML document represented by the XmlDataDocument. Your form should look like
Figure 8-14 in Design mode.

Figure 8-14. XmlDataDocument exercise main form in Design mode

5122ch08.qxd 8/23/05 3:17 PM Page 241

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING242

4. In Form1_Load, add the following code:

C#

private void Form1_Load(object sender, EventArgs e)
{

CustomersTable =
CreateDataSet.DataSetFiller.FillDataset(dataFilePath).Tables["Customers"];
xdd = new XmlDataDocument(CustomersTable.DataSet);
dgView.DataSource = CustomersTable;
xdd.Save(Application.ExecutablePath + "_xdd.xml");
xmlViewer.Navigate(Application.ExecutablePath + "_xdd.xml");
CustomersTable.RowChanged +=

new DataRowChangeEventHandler(CustomersTable_RowChanged);
}

VB.NET

Private Sub Form1_Load(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles MyBase.Load
CustomersTable = _

CreateDataSet.DataSetFiller.FillDataset(dataFilePath).Tables("Customers")
xdd = New XmlDataDocument(CustomersTable.DataSet)
dgView.DataSource = CustomersTable
xdd.Save(Application.ExecutablePath & "_xdd.xml")
xmlViewer.Navigate(Application.ExecutablePath & "_xdd.xml")

End Sub

As you can see, this code creates a new XmlDataDocument instance called xdd using the
following line of code:

C#
xdd = new XmlDataDocument(CustomersTable.DataSet);

VB.NET
xdd = New XmlDataDocument(CustomersTable.DataSet)

Also, it subscribes to the CustomersTable.RowChanged event, where the application can
easily use that as a mechanism to act upon any changes done to the data contained
inside CustomersTable. In the case of VB.NET, however, the explicit subscription is
taken care of by the language keyword WithEvents, which is mentioned in the declara-
tion of CustomersTable as shown here:

Private WithEvents CustomersTable As DataTable

This code also uses simple data binding to display the results of the CustomersTable
DataTable and it uses the WebBrowser control to display the results of the XmlDataDocument
as XML.

5122ch08.qxd 8/23/05 3:17 PM Page 242

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING 243

5. In the event handler for the CustomersTable.RowChanged event, add the following code
to refresh the contents of XmlViewer:

C#

void CustomersTable_RowChanged(object sender, DataRowChangeEventArgs e)
{

xdd.Save(Application.ExecutablePath + "\xdd.xml");
xmlViewer.Navigate(Application.ExecutablePath + "\xdd.xml");

}

VB.NET

Private Sub CustomersTable_RowChanged(_
ByVal sender As Object, ByVal e As System.Data.DataRowChangeEventArgs) _
Handles CustomersTable.RowChanged
xdd.Save(Application.ExecutablePath & "_xdd.xml")
xmlViewer.Navigate(Application.ExecutablePath & "_xdd.xml")

End Sub

6. Compile and run the application. You should see output as shown in Figure 8-15.

Figure 8-15. XmlDataDocument and DataTable being displayed concurrently

5122ch08.qxd 8/23/05 3:17 PM Page 243

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING244

7. Now go ahead and make some change to the DataTable. For instance, change the name
Bill to Chill; you’ll see that the XmlDataDocument automatically understands the change
and the resultant XML reflects the contents of the DataTable without any additional
plumbing. This is shown in Figure 8-16.

Figure 8-16. XmlDataDocument keeps the XmlDocument and DataSet in sync

In addition to this, you can leverage standard XML features such as XPath queries to query
across the DataSet’s data.

ADO.NET itself contains a lot of other XML-related functionality. Some of this functional-
ity is around the new XML data type introduced in Microsoft SQL Server 2005, or there are func-
tions such as ExecuteXmlReader on the SqlClient .NET data provider. Finally, there is a .NET
data provider at System.Data.SqlXml, which is primarily used to leverage the XML features avail-
able in the Microsoft SQL Server database. These will be covered in further depth in Chapter 12,
where XML and ADO.NET are discussed.

5122ch08.qxd 8/23/05 3:17 PM Page 244

CHAPTER 8 ■ SORTING, SEARCHING, AND FILTERING 245

Summary
In this chapter, you looked at sorting, searching, and filtering over disconnected data. This is
quite an important part of ADO.NET. A good handle on these concepts will allow you to write
effective applications.

This chapter discussed the various methods of working with disconnected data using
DataTables, DataViews, DataRelations, and, finally, using the XmlDataDocument. Typically, in an
application built around disconnected architecture, you would query the data and fill a dis-
connected cache—such as a DataTable or a DataSet. Then, based upon the user’s requests, you
would make updates to that data.

While this chapter presented you with the concepts of being able to find the right rows to
make updates to, the next two chapters will discuss the process of making the updates and per-
sisting them into a data source. What you have learned in this chapter will be very useful in the
next chapter, which discusses updating data.

5122ch08.qxd 8/23/05 3:17 PM Page 245

5122ch08.qxd 8/23/05 3:17 PM Page 246

247

C H A P T E R 9

■ ■ ■

Updating Data

Updating data back into the data source is probably one of the most interesting parts of any
application. This is because updating data back into the data source requires you, as an architect,
to make many decisions usually guided between a balance of effort, level of concurrency
support, performance, and data sanctity. It’s also one of the most critical pieces of your appli-
cation as far as efficiency and the right design are concerned. Before architecting the updating
part of your application, you need to ask yourself a few questions.

These questions will basically be centered on what kind of data sanctity or integrity you
require out of your data layer in a highly concurrent environment. Based upon that you could
decide on the concurrency management scheme to use. When you do decide on the concur-
rency management scheme, you’ll then have to evaluate how exactly you wish to build the
concurrency detection and conflict resolution features in your data layer. And to build such
concurrency features, you’ll need to decide what built-in ADO.NET features you wish to leverage.

After you decide on the concurrency management schemes, the next big questions to ask
yourself regard the performance you wish to garner out of the data layer. Do you wish to rely on
autogenerated commands, which might be designed in a one-size-fits-all approach? Do you
wish to cache commands? Or command parameters? Do you want to design specific supplied
commands that take the specific table structures and business case into cognizance at the risk
of a higher management hassle for all the commands? Or do you wish to use database-specific
features and pass the data in bulk forms to the database server, in such a way that the solution
is the least portable between databases, but the most efficient?

Finally, one of the most important questions you need to ask yourself while architecting
the data layer is “What am I designing this data layer for, and how much effort am I willing to
put in it?” Is coming up with the best and most efficient way to persist data really worth it for
a single-user desktop application?

This chapter and the next don’t give you a panacea for all your updating needs; I wish there
were such a thing. The exact solution really depends on your needs. These chapters, however,
do give you enough information for you to intelligently decide what might suit your needs the best.

As it turns out, just like in real life, ADO.NET has no freebies. Like anything else, the more
effort you put in, the better your data layer will perform and the cleaner your data will be. Given
that you might have many choices at each step as far the previous three questions go, it will
pay off well if you know what choices you have, and how much work each one of those choices
will entail.

Knowing about the various methods ADO.NET provides to update changes or new data
into your database will allow you to make intelligent decisions regarding these three ques-
tions—and that is what this chapter and the next are all about.

5122ch09.qxd 8/23/05 3:18 PM Page 247

CHAPTER 9 ■ UPDATING DATA248

These two chapters focus on a “crawl before you walk, walk before you run” approach. The
examples presented start with the simplest and increase in complexity and real-life application.
In each case, the various pros and cons of any approach will be discussed that will allow you to
intelligently decide if a given approach is right for you to use in your application architecture.

Another important point to mention before you start your journey is that this is where signifi-
cant differences begin to show up between individual databases and .NET data providers. The
examples presented here will run on a local instance of SQL Server 2005 on a database called Test.
You can find the relevant SQL scripts in the associated code download (see the Downloads section
of the Apress website at http://www.apress.com); however, any specific differences with Oracle will
be pointed out as the discussion moves along.

Starting with simplest first, let’s examine how ADO.NET updates data.

Updating a Table: The Easy Drag-and-Drop
Approach
In Chapter 3, you saw a simple example created using drag and drop demonstrating a full-fledged
application that queries data from the database and updates the changes back into it. It all
seemed to work like magic, but there really was more to it than that. ADO.NET actually wrote
a lot of code for you behind the scenes. Let’s quickly go over such an example again and see
exactly what ADO.NET does behind the scenes:

1. First, set up a database called Test on your local SQL Server 2005 instance and create
a table called Animals in it using the following script:

Create Database Test
GO
USE Test
GO
CREATE TABLE Animals(

AnimalID int NOT NULL,
AnimalName varchar(50) NOT NULL,
CONSTRAINT PK_Animals PRIMARY KEY (AnimalID)

)
GO

2. Once this table is set up, start up Visual Studio and create a Windows Forms application.
Change its main form’s text to Exercise 9.1.

3. From the Visual Studio menu, select Data ➤ Add New Data Source. As already described
in Chapter 7, add a new data source for the Test database running on the local instance
of SQL Server 2005. When prompted to choose your database objects, choose the
Animals table.

5122ch09.qxd 8/23/05 3:18 PM Page 248

CHAPTER 9 ■ UPDATING DATA 249

Figure 9-1. The main application form created using drag and drop in Design view

Figure 9-2. Objects added for you by Visual Studio

6. You’ll notice that Visual Studio, by virtue of a simple drag-and-drop operation, added
a number of objects as shown in Figure 9-2.

7. In the animalsBindingNavigator control, make sure that the Save button (i.e., the
bindingNavigatorSaveItem control) has its enabled property set to true.

8. Compile and run the application. Add a few rows as shown in Figure 9-3. Click Save.
You can now run a Select * from Animals query on the local database to verify that
your results were indeed saved to the database.

4. Again, in the Data Sources window (select Data ➤ Show Data Sources window), select
Animals, and choose the DataGridView option. This has also been seen in Figure 7-7 of
Chapter 7.

5. Finally, drag and drop Animals to the main application form. After a little rearrangement,
your main application form should look like Figure 9-1.

5122ch09.qxd 8/23/05 3:18 PM Page 249

CHAPTER 9 ■ UPDATING DATA250

Figure 9-3. A few rows added and saved to the database

Figure 9-4. The Show All Files button

What just happened? How did a single line of code end up doing so much work? To discover
the answers, let’s examine the objects added for us one by one.

To get into the real meat of the matter, select Show All Files in your Visual Studio IDE, as
shown in Figure 9-4.

The first object added is the testDataSet. If you double-click it, you’ll see that it contains
two objects: the Animals DataTable and the AnimalsTableAdapter TableAdapter. If you right-click
the AnimalsTableAdapter and choose Configure, as shown in Figure 9-5, you’ll see a dialog box
as shown in Figure 9-6.

5122ch09.qxd 8/23/05 3:18 PM Page 250

CHAPTER 9 ■ UPDATING DATA 251

Figure 9-7. TableAdapter Configuration dialog box—Advanced Options

Figure 9-6. TableAdapter Configuration dialog box

In this dialog box, you can easily configure the SELECT query being used to fill the testDataSet
at runtime. Not only that, but by clicking Advanced Options you can see a dialog box as shown
in Figure 9-7.

In the Advanced Options dialog box, you are presented with three options. The exact
underlying behavior of these three options will become clear as you progress through this and
the next chapter, but for now it is sufficient to understand that these checkboxes allow you to
do the following:

5122ch09.qxd 8/23/05 3:18 PM Page 251

CHAPTER 9 ■ UPDATING DATA252

Figure 9-8. Two users using the same application concurrently—with a concurrency problem

• Specify that you are interested in a TableAdapter that lets you INSERT, UPDATE, and
DELETE.

• Use optimistic concurrency.

• Refresh the data table. After an update to the underlying data source, refreshes the data
presented to the user, to demonstrate any changes or concurrency resolution results
that might occur due to another user updating the same table at the same time. (Covered
in detail in the next chapter.)

The first checkbox is self explanatory, by checking it, you receive the ability to use the
TableAdapter and update the underlying data source.

The second and third checkboxes have to do with the disconnected nature of this applica-
tion and the ensuing concurrency problems that it might create. For instance, between your
filling the DataSet, someone else could have changed the data. Not only would you want to
resolve such conflicts which arise due to the disconnected nature of a DataSet, but you also
want to refresh your disconnected data cache (DataSet or DataTable) whenever you reestablish
the connection with the underlying data source.

To understand the disconnected nature of this application, delete all rows from the data
source using the following SQL query:

Delete from Animals

Now once again, let’s start at the beginning. Imagine a situation where two users are simul-
taneously adding information to the database. To simulate that, start two instances of the appli-
cation and add some data as shown in Figure 9-8. It’s important to note that at this stage, neither
of the application instances has saved the data.

For those of you with keen eyes, you might have noticed that both the users ended up
using the same primary key values for the newly entered rows. Why would they do that? This is
because neither of the users knew the primary keys being used by the other user. This happens
because both users are completely disconnected from the underlying database and don’t have
that common policeman—the database—telling them what keys to use. There’s no common
entity that connects them and tells them what primary keys should be used. What’s important

5122ch09.qxd 8/23/05 3:18 PM Page 252

CHAPTER 9 ■ UPDATING DATA 253

Figure 9-9. Our simple point-and-click application even checks for concurrency.

to realize at this point is that the users were able to enter data incorrectly but not save it because
they are disconnected from the database. This might appear incorrect on the surface, but the
data isn’t really saved in the database yet, so no damage has been done. The only changes done
so far are in their local copies of the in-memory disconnected data cache, in this case the
DataTable. The database is untouched and still sober.

The users have no way of knowing what the right value of the primary keys should be because
they don’t have a centrally connected database doing this job for them. You did have the option of
remaining centrally connected to the database and locking the rows being edited by individual
users but, as covered in Chapter 4, this would require you to keep a connection open and hence
degrade the system performance significantly. More than just connection pooling, by implement-
ing such pessimistic row locking, you would effectively make other users wait until one user is
done with his changes. Depending on your situation, maybe that is the solution you wish to go
with. Row, page, or table-level locks for extremely long durations, however, are not advised in most
situations.

Without going too deep into the rather interesting topic of concurrency just yet, try saving
the data in the application on the left (Dog and Cat), and then try saving the data in the appli-
cation on the right (Horse and Mule) only after the Dog and Cat application has saved its data.
You will get an exception as shown in Figure 9-9.

The application clearly tells you that the primary key PK_Animals was violated.

■Note This error was really thrown by the database. Throwing such exceptions is expensive, especially
when going over a Remoting layer. A better approach would have been to have the ability to detect such
conflicts and convey to the user a remedial approach instead. Throwing an exception after a well-meant
update attempt is somewhat like going to the hospital after an accident. Obviously, a better approach would
be to design a better traffic system that prevents an accident in the first place. That is covered in detail in
the next chapter.

5122ch09.qxd 8/23/05 3:18 PM Page 253

CHAPTER 9 ■ UPDATING DATA254

So basically, the second user cannot save his data unless he uses the correct keys. But how
will the second user know what keys to use unless he refreshes the data?

This can be achieved by refreshing the data from the data source after an attempted update
has failed. As a matter of fact, it makes sense to refresh the data from the underlying data source
even if an update succeeds because the user might wish to add further rows or edit any existing
rows, including the ones entered by another user. Also, by refreshing data you get the latest
snapshot including the last generated primary key, and your next generated disconnected primary
key in the DataTable has a lower probability of being incorrect—this way, you save yourself the
pain of an exception and yet another refresh.

As it turns out, ADO.NET does give you enough control to automatically resolve such conflicts.
This will become clearer as you read through the various examples in this chapter and the next. For
now it’s sufficient to understand that the disconnected model introduces some interesting new
issues that usually wouldn’t arise with a constantly connected application.

How Does It All Work?
This is such an obvious question especially since you didn’t write even one line of code.

How could just dragging and dropping possibly take care of generating various queries for
you for updates, inserts, and deletes; deciding between updates, inserts, and deletes on various
rows in a DataTable; and, at the same time, even take care of concurrency issues?

■Note What you are just about to do is degut a lot of autogenerated code. This comes with good news and
bad news. The bad news first: there is a lot of code to look at—almost like a wall of ASCII, so my intention in
this section is to give you a guided tour through this jungle of code. The good news is that you don’t have to
memorize every little bit of this code, just view it conceptually to try and understand what it does functionally.

Earlier in Figure 9-4 you enabled the Show All Files button. By doing so, under the Solution
Explorer window, you would notice a file created for you by Visual Studio, which contains the
actual code for the strongly typed DataSet. This file is the testDataSet.Designer.cs/testDataSet.
Designer.vb file. In addition to testDataSet and AnimalsDataTable definitions, something you
have already seen in Chapter 7, there lies a definition for AnimalsTableAdapter. The various
methods in AnimalsTableAdapter are shown in Listings 9-1 and 9-2.

Listing 9-1. Various Methods in AnimalsTableAdapter in C#

public interface IAnimalsTableAdapter {
int Fill(testDataSet.AnimalsDataTable dataTable);
testDataSet.AnimalsDataTable GetData();
int Delete(int Original_AnimalID, string Original_AnimalName);
int Insert(int @AnimalID, string @AnimalName);
int Update(int @AnimalID, string @AnimalName, int @Original_AnimalID);
int Update(testDataSet dataSet);
int Update(testDataSet.AnimalsDataTable dataTable);
int Update(System.Data.DataRow[] dataRows);
int Update(System.Data.DataRow dataRow);

5122ch09.qxd 8/23/05 3:18 PM Page 254

CHAPTER 9 ■ UPDATING DATA 255

Listing 9-2. Various Methods in AnimalsTableAdapter in Visual Basic .NET

Public Interface IAnimalsTableAdapter
Function Fill(ByVal dataTable As testDataSet.AnimalsDataTable) As Integer
Function GetData() As testDataSet.AnimalsDataTable
Function Delete(ByVal Original_AnimalID As Integer, _
ByVal Orignal_AnimalName as String) As Integer

Function Insert(ByVal AnimalID As Integer, ByVal AnimalName As String) _
As Integer

Function Update(ByVal AnimalID As Integer, ByVal AnimalName As String, _
ByVal Original_AnimalID As Integer) As Integer

Function Update(ByVal dataSet As testDataSet) As Integer
Function Update(ByVal dataTable As testDataSet.AnimalsDataTable) As Integer
Function Update(ByVal dataRows() As System.Data.DataRow) As Integer
Function Update(ByVal dataRow As System.Data.DataRow) As Integer

End Interface

Inside the AnimalsTableAdapter class, you have a definition for each one of these methods.
First, let’s focus our attention on the Fill method, which fills the AnimalsDataTable. The code
for a sample Fill method is shown in Listings 9-3 and 9-4.

Listing 9-3. AnimalsTableAdapter.Fill Method in C#

public virtual int Fill(testDataSet.AnimalsDataTable dataTable) {
this.Adapter.SelectCommand =

((System.Data.SqlClient.SqlCommand)(this.CommandCollection[0]));
if ((this.m_clearBeforeFill == true)) {

dataTable.Clear();
}
int returnValue = this.Adapter.Fill(dataTable);
return returnValue;

}.

Listing 9-4. AnimalsTableAdapter.Fill Method in Visual Basic .NET

Public Overloads Overridable Function Fill(_
ByVal dataTable As testDataSet.AnimalsDataTable) As Integer _
Implements IAnimalsTableAdapter.Fill
Me.Adapter.SelectCommand = _
CType(Me.CommandCollection(0),System.Data.SqlClient.SqlCommand)

If (Me.m_clearBeforeFill = true) Then
dataTable.Clear

End If
Dim returnValue As Integer = Me.Adapter.Fill(dataTable)
Return returnValue

End Function

Upon closer examination of this code, it looks very similar to the code you have already
seen in various listings of Chapter 7. This is a simple case of specifying a SelectCommand to a

ut what is this.CommandCollection[0]?

5122ch09.qxd 8/23/05 3:18 PM Page 255

CHAPTER 9 ■ UPDATING DATA256

Interestingly, if you browse through the code for AnimalsTableAdapter a little bit, you’ll find that
this command is a SqlCommand representation of the command text you specified in Figure 9-5.
The code for setting up such commands can be found in the InitCommandCollection method.
This can be seen in Listings 9-5 and 9-6.

Listing 9-5. AnimalsTableAdapter.InitCommandCollection Method in C#

private void InitCommandCollection() {
this.m_commandCollection = new System.Data.SqlClient.SqlCommand[1];
this.m_commandCollection[0] = new System.Data.SqlClient.SqlCommand();
this.m_commandCollection[0].Connection = this.Connection;
this.m_commandCollection[0].CommandText =

"SELECT AnimalID, AnimalName FROM dbo.Animals";
this.m_commandCollection[0].CommandType = System.Data.CommandType.Text;

}

Listing 9-6. AnimalsTableAdapter.InitCommandCollection Method in Visual Basic .NET

Private Sub InitCommandCollection()
Me.m_commandCollection = New System.Data.SqlClient.SqlCommand(0) {}
Me.m_commandCollection(0) = New System.Data.SqlClient.SqlCommand
Me.m_commandCollection(0).Connection = Me.Connection
Me.m_commandCollection(0).CommandText = _
"SELECT AnimalID, AnimalName FROM dbo.Animals"

Me.m_commandCollection(0).CommandType = System.Data.CommandType.Text
End Sub

CommandCollection is an array because one TableAdapter can hold multiple commands.
Next, look up the code for the definition of the Delete(int Original_AnimalID, string
Original_AnimalName) overload. This is shown in Listings 9-7 and 9-8.

Listing 9-7. AnimalsTableAdapter.Delete(int Original_AnimalID, string Original_AnimalName)
Method in C#

public virtual int Delete(int Original_AnimalID, string Original_AnimalName) {
this.Adapter.DeleteCommand.Parameters[0].Value = ((int)(Original_AnimalID));
if ((Original_AnimalName == null)) {

throw new System.ArgumentNullException("Original_AnimalName");
}
else {

this.Adapter.DeleteCommand.Parameters[1].Value =
((string)(Original_AnimalName));

}
System.Data.ConnectionState previousConnectionState =

this.Adapter.DeleteCommand.Connection.State;
this.Adapter.DeleteCommand.Connection.Open();
try {

return this.Adapter.DeleteCommand.ExecuteNonQuery();

5122ch09.qxd 8/23/05 3:18 PM Page 256

CHAPTER 9 ■ UPDATING DATA 257

finally {
if ((previousConnectionState == System.Data.ConnectionState.Closed)) {

this.Adapter.DeleteCommand.Connection.Close();
}

}
}

Listing 9-8. AnimalsTableAdapter.Delete(int Original_AnimalID, string Original_AnimalName)
Method in Visual Basic .NET

Public Overloads Overridable Function Delete(_
ByVal Original_AnimalID As Integer, _
ByVal Original_AnimalName As String) As Integer
Me.Adapter.DeleteCommand.Parameters(0).Value = _
CType(Original_AnimalID,Integer)

If (Original_AnimalName Is Nothing) Then
Throw New System.ArgumentNullException("Original_AnimalName")

Else
Me.Adapter.DeleteCommand.Parameters(1).Value = _

CType(Original_AnimalName,String)
End If
Dim previousConnectionState As System.Data.ConnectionState = _
Me.Adapter.DeleteCommand.Connection.State

Me.Adapter.DeleteCommand.Connection.Open
Try
Return Me.Adapter.DeleteCommand.ExecuteNonQuery

Finally
If (previousConnectionState = System.Data.ConnectionState.Closed) Then

Me.Adapter.DeleteCommand.Connection.Close
End If

End Try
End Function

Again, this code takes an AnimalID and AnimalName as parameters to the function, sets
a parameter on a command (DeleteCommand), and simply uses the ExecuteNonQuery method to
execute the command. If you look up the definition of DeleteCommand, you can find that it is the
InitAdapter private method. Its definition looks like as shown in Listings 9-9 and 9-10.

Listing 9-9. DeleteCommand in C#

this.m adapter.DeleteCommand = new System.Data.SqlClient.SqlCommand();
this.m adapter.DeleteCommand.Connection = this.Connection;
this.m adapter.DeleteCommand.CommandText =
"DELETE FROM [dbo].[Animals] WHERE (([AnimalID] = @Original_AnimalID) AND ([Animal"
+ "Name] = @Original_AnimalName))";
this.m adapter.DeleteCommand.CommandType =

System.Data.CommandType.Text;
this.m adapter.DeleteCommand.Parameters.Add(

5122ch09.qxd 8/23/05 3:18 PM Page 257

CHAPTER 9 ■ UPDATING DATA258

new System.Data.SqlClient.SqlParameter("@Original_AnimalID",
System.Data.SqlDbType.Int,
0, System.Data.ParameterDirection.Input,
0, 0, "AnimalID", System.Data.DataRowVersion.Original,
false, null, "", "", ""));

this.m adapter.DeleteCommand.Parameters.Add(
new System.Data.SqlClient.SqlParameter("@Original_AnimalName",
System.Data.SqlDbType.VarChar, 0,
System.Data.ParameterDirection.Input, 0, 0,
"AnimalName", System.Data.DataRowVersion.Original,
false, null, "", "", ""));

Listing 9-10. DeleteCommand in Visual Basic .NET

Me.m_adapter.DeleteCommand = New System.Data.SqlClient.SqlCommand
Me.m_adapter.DeleteCommand.Connection = Me.Connection
Me.m_adapter.DeleteCommand.CommandText = _

"DELETE FROM [dbo].[Animals] WHERE (([AnimalID] = @Original_AnimalID) " & _
" AND ([Animal" & _
"Name] = @Original_AnimalName))"

Me.m_adapter.DeleteCommand.CommandType = System.Data.CommandType.Text
Me.m_adapter.DeleteCommand.Parameters.Add(_

New System.Data.SqlClient.SqlParameter("@Original_AnimalID", _
System.Data.SqlDbType.Int, 0, System.Data.ParameterDirection.Input, 0, 0, _
"AnimalID", System.Data.DataRowVersion.Original, false, Nothing, "", "", ""))

Me.m_adapter.DeleteCommand.Parameters.Add(_
New System.Data.SqlClient.SqlParameter("@Original_AnimalName", _
System.Data.SqlDbType.VarChar, 0, _
System.Data.ParameterDirection.Input, 0, 0, _
"AnimalName", System.Data.DataRowVersion.Original, _
false, Nothing, "", "", ""))

As a matter of fact, if you look through the code of InitAdapter, the various table mappings,
adapters, and commands are set up within this private method. The full code for InitAdapter
is shown in Listings 9-11 and 9-12.

Listing 9-11. InitAdapter in C#

private void InitAdapter() {
this.m_adapter = new System.Data.SqlClient.SqlDataAdapter();
System.Data.Common.DataTableMapping tableMapping =

new System.Data.Common.DataTableMapping();
tableMapping.SourceTable = "Table";
tableMapping.DataSetTable = "Animals";
tableMapping.ColumnMappings.Add("AnimalID", "AnimalID");
tableMapping.ColumnMappings.Add("AnimalName", "AnimalName");
this.m_adapter.TableMappings.Add(tableMapping);
this.m_adapter.DeleteCommand = new System.Data.SqlClient.SqlCommand();

5122ch09.qxd 8/23/05 3:18 PM Page 258

CHAPTER 9 ■ UPDATING DATA 259

this.m_adapter.DeleteCommand.CommandText =
"DELETE FROM [dbo].[Animals] WHERE (([AnimalID] = @Original_AnimalID) AND"
+ "([Animal" + "Name] = @Original_AnimalName))";

this.m_adapter.DeleteCommand.CommandType = System.Data.CommandType.Text;
this.m_adapter.DeleteCommand.Parameters.Add(

new System.Data.SqlClient.SqlParameter("@Original_AnimalID",
System.Data.SqlDbType.Int, 0, System.Data.ParameterDirection.Input, 0, 0,
"AnimalID", System.Data.DataRowVersion.Original,
false, null, "", "", ""));

this.m_adapter.DeleteCommand.Parameters.Add(
new System.Data.SqlClient.SqlParameter("@Original_AnimalName",
System.Data.SqlDbType.VarChar, 0, System.Data.ParameterDirection.Input, 0,
0, "AnimalName", System.Data.DataRowVersion.Original, false, null,
"", "", ""));

this.m_adapter.InsertCommand = new System.Data.SqlClient.SqlCommand();
this.m_adapter.InsertCommand.Connection = this.Connection;
this.m_adapter.InsertCommand.CommandText =
"INSERT INTO [dbo].[Animals] ([AnimalID], [AnimalName]) " +
" VALUES (@AnimalID, @Animal" +
"Name);\r\nSELECT AnimalID, AnimalName FROM Animals WHERE " +
" (AnimalID = @AnimalID)";
this.m_adapter.InsertCommand.CommandType = System.Data.CommandType.Text;
this.m_adapter.InsertCommand.Parameters.Add(

new System.Data.SqlClient.SqlParameter("@AnimalID",
System.Data.SqlDbType.Int, 0, System.Data.ParameterDirection.Input, 0, 0,
"AnimalID", System.Data.DataRowVersion.Current, false, null, "", "", ""));

this.m_adapter.InsertCommand.Parameters.Add(
new System.Data.SqlClient.SqlParameter("@AnimalName",
System.Data.SqlDbType.VarChar, 0, System.Data.ParameterDirection.Input, 0,
0, "AnimalName", System.Data.DataRowVersion.Current,
false, null, "", "", ""));

this.m_adapter.UpdateCommand = new System.Data.SqlClient.SqlCommand();
this.m_adapter.UpdateCommand.Connection = this.Connection;
this.m_adapter.UpdateCommand.CommandText =
"UPDATE [dbo].[Animals] SET [AnimalID] = @AnimalID, [AnimalName] = " +
" @AnimalName WHE" +

"RE (([AnimalID] = @Original_AnimalID) AND ([AnimalName] = " +
"@Original_AnimalName))" +
";\r\nSELECT AnimalID, AnimalName FROM Animals WHERE " +
"(AnimalID = @AnimalID)";

this.m_adapter.UpdateCommand.CommandType = System.Data.CommandType.Text;
this.m_adapter.UpdateCommand.Parameters.Add(

new System.Data.SqlClient.SqlParameter("@AnimalID",
System.Data.SqlDbType.Int, 0, System.Data.ParameterDirection.Input, 0, 0,
"AnimalID", System.Data.DataRowVersion.Current, false, null, "", "", ""));

this.m_adapter.UpdateCommand.Parameters.Add(
new System.Data.SqlClient.SqlParameter("@AnimalName",

5122ch09.qxd 8/23/05 3:18 PM Page 259

CHAPTER 9 ■ UPDATING DATA260

0, "AnimalName", System.Data.DataRowVersion.Current,
false, null, "", "", ""));

this.m_adapter.UpdateCommand.Parameters.Add(
new System.Data.SqlClient.SqlParameter("@Original_AnimalID",
System.Data.SqlDbType.Int, 0, System.Data.ParameterDirection.Input, 0, 0,
"AnimalID", System.Data.DataRowVersion.Original,
false, null, "", "", ""));

this.m_adapter.UpdateCommand.Parameters.Add(
new System.Data.SqlClient.SqlParameter("@Original_AnimalName",
System.Data.SqlDbType.VarChar, 0, System.Data.ParameterDirection.Input, 0,
0, "AnimalName", System.Data.DataRowVersion.Original,
false, null, "", "", ""));

}

Listing 9-12. InitAdapter in Visual Basic .NET

Private Sub InitAdapter()
Me.m_adapter = New System.Data.SqlClient.SqlDataAdapter
Dim tableMapping As System.Data.Common.DataTableMapping = _
New System.Data.Common.DataTableMapping

tableMapping.SourceTable = "Table"
tableMapping.DataSetTable = "Animals"
tableMapping.ColumnMappings.Add("AnimalID", "AnimalID")
tableMapping.ColumnMappings.Add("AnimalName", "AnimalName")
Me.m_adapter.TableMappings.Add(tableMapping)
Me.m_adapter.DeleteCommand = New System.Data.SqlClient.SqlCommand
Me.m_adapter.DeleteCommand.Connection = Me.Connection
Me.m_adapter.DeleteCommand.CommandText = _
"DELETE FROM [dbo].[Animals] WHERE " & _
" (([AnimalID] = @Original_AnimalID) AND ([Animal"& _
"Name] = @Original_AnimalName))"
Me.m_adapter.DeleteCommand.CommandType = System.Data.CommandType.Text
Me.m_adapter.DeleteCommand.Parameters.Add(_
New System.Data.SqlClient.SqlParameter("@Original_AnimalID", _
System.Data.SqlDbType.Int, 0, System.Data.ParameterDirection.Input, 0, 0, _
"AnimalID", System.Data.DataRowVersion.Original, _
false, Nothing, "", "", ""))
Me.m_adapter.DeleteCommand.Parameters.Add(_
New System.Data.SqlClient.SqlParameter("@Original_AnimalName", _
System.Data.SqlDbType.VarChar, 0, System.Data.ParameterDirection.Input, 0, _
0, "AnimalName", System.Data.DataRowVersion.Original, _
false, Nothing, "", "", ""))
Me.m_adapter.InsertCommand = New System.Data.SqlClient.SqlCommand
Me.m_adapter.InsertCommand.Connection = Me.Connection
Me.m_adapter.InsertCommand.CommandText = _
"INSERT INTO [dbo].[Animals] ([AnimalID], " & _
" [AnimalName]) VALUES (@AnimalID, @Animal"& _

5122ch09.qxd 8/23/05 3:18 PM Page 260

CHAPTER 9 ■ UPDATING DATA 261

Global.Microsoft.VisualBasic.ChrW(10)& _
"SELECT AnimalID, AnimalName FROM Animals WHERE (AnimalID = @AnimalID)"
Me.m_adapter.InsertCommand.CommandType = System.Data.CommandType.Text
Me.m_adapter.InsertCommand.Parameters.Add(_
New System.Data.SqlClient.SqlParameter("@AnimalID", _
System.Data.SqlDbType.Int, 0, System.Data.ParameterDirection.Input, 0, 0, _
"AnimalID", System.Data.DataRowVersion.Current, false, Nothing, "", "", ""))
Me.m_adapter.InsertCommand.Parameters.Add(_
New System.Data.SqlClient.SqlParameter("@AnimalName", _
System.Data.SqlDbType.VarChar, 0, System.Data.ParameterDirection.Input, 0, _
0, "AnimalName", System.Data.DataRowVersion.Current, _
false, Nothing, "", "", ""))
Me.m_adapter.UpdateCommand = New System.Data.SqlClient.SqlCommand
Me.m_adapter.UpdateCommand.Connection = Me.Connection
Me.m_adapter.UpdateCommand.CommandText = _
"UPDATE [dbo].[Animals] SET [AnimalID] = " & _
" @AnimalID, [AnimalName] = @AnimalName WHE"& _
"RE (([AnimalID] = @Original_AnimalID) AND " & _
" ([AnimalName] = @Original_AnimalName))"& _
";"&Global.Microsoft.VisualBasic.ChrW(13)& _
Global.Microsoft.VisualBasic.ChrW(10)& _
"SELECT AnimalID, AnimalName FROM Animals WHERE (AnimalID = @AnimalID)"
Me.m_adapter.UpdateCommand.CommandType = System.Data.CommandType.Text
Me.m_adapter.UpdateCommand.Parameters.Add(_
New System.Data.SqlClient.SqlParameter("@AnimalID", _
System.Data.SqlDbType.Int, 0, System.Data.ParameterDirection.Input, 0, 0, _
"AnimalID", System.Data.DataRowVersion.Current, false, Nothing, "", "", ""))
Me.m_adapter.UpdateCommand.Parameters.Add(_
New System.Data.SqlClient.SqlParameter("@AnimalName", _
System.Data.SqlDbType.VarChar, 0, System.Data.ParameterDirection.Input, 0, _
0, "AnimalName", System.Data.DataRowVersion.Current, _
false, Nothing, "", "", ""))
Me.m_adapter.UpdateCommand.Parameters.Add(_
New System.Data.SqlClient.SqlParameter("@Original_AnimalID", _
System.Data.SqlDbType.Int, 0, System.Data.ParameterDirection.Input, 0, 0, _
"AnimalID", System.Data.DataRowVersion.Original, _
false, Nothing, "", "", ""))
Me.m_adapter.UpdateCommand.Parameters.Add(_
New System.Data.SqlClient.SqlParameter("@Original_AnimalName", _
System.Data.SqlDbType.VarChar, 0, System.Data.ParameterDirection.Input, 0, _
0, "AnimalName", System.Data.DataRowVersion.Original, _
false, Nothing, "", "", ""))

End Sub

Now before I drown you in any more code, if you look through Listings 9-11 and 9-12, the
SQL query that gets executed finally for deletion of a record identified by AnimalID and
AnimalName looks like this:

5122ch09.qxd 8/23/05 3:18 PM Page 261

CHAPTER 9 ■ UPDATING DATA262

DELETE FROM [dbo].[Animals]
WHERE
(([AnimalID] = @Original_AnimalID) AND ([AnimalName] = @Original_AnimalName))

If you look through the code, you’ll see the same pattern repeat for UpdateCommand and
InsertCommand. These commands, as you have already seen in Chapter 5, are the purely connected
method of executing a prepared SQL command on the database.

Finally, look up the definition of Update(testDataSet dataSet). As you might expect, this
overload is responsible for taking whatever changes a DataSet might have and persisting them
to the database. This is shown in Listings 9-13 and 9-14.

Listing 9-13. AnimalsTableAdapter.Update(testDataSet dataSet) Method in C#

public virtual int Update(testDataSet dataSet) {
return this.Adapter.Update(dataSet, "Animals");

}

Listing 9-14. AnimalsTableAdapter.Update(testDataSet dataSet) Method in Visual Basic .NET

Public Overloads Overridable Function Update(ByVal dataSet As TestDataSet) _
As Integer
Return Me.Adapter.Update(dataSet, "Animals")

End Function

So the code for updating the entire DataSet, going through each table, each row, and making
decisions for what needs to be done to each row (add/insert/delete/leave alone) is done by
Listings 9-13 and 9-14. Why is the code so simple? Just a call to SqlDataAdapter.Update? As you’ll
see later in this chapter, the Update method does all that work for you. It does this by looking at
the RowState on each row, one by one, and then calling the necessary SqlCommand specified as
properties InsertCommand, UpdateCommand, and DeleteCommand on the SqlDataAdapter.

That brings up another interesting point. You never specified an InsertCommand,
UpdateCommand, or DeleteCommand. All you did was specify a SelectCommand, and based upon the
first checkbox you checked in Figure 9-7, these commands were “automagically” generated for
you. These commands were generated by the SqlCommandBuilder object.

Next, let’s look at the SqlCommandBuilder object and see how you can leverage it to generate
commands for you, in a slightly non-drag-and-drop approach.

Using the Command Builder Object
In the previous example, you saw how a drag-and-drop operation on a single table allows you to
create various commands and a fully functional application with very little code. You also saw how
the SelectCommand is really the only command you specify yourself, all other commands are gen-
erated for you behind the scenes. These commands are generated by theSqlCommandBuilder
object.

Upon closer examination, the command generated for you is probably not the most efficient
command, an instance of which can be seen in the UpdateCommand.CommandText here:

5122ch09.qxd 8/23/05 3:18 PM Page 262

CHAPTER 9 ■ UPDATING DATA 263

UPDATE
[dbo].[Animals] SET [AnimalID] = @AnimalID,
[AnimalName] = @AnimalName

WHERE
(([AnimalID] = @Original_AnimalID) AND ([AnimalName] = @Original_AnimalName))
;

SELECT AnimalID, AnimalName FROM Animals WHERE (AnimalID = @AnimalID)

This generated SQL query is simply awful! It not only tries to update the primary key, so
you need to be very sure that you don’t mess that up, but also it compares every single column
in your WHERE clause. As you can see, in this case, you had only two columns involved, but on
UPDATE, just to be very sure that concurrency conflicts are taken care of, the autogenerated code
takes the extra-safe approach of comparing every column during an update with the original
values. Obviously, you can specify your own command text values in the properties of the
TableAdapter. As a matter of fact, for complicated queries involving multiple tables, you’ll have
to specify these commands yourself.

The SqlCommandBuilder object uses the SelectCommand specified to retrieve the metadata
from the database directly. If the SelectCommand changes, you should call the RefreshSchema
method on the SqlCommandBuilder object to refresh the rest of the commands. The criteria for
the command builder to work is that the SelectCommand specified must act against only one
table, and at least the primary key or a unique column must be a part of the retrieved results.
If these conditions are not met, you will get an InvalidOperationException. Obviously, there is
no free trip in life, nor in ADO.NET, so generating these queries is going to require some extra
work, typically an extra query on the database schema.

By default the CommandBuilder does not generate very efficient queries, but it takes a super
safe approach by comparing all columns during an UPDATE, INSERT, or DELETE operation. This is
probably the safest and most database-portable approach as it doesn’t use any database-specific
features (such as a timestamp in Microsoft SQL Server). At the same time, however, it’s also
probably the most inefficient approach simply because the WHERE clause is too complicated.

As it turns out, you can specify to the CommandBuilder object that you do not wish to use such
a safe and inefficient approach using the ConflictOptionproperty. This is a new feature in .NET 2.0.
Let’s see this using an example. The code for this example can be downloaded as a Console appli-
cation in the associated code download under Exercise 9.2 or it may be created by following
these steps:

1. Begin by creating a Console application. Name it Exercise 9.2. Also create a table called
Animals2, with structure similar to the one used in Exercise 9.1, but with an additional
Timestamp column. You can find the SQL script to create such a table in the associated
code download under Exercise 9.2.

2. The purpose of this exercise is to experiment with the CommandBuilder object. There are
two ways to instantiate a CommandBuilder object: the first is by using the default con-
structor followed by setting the DataAdapter as a property. The second is by specifying
the DataAdapter as a parameter to the constructor. For this example, to save us some
typing, let’s go with the second approach as shown in the following code:

5122ch09.qxd 8/23/05 3:18 PM Page 263

CHAPTER 9 ■ UPDATING DATA264

C#

SqlDataAdapter myDataAdapter =
new SqlDataAdapter("Select * from Animals2", connectionString);

SqlCommandBuilder cmdBldr = new SqlCommandBuilder(myDataAdapter) ;

VB.NET

Dim myDataAdapter As SqlDataAdapter = _
New SqlDataAdapter("Select * from Animals2", connectionString)

Dim cmdBldr As SqlCommandBuilder = New SqlCommandBuilder(myDataAdapter)

3. That’s it. All you need to do now is check the various commands generated by the com-
mand builder. As an example, let’s look at the update command, which can be seen in
the following code:

C#

Console.WriteLine("Update Command = ");
Console.WriteLine(cmdBldr.GetUpdateCommand().CommandText);

VB.NET

Console.WriteLine("Update Command = ")
Console.WriteLine(cmdBldr.GetUpdateCommand().CommandText)

4. Compile and run the application. Note the command text generated by the
GetUpdateCommand method. Your results should look similar to those shown here:

UPDATE [Animals2] SET [Animal2ID] = @p1, [AnimalName] = @p2
WHERE (([Animal2ID]= @p3) AND ([AnimalName] = @p4))

5. As you can see in parameters p3 and p4, the data adapter is supposed to substitute the
original column values, thus the generated command checks for all columns during an
update, just to be very sure there is no concurrency conflict. Now, go ahead and modify
the code, and add an additional line to set a value for the command builder’s
ConflictOption property. Also set the ConflictOption’s value from the default value of
CompareAllSearchableValues to CompareRowVersion. The full code is now shown here:

C#

SqlDataAdapter myDataAdapter =
new SqlDataAdapter("Select * from Animals2", connectionString);

SqlCommandBuilder cmdBldr = new SqlCommandBuilder(myDataAdapter) ;

cmdBldr.ConflictOption = ConflictOption.CompareRowVersion;

5122ch09.qxd 8/23/05 3:18 PM Page 264

CHAPTER 9 ■ UPDATING DATA 265

Console.WriteLine("Update Command = ");
Console.WriteLine(cmdBldr.GetUpdateCommand().CommandText);

VB.NET

Dim myDataAdapter As SqlDataAdapter = _
New SqlDataAdapter("Select * from Animals2", connectionString)

Dim cmdBldr As SqlCommandBuilder = New SqlCommandBuilder(myDataAdapter)

cmdBldr.ConflictOption = ConflictOption.CompareRowVersion

Console.WriteLine("Update Command = ")
Console.WriteLine(cmdBldr.GetUpdateCommand().CommandText)

6. Compile and run the application, and examine the value of the update command’s text
once again. You should receive results as shown here:

UPDATE [Animals2] SET [Animal2ID] = @p1, [AnimalName] = @p2
WHERE (([Timestamp] = @p3))

Note that if you had not used a table with a Timestamp data type, you would have gotten
an exception. The Timestamp data type column in SQL Server is a special column that
changes its value every time the row’s value changes; therefore, it’s a great way to check
for concurrency conflicts in an efficient manner.

7. Now change the ConflictOption to OverwriteChanges, and examine the generated update
command’s command text. It should look like as shown here:

UPDATE [Animals2] SET [Animal2ID] = @p1, [AnimalName] = @p2
WHERE (([Animal2ID] = @p3))

In this case, you’re instructing the command builder to not worry about concurrency
and overwrite the previous values; therefore, the statement checks only for the primary
key in its WHERE clause.

8. Thus, you can see how to leverage the CommandBuilder object to generate queries for you,
plus you get some extra flexibility by using the ConflictOption property that you do not
get in a pure drag-and-drop operation. This reinforces the notion that your data layer is
as efficient and clean as the amount of effort you are willing to put into it. The more-effort
approach of getting down and dirty and writing all your SQL yourself might be the best
choice in a high-demand enterprise application anyway. Needless to say, 500 monkeys
dragging and dropping 2,000 tables in an enterprise application will not necessarily be
a good solution.

Now for a moment look at Listings 9-13 and 9-14 again. Specifically, this part:

C#

this.Adapter.Update(dataSet, "Animals");

5122ch09.qxd 8/23/05 3:18 PM Page 265

CHAPTER 9 ■ UPDATING DATA266

VB.NET

Me.Adapter.Update(dataSet, "Animals")

As you have already seen, in Chapter 7, the DataAdapter object acts as the gatekeeper
between the connected world and the disconnected world. Also you saw in Chapter 6 how the
DataSet and DataTable objects not only hold data for you in a disconnected cache, but also
maintain some history of the changes being done to the data. It’s that historical change infor-
mation that lets the previous simple one-line statement decide what action needs to be taken
on each row in each table of the DataSet.

State Management in a DataRow and Its Use in
Updating Data
A DataSet allows you to store data fetched from an underlying data source or otherwise in
a disconnected fashion. You have already been introduced to DataSets and fetching data into
a DataSet.

But fetching data from the data source and holding it in a disconnected fashion is only half
the story. Your application will probably make numerous changes to the data while keeping it
disconnected from the underlying data source and finally reconnect using a data adapter via
the Update method call. Also, just by calling Update on the data adapter, the application will also
expect the underlying data adapter to magically understand which rows need to be updated,
inserted, or deleted and expect the changes be persisted properly.

In this scenario of connect, fetch, disconnect, modify, reconnect, and persist changes,
a number of things might need to be taken care of:

• You might need to figure out what rows were inserted, deleted, or updated.

• Other users could have saved their changes in the meantime, and the queried data you
hold in a disconnected cache might not be valid anymore.

• The key values generated by you for newly inserted records might not be correct.

• After you do manage to do an update properly, you would probably need to fetch
a refresh of the current data back to the application.

As it turns out, the DataSet, DataTable, and other objects that compose the disconnected
part of ADO.NET do support a number of features that allow you to address all these issues
appropriately.

At the heart of it all is the DataRow.RowState property. The DataRow.RowState property is of type
DataRowState enumeration. Table 9-1 shows you various values for the DataRowState enumeration.

Table 9-1. The DataRowState Enumeration

Constant Value Description

Detached 1 A DataRow can be connected to a maximum of one DataTable at any
given time. If it is not connected to any DataTable, then the row’s state
is detached.

UnChanged 2 This row was fetched from the data source and no changes have been

5122ch09.qxd 8/23/05 3:18 PM Page 266

CHAPTER 9 ■ UPDATING DATA 267

Figure 9-10. Current data in the database

Constant Value Description

Deleted 8 This row was fetched from the data source and then deleted from the
DataTable. During an Update, the data adapter will execute
a DeleteCommand on it.

Added 4 This row was not fetched from the data source, it was added in the
DataTable. During an Update, the data adapter will execute an
InsertCommand on it.

Modified 16 This row was fetched from the data source but has been modified since.
During an Update, the data adapter will execute an UpdateCommand on it.

As you can see from Table 9-1, ADO.NET can identify what happened to each row by
examining its RowState. Also, you can see from Table 9-1 how the data adapter’s Update command
is able to discern between what it needs to do to a row based upon the RowState property of
the DataRow.

Let’s examine this using an exercise that demonstrates all five row states. In this exercise,
the database already contains some data as shown in Figure 9-10.

This provides the application with enough use cases to simulate any of the row states in
Table 9-1. In this exercise, the data shown in Figure 9-10 is fetched into a DataTable inside
a Console application and various row states are examined. After that is done, the following
changes will occur:

• The first row identifying a Puppy is changed to “Dog”.

• The second row identifying a Cat is deleted.

• The third row identifying a Horse is left untouched.

• A fourth row is added that identifies a Camel.

• And a fifth row is created using the method, but it’s not added to the DataTable.

5122ch09.qxd 8/23/05 3:18 PM Page 267

CHAPTER 9 ■ UPDATING DATA268

Without much further delay, let’s start writing an application that will perform these oper-
ations on various DataRows in a DataTable:

1. Begin by creating a new Console application. Name it Exercise 9.3.

2. Add a helper function to help you display the row states for the AnimalsTable. This can
be seen in Listings 9-15 and 9-16.

Listing 9-15. Displaying the Row States in C#

private static void DisplayRowStates(string Message, DataTable table)
{

Console.Clear();
Console.WriteLine("\n");
Console.WriteLine(Message);
Console.WriteLine("---");

foreach (DataRow dr in table.Rows)
{

Console.WriteLine(dr.RowState.ToString());
}

Console.WriteLine("\nPress Enter to Continue ..") ;
Console.Read() ;

}

Listing 9-16. Displaying the Row States in Visual Basic .NET

Private Sub DisplayRowStates(_
ByVal Message As String, ByVal table As DataTable)
Console.Clear()
Console.WriteLine(vbCrLf)
Console.WriteLine(Message)
Console.WriteLine("---")

Dim dr As DataRow
For Each dr In table.Rows

Console.WriteLine(dr.RowState.ToString())
Next

Console.WriteLine(vbCrLf + "Press Enter to Continue ..")
Console.ReadLine()

End Sub

3. Write code to fill in a DataTable and display the row states. This has been covered in
depth in Chapter 7. The code can be seen in Listings 9-17 and 9-18.

5122ch09.qxd 8/23/05 3:18 PM Page 268

CHAPTER 9 ■ UPDATING DATA 269

Listing 9-17. Filling a DataTable and Displaying the Row States in C#

static void Main(string[] args)
{

using (SqlConnection testConnection = new SqlConnection(connectionString))
{

SqlCommand testCommand = testConnection.CreateCommand();
testCommand.CommandText = "Select * from Animals";
SqlDataAdapter sqlDa = new SqlDataAdapter(testCommand);
DataTable animalsTable = new DataTable("Animals");
sqlDa.Fill(animalsTable);

DisplayRowStates(
"Row states for a freshly filled DataTable:",animalsTable);

}
}

Listing 9-18. Filling a DataTable and Displaying the Row States in Visual Basic .NET

Sub Main()
Using testConnection As SqlConnection = New SqlConnection(connectionString)

Dim testCommand As SqlCommand = testConnection.CreateCommand()
testCommand.CommandText = "Select * from Animals"
Dim sqlDa As SqlDataAdapter = New SqlDataAdapter(testCommand)
Dim animalsTable As DataTable = New DataTable("Animals")
sqlDa.Fill(animalsTable)

DisplayRowStates(_
"Row states for a freshly filled DataTable:", animalsTable)

End Using
End Sub

4. Compile and run the application. You should see output as shown in Figure 9-11.

Figure 9-11. Row states for a freshly filled DataTable

5122ch09.qxd 8/23/05 3:18 PM Page 269

CHAPTER 9 ■ UPDATING DATA270

Well, that makes sense. So far you haven’t made any changes to the rows, so all the
rows correctly report the row states as unchanged.

5. Next, do the following changes:

• The first row identifying a Puppy is changed to “Dog”.

• The second row identifying a Cat is deleted.

• The third row identifying a Horse is left untouched.

• A fourth row is added that identifies a Camel.

These changes can be seen in Listings 9-19 and 9-20.

Listing 9-19. Making Changes to the DataTable in C#

DataRow rowInQuestion;
// Make Changes - Modify the puppy
rowInQuestion = animalsTable.Rows[0];
rowInQuestion["AnimalName"] = "Dog";
// Make Changes - Delete the cat
rowInQuestion = animalsTable.Rows[1];
rowInQuestion.Delete();
// Leave the Horse untouched.
// Make Changes - Insert a camel
rowInQuestion = animalsTable.NewRow();
rowInQuestion["AnimalID"] = 4;
rowInQuestion["AnimalName"] = "Camel";
animalsTable.Rows.Add(rowInQuestion);

DisplayRowStates("Row states for a modified DataTable:", animalsTable);

Listing 9-20. Making Changes to the DataTable in Visual Basic .NET

Dim rowInQuestion As DataRow
' Make Changes - Modify the puppy
rowInQuestion = animalsTable.Rows(0)
rowInQuestion("AnimalName") = "Dog"
' Make Changes - Delete the cat
rowInQuestion = animalsTable.Rows(1)
rowInQuestion.Delete()
' Leave the Horse untouched.
' Make Changes - Insert a camel
rowInQuestion = animalsTable.NewRow()
rowInQuestion("AnimalID") = 4
rowInQuestion("AnimalName") = "Camel"
animalsTable.Rows.Add(rowInQuestion)

DisplayRowStates("Row states for a modified DataTable:", animalsTable)

5122ch09.qxd 8/23/05 3:18 PM Page 270

CHAPTER 9 ■ UPDATING DATA 271

Figure 9-12. Row states for a modified DataTable

6. Compile and run the application. You should see output that looks like Figure 9-12.

As you can see, the rows appear to have the correct row states clearly identifying which rows
have been Modified, Deleted, and Added, and which ones that have been left Unchanged.

7. Now similar to the Camel row, create a new row, but don’t add it to the animalsTable
DataTable. Then check the row state of this new row:

C#

rowInQuestion = animalsTable.NewRow();
rowInQuestion["AnimalID"] = 5;
rowInQuestion["AnimalName"] = "Monkey";

VB.NET

rowInQuestion = animalsTable.NewRow()
rowInQuestion("AnimalID") = 5
rowInQuestion("AnimalName") = "Monkey"

When you compile and run the application, you can see the output the previous line
produces as Monkey row’s RowState: Detached. Thus, when a DataRow is not associated
or a part of any DataRowCollection as a Rows property of a DataTable, its RowState is
Detached. Indeed, if you were to iterate through the various rows in animalsTable after
this code executes, you would note that the rowInQuestion with AnimalName = "Monkey"
is not a part of the animalsTable.

8. Next comes being able to update these changes back into the database. When the code
calls sqlDa.Update and passes the animalsTable as a parameter, the data adapter will
iterate through each row and call the InsertCommand for DataRowState.Added,
UpdateCommand for DataRowState.Modified, and DeleteCommand for DataRowState.
Deleted. The detached rows are not a part of the DataTable so they will be ignored,

ed too.

5122ch09.qxd 8/23/05 3:18 PM Page 271

CHAPTER 9 ■ UPDATING DATA272

For the rest of the rows, depending on the exact nature of the change, the RowState of
the DataRow gets the appropriate value. Depending upon the RowState, the appropriate
command as a property of the data adapter executes. The properties that hold the nec-
essary commands are DeleteCommand, InsertCommand, and UpdateCommand.

But first you have to specify the DeleteCommand, UpdateCommand, and InsertCommand
properties. Now you could specify any valid SQL command here, including stored pro-
cedures, but for the sake of simplicity, let’s just go ahead and use the SqlCommandBuilder
object covered in the previous section. The code can be seen in Listings 9-21 and 9-22.

Listing 9-21. Setting Various Commands in C#

// Update the changes back to the database.
SqlCommandBuilder cmbldr = new SqlCommandBuilder(sqlDa);

// Setup Update Command
sqlDa.UpdateCommand = cmbldr.GetUpdateCommand();
Console.WriteLine("Update Command: " + sqlDa.UpdateCommand.CommandText);

// Setup Insert Command
sqlDa.InsertCommand = cmbldr.GetInsertCommand();
Console.WriteLine("Insert Command: " + sqlDa.InsertCommand.CommandText);

// Setup Delete Command
sqlDa.DeleteCommand = cmbldr.GetDeleteCommand() ;
Console.WriteLine("Delete Command: " + sqlDa.DeleteCommand.CommandText);

sqlDa.Update(animalsTable);

Listing 9-22. Setting Various Commands in Visual Basic .NET

' Update the changes back to the database.
Dim cmbldr As SqlCommandBuilder = New SqlCommandBuilder(sqlDa)

' Setup Update Command
sqlDa.UpdateCommand = cmbldr.GetUpdateCommand()
Console.WriteLine("Update Command: " + sqlDa.UpdateCommand.CommandText)

' Setup Insert Command
sqlDa.InsertCommand = cmbldr.GetInsertCommand()
Console.WriteLine("Insert Command: " + sqlDa.InsertCommand.CommandText)

' Setup Delete Command
sqlDa.DeleteCommand = cmbldr.GetDeleteCommand()
Console.WriteLine("Delete Command: " + sqlDa.DeleteCommand.CommandText)

sqlDa.Update(animalsTable)

5122ch09.qxd 8/23/05 3:18 PM Page 272

CHAPTER 9 ■ UPDATING DATA 273

9. Before you compile and run the application, set up a trace on the local SQL Server (or
whatever database server you are running against). The purpose of the trace is to be
able to capture all queries being sent to the database.

10. With the trace running, compile and run the application. The application will report
that it has set the UpdateCommand to

UPDATE [Animals]
SET [AnimalID] = @p1, [AnimalName] = @p2
WHERE (([AnimalID] = @p3) AND ([AnimalName] = @p4))

the InsertCommand to

INSERT INTO [Animals] ([AnimalID], [AnimalName]) VALUES (@p1, @p2)

and the DeleteCommand to

DELETE FROM [Animals] WHERE (([AnimalID] = @p1) AND ([AnimalName] = @p2))

As per the Profiler/SQL trace results, the following SQL statements were executed:

UPDATE [Animals]
SET [AnimalName] = @p1
WHERE
(([AnimalID] = @p2) AND
([AnimalName] = @p3))',N'@p1 varchar(3),@p2 int,
@p3 varchar(5)',@p1='Dog',@p2=1,@p3='Puppy'

So, as per these SQL statements, the Dog row, whose DataRowState you changed to Modified,
had the UpdateCommand run on it with the appropriate parameter values specified.

DELETE FROM [Animals]
WHERE
(([AnimalID] = @p1) AND
([AnimalName] = @p2))',N'@p1 int,@p2 varchar(3)',@p1=2,@p2='Cat'

As per these SQL statements, the Cat row was deleted from the database. For rows with
DataRowState = Deleted, the command specified in the DeleteCommand property was
executed.

INSERT INTO [Animals] ([AnimalID], [AnimalName])
VALUES (@p1, @p2)',N'@p1 int,@p2 varchar(5)',@p1=4,@p2='Camel'

And finally as per these SQL statements, the command specified in the InsertCommand
gets executed for DataRowState = Added, in our case the Camel row.

11. Next, check the final row states of the updated DataTable using the following code
snippet:

5122ch09.qxd 8/23/05 3:18 PM Page 273

CHAPTER 9 ■ UPDATING DATA274

Figure 9-13. Final row states after a successful update

C#

DisplayRowStates("Final Row States:", animalsTable);

VB.NET

DisplayRowStates("Final Row States:", animalsTable)

The output should look like as shown in Figure 9-13.

Thus, you can see from Figure 9-13 that after a successful update, the data adapter not
only acts upon the right rows with the right commands, but it also changes the row states
to Unchanged.

12. There is one big drawback of this code. For three updates, you ended up making three
database trips. There are multiple ways to get around this issue. One approach could be
to use XML or a comma-delimited string passed directly into a stored procedure. But
a rather easy quick-fix approach would be to use the UpdateBatchSize property on the
SqlDataAdapter. Just before the Update statement, add the UpdateBatchSize as follows:

C#

sqlDa.UpdateBatchSize = 3;

VB.NET

sqlDa.UpdateBatchSize = 3

Now restore the Animals table in the database to the original three rows and rerun the
application to view similar results. If you were, however, expecting to see one single
batched SQL statement being sent to the database per the SQL Profiler trace, you might
be in for a surprise. In fact, the SQL Profiler does not report any difference, but network
roundtrips are still saved. Instead of implementing batched support in SQL, ADO.NET

Tabular Data Stream) protocol level.

5122ch09.qxd 8/23/05 3:18 PM Page 274

CHAPTER 9 ■ UPDATING DATA 275

WHY IS BATCHING IMPLEMENTED IN TDS AND NOT IN SQL?

Batch updating works in a rather interesting fashion. Say your INSERT command’s text looks like this:

INSERT INTO Customer (id, name) VALUES (@id, @name);

and the update command’s text looks like this:

UPDATE Customer SET name = @name WHERE id=@id;

Now, the logical way to think is that maybe the DataAdapter, at least in the case of SqlClient,
should just batch these two commands together as shown here:

INSERT INTO Customer (id, name) VALUES (@id, @name);
UPDATE Customer SET name = @name WHERE id=@id;

The problem is immediately apparent: the same parameter name is used multiple times. Now maybe
the DataAdapter could parse through the query contents and rename the parameters, but not only is that
a lot of work that requires a lot of code (which means it is prone to a lot of bugs), but also there is an upper
limit of 2,100 parameters that a SqlCommand can have. Because individual commands may have a varying
number of parameters, batching the commands is not the answer. Another significant disadvantage is that
the query structure can change with the DataTable changes, which means that the query plans cache will
not be used optimally in the database.

Instead, by setting a BatchSize on the SqlDataAdapter object, it uses a much simpler approach at
the TDS protocol level. For batched statements, instead of executing one command and putting an end
marker on the communication, ADO.NET simply puts another command start marker and executes another
command. This way it saves on multiple roundtrips in a simple and elegant manner behind the scenes.

In order to see batching work, the only difference you’ll notice as a programmer is a significant perfor-
mance gain. If you wanted to delve behind the scenes, you would have to use a network sniffer such as Snort
to examine the packets, as SQL Profiler will still show you individual commands being executed one by one.

Exercise 9.3 demonstrated editing a simple example of a handwritten piece of code (as
opposed to one generated using drag and drop) that has the ability to perform various updates
on a single table. As it turns out, when you have other real-world issues to take care of, such as
multiple tables and concurrency issues, the situation gets a bit more not so straightforward. Those
scenarios will be covered in the next chapter.

One big downside of using a DataAdapter is the fact that it treats every single row as an individ-
ual entity and insists on executing a SQL command for each row modification—add, modify, or
delete. In .NET 1.1, this would have caused a network roundtrip for each changed row; however,
.NET 2.0 provides you with an UpdateBatchSize property that alleviates the situation to some
extent, but it is nowhere close to being suitable for data transfer operations between multiple
databases.

Again, fortunately for this specific purpose, a new class has been introduced in .NET Frame-
work called the SqlBulkCopy class.

5122ch09.qxd 8/23/05 3:18 PM Page 275

CHAPTER 9 ■ UPDATING DATA276

Moving Large Amounts of Data: SqlBulkCopy
If you ask your local database administrator how he moves massive amounts of data between
databases, the answer you’ll get will probably be either by BCP (Bulk Copy) or DTS (Data
Transformation Services). This is for a good reason. BCP and DTS both work much faster than
a row by row SQL statement insert would be.

In .NET Framework 1.1, if you wanted to implement the functionality of copying over vast
amounts of data between databases, the DataSet or data adapter would have been a very poor
choice. This is because filling the DataSet, sending it across, changing all row states, iterating
over each single row, and executing one SQL command per row would take so long that it
would be simply impractical (though I have seen applications that try that anyway, and, of
course, that is clearly bad architecture).

Even in .NET Framework 1.1, the better approach would be to export a DTS package as
Visual Basic 6.0 code and convert it to .NET using some interop for the COM objects involved, or
maybe even just save it as a DTS package in SQL Server and start it through SQL executed via
ADO.NET. That approach would work screamingly faster than a DataSet/data adapter approach.

However, that is not a fully managed solution. Not only that, if your primary language of
choice is C#, you would have to perform the additional step of converting from VB.NET to C#.

.NET 2.0, however, has introduced a new class specifically for this purpose: the SqlBulkCopy
class. Put simply, SqlBulkCopy copies data from one table to another over two different open
SqlConnections. The two different open SqlConnections can also point to the same database if
that is what you prefer, or they may point to different databases. Let’s review this concept
using a code example.

You can download the code for this sample in the associated code download under the
SqlBulkCopy example, or you may simply follow these steps:

1. Start by adding a new Console application, and name it SqlBulkCopy.

2. The purpose of this application is to demonstrate the rather fast copying of data between
two tables of identical structure. So naturally the first step is to create two tables of iden-
tical structure. You can easily achieve this with the following SQL statement:

Create Table AnimalsCopy as Select * from Animals where 1 = 2

3. Since the application works with the same database, you’ll need only one connection
string; however, you’ll need two different SqlConnections: one for the data reader that the
SqlBulkCopy will read from, and one for SqlBulkCopy itself. So let’s start by creating the
data reader that will read from the Animals table. This can be seen in the following code:

C#

using (SqlConnection firstConnection = new SqlConnection(connectionString))
{

SqlCommand cmdAnimals = firstConnection.CreateCommand();
cmdAnimals.CommandText = "Select * from Animals";
firstConnection.Open();
SqlDataReader dr = cmdAnimals.ExecuteReader();
...

5122ch09.qxd 8/23/05 3:18 PM Page 276

CHAPTER 9 ■ UPDATING DATA 277

...
} // Dispose is called on firstConnection

VB.NET

Using firstConnection As SqlConnection = New SqlConnection(connectionString)
Dim cmdAnimals As SqlCommand = firstConnection.CreateCommand()
cmdAnimals.CommandText = "Select * from Animals"
firstConnection.Open()
Dim dr As SqlDataReader = cmdAnimals.ExecuteReader()
...
...

End Using ' Dispose is called on firstConnection

4. The second part of the application uses the SqlBulkCopy object instance to insert data
read from the created data reader into the AnimalsCopy table. This can be done easily
using the bold sections of the following code:

C#

using (SqlConnection firstConnection = new SqlConnection(connectionString))
{

SqlCommand cmdAnimals = firstConnection.CreateCommand();
cmdAnimals.CommandText = "Select * from Animals";
firstConnection.Open();
SqlDataReader dr = cmdAnimals.ExecuteReader();

using (SqlConnection secondConnection =
new SqlConnection(connectionString))

{
SqlBulkCopy bc = new SqlBulkCopy(secondConnection);
bc.DestinationTableName = "AnimalsCopy";
bc.WriteToServer(dr);
bc.Close();
dr.Close();

} // Dispose is called on firstConnection
}

VB.NET

Using firstConnection As SqlConnection = New SqlConnection(connectionString)
Dim cmdAnimals As SqlCommand = firstConnection.CreateCommand()
cmdAnimals.CommandText = "Select * from Animals"
firstConnection.Open()
Dim dr As SqlDataReader = cmdAnimals.ExecuteReader()

5122ch09.qxd 8/23/05 3:18 PM Page 277

CHAPTER 9 ■ UPDATING DATA278

Using secondConnection As SqlConnection = _
New SqlConnection(connectionString)
Dim bc As SqlBulkCopy = _

New SqlBulkCopy(secondConnection)
bc.DestinationTableName = "AnimalsCopy"
bc.WriteToServer(dr)
bc.Close()
dr.Close()

End Using ' Dispose is called on secondConnection
End Using ' Dispose is called on firstConnection

5. That’s it. Compile and run the application to copy rows from one table to another in
a screamingly fast manner. As an exercise, connect to a larger table and write up an
equivalent application leveraging DataSets and data adapters, and notice the time it
takes in comparison with SqlBulkCopy. You’ll see that SqlBulkCopy is hundreds to thou-
sands of times faster.

So far you have seen the ability to persist the changes back into the database once you
have made changes to the disconnected data cache. An important facet Exercise 9.3 touched
upon was the ability to edit and update a disconnected data cache, such as a DataTable. In
Exercise 9.3, you saw examples of adding, modifying, and deleting existing data in a DataTable.
Before going any further, let’s strengthen our foundation by discussing the various methods
available to you, as an application developer, to edit data in a disconnected form.

Editing Disconnected Data
The various objects in ADO.NET that compose the disconnected part of ADO.NET offer the
ability to make edits or modifications to themselves, while remembering to some extent the
various edits done on themselves. As on a database, there are mainly three kinds of modification
operations you could perform on disconnected data:

• Add new rows

• Modify existing rows

• Delete existing rows

As it turns out, ADO.NET gives you more than one option and more than one object to
achieve this goal.

Add New Rows
There are two ways to add a new row to a DataTable, and two ways to add existing rows (from
other DataTables or Detached rows) to a DataTable.

Let’s look at adding new rows first. The first way assumes that you have a schema or at least
a structure preloaded to the DataTable. This is usually a shortcut way to generate a new row with
all the relevant columns and their various properties set. This can be seen in the code here:

5122ch09.qxd 8/23/05 3:18 PM Page 278

CHAPTER 9 ■ UPDATING DATA 279

C#

rowInQuestion = animalsTable.NewRow();
rowInQuestion["AnimalID"] = 4;
rowInQuestion["AnimalName"] = "Camel";
animalsTable.Rows.Add(rowInQuestion);

VB.NET

rowInQuestion = animalsTable.NewRow()
rowInQuestion("AnimalID") = 4
rowInQuestion("AnimalName") = "Camel"
animalsTable.Rows.Add(rowInQuestion)

If, instead, you’re working with a DataView object attached to a DataTable, you can use the
AddNew method on DataView to achieve the same results.

The second method to add a new DataRow into a DataTable is to use the LoadDataRow
method. This method allows you to add a new DataRow and set its various values in one con-
venient method call. This is shown here:

C#

object[] rowVals = {"4", "Camel"} ;
animalsTable.LoadDataRow(rowVals, false);

VB.NET

Dim rowVals() As Object = {"4", "Camel"}
animalsTable.LoadDataRow(rowVals, False)

An interesting difference between these two methods is that the first method will add the
new row and set its RowState property to DataRowState.Added. You can, at this point, call
AcceptChanges to change the row state to DataRowState.Unmodified for all such rows in the
DataTable or DataSet. The second method, however, allows you to pass in a second parameter,
which if set to true, will not only add the row, but also set its RowState to DataRowState.Unmodified.

In addition, two methods exist for adding existing DataRows to a DataTable. The first is the
ImportRow method, which simply takes a DataRow as a parameter, and the second is the Merge
method, which merges two sets of disconnected data (DataSet, DataTable, DataRow array, etc.).
The Merge method will be covered in detail later in this chapter.

Modify Existing Rows
Modifying existing rows is easy. You just find the right row and the right column and assign it
a value. This is shown in the code snippet here:

5122ch09.qxd 8/23/05 3:18 PM Page 279

CHAPTER 9 ■ UPDATING DATA280

C#

rowInQuestion = animalsTable.Rows[0];
rowInQuestion["AnimalName"] = "Dog";

VB.NET

rowInQuestion = animalsTable.Rows(0)
rowInQuestion("AnimalName") = "Dog"

The DataRowState at the end of this edit would be Modified. By now you might already
know this, but I must reiterate, modifying a row as shown in an in-memory disconnected cache
does not mean that the underlying database got modified too. The database does not get modi-
fied unless you successfully call an Update on the relevant data adapter.

There is another way of modifying rows. The DataRow object has a method called BeginEdit,
and a matching method called EndEdit. You can modify the rows between these two method
calls. The difference here is that all the changes are buffered until you call EndEdit. If, in case
you change your mind, you call CancelEdit instead, all the changes are rolled back. This can
be seen in the following code snippet:

C#

rowInQuestion = animalsTable.Rows[0];
rowInQuestion.BeginEdit();
rowInQuestion["AnimalName"] = "Dog";
rowInQuestion.EndEdit() ; // This could have been rowInQuestion.CancelEdit() also

VB.NET

rowInQuestion = animalsTable.Rows(0)
rowInQuestion.BeginEdit()
rowInQuestion("AnimalName") = "Dog"
rowInQuestion.EndEdit()'This could have been rowInQuestion.CancelEdit() also

Finally, there is yet another way of modifying rows. You can modify a row by simply loading
an object array into the ItemArray property of a DataRow as shown here:

C#

rowInQuestion = animalsTable.Rows[0];
rowInQuestion.ItemArray = new object[] {null, "Dog"} ;

VB.NET

rowInQuestion = animalsTable.Rows(0)
rowInQuestion.ItemArray = New Object() {Nothing, "Dog"}

5122ch09.qxd 8/23/05 3:18 PM Page 280

CHAPTER 9 ■ UPDATING DATA 281

When using the ItemArray property, by specifying certain columns as null or Nothing, those
values are not changed.

If, instead, you are working with a DataView object, you can identify the individual
DataRowView object you are interested in, and then use the BeginEdit/EndEdit methods just as
you would on a DataRow. In addition, you could access the DataRow directly using the Row prop-
erty on the DataRowView object. This makes sense since a DataRowView object is working with the
relevant DataRow object behind the scenes.

There are, however, two interesting properties on the DataRowView object: the IsEdit and
IsNew properties. These two properties can be used to identify if a row is being edited, and if the
row being edited is new or not.

Delete Existing Rows
Deleting a row is really straightforward. You just call the DELETE method on it as shown here:

C#

rowInQuestion = animalsTable.Rows[1];
rowInQuestion.Delete();

VB.NET

rowInQuestion = animalsTable.Rows(1)
rowInQuestion.Delete()

This statement will mark the row’s RowState as Deleted; however, the row still remains in
the DataTable until you do an Update using a DataAdapter or an AcceptChanges on the DataTable.
Thus, this approach is useful when sending information about deleted rows to the database
via the data adapter. If the rows were actually removed from the DataTable, the data adapter
would have no clue which rows to execute delete queries upon.

Another way of removing a row is by using either the Remove or RemoveAt method on the
DataRowCollection object (DataTable.Rows is of DataRowCollection type). This is shown here:

C#

animalsTable.Remove(rowInQuestion) ;
// or
animalsTable.RemoveAt(1) ;

VB.NET

animalsTable.Remove(rowInQuestion)
' or
animalsTable.RemoveAt(1)

Or you can use the nuclear option and call DataRowCollection.Clear() to completely
remove all rows from the DataTable’s Rows collection.

5122ch09.qxd 8/23/05 3:18 PM Page 281

CHAPTER 9 ■ UPDATING DATA282

However, the Remove, RemoveAt, and Clear methods are not available on a DataView. If you
are using a DataView, you’d need to either access the underlying table using the DataView.Table
property, or you could call DataRowView.Delete to mark a row as deleted (but not actually removed)
from the DataTable.

Once again, in any of these three cases (Add, Modify, Delete), it’s critical to understand that
only the disconnected cache of data is edited. With any of these statements, the underlying
database is not modified. As a matter of fact, the underlying database remains untouched until
you call a relevant data adapter’s Update command with the appropriate command objects set.

So while the changes are being made, you can still look at the history of the DataRow to
some extent. This is done using the following code:

C#

rowInQuestion = animalsTable.Rows[0];
rowInQuestion.BeginEdit();
rowInQuestion["AnimalName"] = "Dog";
Console.Write(rowInQuestion["AnimalName", DataRowVersion.Proposed]);
rowInQuestion.EndEdit() ;

Console.Write(rowInQuestion["AnimalName", DataRowVersion.Original]);
Console.Write(rowInQuestion["AnimalName", DataRowVersion.Current]);

VB.NET

rowInQuestion = animalsTable.Rows(0)
rowInQuestion.BeginEdit()
rowInQuestion("AnimalName") = "Dog"
Console.Write(rowInQuestion("AnimalName", DataRowVersion.Proposed))
rowInQuestion.EndEdit()

Console.Write(rowInQuestion("AnimalName", DataRowVersion.Original))
Console.Write(rowInQuestion("AnimalName", DataRowVersion.Current))

Thus, you can specify a DataRowVersion along with the column name and get various ver-
sions of the DataRow by specifying what version you want. Table 9-2 lists various values you can
use for DataRowVersion.

Table 9-2. The DataRowVersion Enumeration

Constant Description

Current This constant will give you the current value stored inside a column.

Original This constant allows you to fetch the original value stored inside a column.

Proposed This constant allows you to fetch the proposed value after a BeginEdit and
update, but before an EndEdit.

Default This constant retrieves the value as if the constant wasn’t specified.

5122ch09.qxd 8/23/05 3:18 PM Page 282

CHAPTER 9 ■ UPDATING DATA 283

You can write up a few quick samples to verify the various cases and permutations of the
various DataRow versions under different editing scenarios, and understand the exact behavior
of each. It’s important to realize that not all of these constants apply to every editing situation.
If you request for a DataRow version that doesn’t exist, you will get an exception.

A Real-World Example
In the previous example, you saw how an application can edit a DataTable or DataSet while
remaining disconnected from the data source; however, imagine that you have more than one
user concurrently working with the database. This presents some interesting new situations to
take care of.

For instance, imagine the following scenarios . . .
Erick wishes to add a new row to the database. He queries the database and gets the rows

shown in Table 9-3.

Table 9-3. Erick’s View of animalsTable

AnimalID AnimalName

1 Puppy

2 Cat

3 Horse

Now after Erick has added in his rows, Frans wants to add yet another row. He comes by,
queries the database, and gets the same rows as shown in Table 9-3.

While Frans is still working on the database, Erick makes an update and inserts his row. So
the content of the database looks like Table 9-4.

Table 9-4. Contents of the Database After Erick Calls DataAdapter.Update

AnimalID AnimalName

1 Puppy

2 Cat

3 Horse

4 Emu

Meanwhile, Frans is completely disconnected from the data source. He adds a fourth row
in his disconnected cache of data and, not knowing any better, his new row looks like this:

4 Camel

Now, when Frans reconnects to the data source, he will get an exception because the pri-
mary key 4 has already been used by Erick.

You saw an instance similar to this in Exercise 9.1, but what Exercise 9.1 didn’t let you do
was recover from that gracefully.

Wouldn’t it be nice if Frans was at least told that the latest data in the database has a pri-
mary key value of 4, not 3, so Frans should add his row with a value of 5? Wouldn’t it be even

5122ch09.qxd 8/23/05 3:18 PM Page 283

CHAPTER 9 ■ UPDATING DATA284

nicer if this decision of automatically getting the next primary key value is done automatically
for Frans, and he is simply informed of the newly generated primary key?

This would certainly be possible, but one premise behind this approach is that the primary
key generated for Frans while he was disconnected was simply a dummy. Only after he makes
an update is the new primary key value generated from the database and returned to him.

There’s one requirement for this approach to work: you shouldn’t use columns that mean
something in business logic as primary keys; for instance, each of the animals had unique
account numbers that never repeated and two new animals come along to be entered into the
system—the Camel and the Emu.

While from a database sanctity point-of-view using the account number as a primary key
would certainly work, the challenge that this presents is that the account number would be
generated while two users are disconnected from the central database, and thus might be inac-
curate. So the Camel and Emu might get overlapping account numbers or would simply not be
able to store the data correctly.

Think about it: You certainly don’t want to show an inaccurate account number on the
user interface and then try to explain to a non-techie user the complications of disconnected
data and why he or she shouldn’t read out the data to the customer until he or she has clicked
Save, thus calling Update on the underlying data adapter (or equivalent). So just don’t use
a primary key that has a meaning in your business logic. Columns that have a meaning in your
business logic should be shown a clear dummy or null value, which is populated only by the
central entity in control that can act as a policeman—your database. This way, you can keep the
primary key behind the scenes on the UI and the dummy account number shown as something
obvious like “Dummy Account Number #1” or simply “–1”. It’s much easier to tell the user that
negative account numbers are invalid—don’t use them.

■Tip It’s recommended that you not use primary keys that have a meaning in your business logic. Such
database design generally gives you more flexibility in disconnected scenarios.

So, given that you are disconnected, a better way to solve this situation would be to gener-
ate a dummy AnimalID and allow the database to generate a social security number or account
number during the update. And after an update, the DataTable could be refreshed with the lat-
est data in the database to inform the end user of the newly generated values.

Let’s cover all of these instances using an example.

■Note It’s critical that you understand this example thoroughly. The concepts presented in this example
and this chapter in general are all centered around a single DataTable—which is a simplistic view of
a real-world application. In the next chapter, there is a deeper discussion on concurrency in light of hierar-
chical multitable scenarios, and that is where you will build upon these concepts. Also note that the next
example illustrates a Seed Generator table, mentions SQLCLR, uses @@IDENTITY, and SCOPE_IDENTITY().
The intention here is to show every possibility and discuss each approach’s pros and cons. So get a coffee
and make sure your eyes and mind aren’t tired before you continue from here.

5122ch09.qxd 8/23/05 3:18 PM Page 284

CHAPTER 9 ■ UPDATING DATA 285

Figure 9-14. Original data in the DataTable

First, the underlying table needs a modification. The full SQL script for this example can
be found in the associated code download under the SQL folder in a file called Exercise 9.4.sql.

The SQL script re-creates the Animals table, this time with a new column called
AccountNumber of data type int. This is a not null column that will hold unique values for
AccountNumbers. To enforce this, as you can see in Exercise 9.4, there is a Unique constraint
specified on it. It then inserts three rows to get us started. The data should look like as
shown in Figure 9-14. The script also creates the relevant stored procedures and calls the
necessary SQL statements to get you started.

This exercise uses stored procedures. There are numerous advantages and disadvantages
of using inline SQL over stored procedures. For the purpose of this book, it’s sufficient to say
that this exercise could be done using either inline SQL or stored procedures.

So let’s get started with the exercise:

1. This application will be done in a Windows Forms application since it’s easier to see
the contents of an entire DataTable in it. Start by creating a Windows Forms application,
call it Exercise 9.4, and change its main form’s text to Exercise 9.4.

2. Start by dragging a DataGridView control on the form (call it dgView). Add two buttons
(call them btnLoad and btnSave) and change their text properties to Load and Save,
respectively. As the name suggests, Load will load the animalsTable and Save will save
it back to the database. Your form should look like as shown in Figure 9-15 in Design view.

Figure 9-15. The main form of the application in Design view

5122ch09.qxd 8/23/05 3:18 PM Page 285

CHAPTER 9 ■ UPDATING DATA286

3. Now with the form set up, let me present the logic for you before I delve too deeply into
the actual code. The basic idea here is to generate dummy IDs for the AnimalID column
when disconnected from the database. The real IDs will be generated in the database
because the AnimalID column is an Identity column. Second, the AccountNumber
column is not intended to be entered by the user, so the code can simply mark it as
read only. The AccountNumber column is the column that I mentioned before—it’s
a column that has meaning in your business logic, therefore not a good candidate for
a primary key in disconnected scenarios. Thus, the first thing you need to do is set up
the animalsTable DataTable structure in Form1’s constructor. This is shown in Listings
9-23 and 9-24. While you are setting up the DataTable’s schema, also go ahead and data
bind the animalsTable to dgView.

Listing 9-23. Setting Up the Empty Table’s Schema in C#

public Form1()
{

InitializeComponent();

// Setup the schema for the Table.
animalsTable = new DataTable("Animals");
DataColumn dc = null;

dc = new DataColumn("AnimalID");
dc.Unique = true;
dc.AutoIncrement = true;
dc.AutoIncrementSeed = -1;
dc.AutoIncrementStep = -1;
dc.DataType = typeof(System.Int32);
animalsTable.Columns.Add(dc);

dc = new DataColumn("AnimalName");
animalsTable.Columns.Add(dc);

dc = new DataColumn("AccountNumber");
dc.ReadOnly = true;
animalsTable.Columns.Add(dc);

// DataBind it, even though it has no rows in it yet.
dgView.DataSource = animalsTable;

}

Listing 9-24. Setting Up the Empty Table’s Schema in Visual Basic .NET

Private Sub Form1_Load(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles MyBase.Load
' Setup the schema for the Table.
animalsTable = New DataTable("Animals")

5122ch09.qxd 8/23/05 3:18 PM Page 286

CHAPTER 9 ■ UPDATING DATA 287

Dim dc As DataColumn

dc = New DataColumn("AnimalID")
dc.Unique = True
dc.AutoIncrement = True
dc.AutoIncrementSeed = -1
dc.AutoIncrementStep = -1
dc.DataType = Type.GetType("System.Int32")
animalsTable.Columns.Add(dc)

dc = New DataColumn("AnimalName")
animalsTable.Columns.Add(dc)

dc = New DataColumn("AccountNumber")
dc.ReadOnly = True
animalsTable.Columns.Add(dc)

' DataBind it, even though it has no rows in it yet.
dgView.DataSource = animalsTable

End Sub

In this bold code, it makes sense to set the AccountNumber to read only because clearly
that will be generated in the database and repopulated in the DataTable during an Update
operation as you’ll see shortly. But why in the world would I set up the AutoIncrement = True,
AutoIncrementSeed = -1, and AutoIncrementStep = -1 for the AnimalID column? Well,
this is because in the database that column is set up as an identity. So the database has
the responsibility of generating them—not your disconnected application. I, as a dis-
connected user, cannot accurately determine the next identity because you, as another
disconnected user, could have used up the next identity value that was sequentially next
in my DataTable.

If this appears confusing, write two numbers (1 and 2) on two sheets of paper. Give
each to two of your friends and ask them to write the next number in sequence. Both
of them will say it is 3; but you need to maintain one set of numbers, so whose 3 do you
accept? What if the first friend wanted to add two numbers in sequence? What if you
didn’t know how many numbers either friend will add in advance? So how about this,
just ask your friends to tell you how many rows they intend to add and you, as the cen-
tral policeman, tell them the accurate IDs generated. Whoever comes in first gets the
next IDs, and you simply tell them after the update what IDs were generated for them.

So let’s get rid of the confusion and set up our DataTable in such a way that unsaved key
values appear as negative, and they are generated in a sequence of –1, –2, –3, and so on.
This way, because each row is inserted one by one (InsertCommand on data adapter),
your stored procedure can send back the autogenerated key and the data adapter can
put it back in the DataRow for you.

4. Now with the empty DataTable set up and databound to the DataGridView control, you
can go ahead and write the code to load the DataTable in the event handler for btnLoad’s
click event. This is shown here:

5122ch09.qxd 8/23/05 3:18 PM Page 287

CHAPTER 9 ■ UPDATING DATA288

Figure 9-16. Adding a new row

C#

private void btnLoad_Click(object sender, EventArgs e)
{

SqlDataAdapter sqlDA =
new SqlDataAdapter("Select * from Animals", connectionString);

animalsTable.Rows.Clear();
sqlDA.Fill(animalsTable);

}

VB.NET

Private Sub btnLoad_Click(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnLoad.Click
Dim sqlDA As SqlDataAdapter = _
New SqlDataAdapter("Select * from Animals", connectionString)

animalsTable.Rows.Clear()
sqlDA.Fill(animalsTable)

End Sub

5. With the DataTable loaded, if you run the application and click Load, you should see
the data loaded in the DataGridView. If you now try and add a new row, you’ll see a neg-
ative ID generated in the DataTable as shown in Figure 9-16.

6. Since you haven’t written any implementation for btnSave yet, exit the application.

7. Now that you have tested the loading portion, you can begin writing the code for
inserting the data, that is, saving the added DataRows to the data source. As you saw in
the previous example, the InsertCommand is what will get called for a newly inserted
row because its DataRowState is Added. So you need to write the implementation of the

5122ch09.qxd 8/23/05 3:18 PM Page 288

CHAPTER 9 ■ UPDATING DATA 289

InsertCommand. This is done in the implementation of btnSave. In addition, btnSave
also calls Update on the relevant SqlDataAdapter it creates. The btnSave’s click event
handler’s implementation in code looks like Listings 9-25 and 9-26.

Listing 9-25. Setting Up the InsertCommand and Saving in C#

private void btnSave_Click(object sender, EventArgs e)
{

SqlCommand insertCommand = new SqlCommand();
insertCommand.CommandType = CommandType.StoredProcedure;

SqlParameter param = null;

param = new SqlParameter("@AnimalID", SqlDbType.Int);
param.Direction = ParameterDirection.Output;
param.SourceColumn = "AnimalID";
insertCommand.Parameters.Add(param);

param = new SqlParameter("@AnimalName", SqlDbType.VarChar);
param.SourceColumn = "AnimalName";
insertCommand.Parameters.Add(param);

param = new SqlParameter("@AccountNumber", SqlDbType.Int);
param.SourceColumn = "AccountNumber";
param.Size = 40;
param.Direction = ParameterDirection.Output;
insertCommand.Parameters.Add(param);

insertCommand.CommandText = "UP_ANIMALINSERT";
SqlDataAdapter sqlDA = new SqlDataAdapter(

"Select * from Animals", connectionString);
insertCommand.Connection = new SqlConnection(connectionString);
insertCommand.UpdatedRowSource = UpdateRowSource.Both;
sqlDA.InsertCommand = insertCommand;

sqlDA.Update(animalsTable);
}

Listing 9-26. Setting Up the InsertCommand and Saving in Visual Basic .NET

Private Sub btnSave_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles btnSave.Click
Dim insertCommand As SqlCommand = New SqlCommand()
insertCommand.CommandType = CommandType.StoredProcedure

Dim param As SqlParameter

5122ch09.qxd 8/23/05 3:18 PM Page 289

CHAPTER 9 ■ UPDATING DATA290

param = New SqlParameter("@AnimalID", SqlDbType.Int)
param.Direction = ParameterDirection.Output
param.SourceColumn = "AnimalID"
insertCommand.Parameters.Add(param)

param = New SqlParameter("@AnimalName", SqlDbType.VarChar)
param.SourceColumn = "AnimalName"
insertCommand.Parameters.Add(param)

param = New SqlParameter("@AccountNumber", SqlDbType.Int)
param.SourceColumn = "AccountNumber"
param.Size = 40
param.Direction = ParameterDirection.Output
insertCommand.Parameters.Add(param)

insertCommand.CommandText = "UP_ANIMALINSERT"
Dim sqlDA As SqlDataAdapter = _
New SqlDataAdapter("Select * from Animals", connectionString)
insertCommand.Connection = New SqlConnection(connectionString)
insertCommand.UpdatedRowSource = UpdateRowSource.Both
sqlDA.InsertCommand = insertCommand

sqlDA.Update(animalsTable)
End Sub

Since the application has been written to demonstrate only adding a row, only an
InsertCommand has been specified. If you wanted to, you could have easily specified
a DeleteCommand and an UpdateCommand as well; however, whatever this application
achieves using a stored procedure can be easily done using inline SQL instead.

One important thing to note is that three parameters have been added that match the
parameter names for the UP_ANIMALINSERT stored procedure parameters. It’s also
important to specify the parameter sizes and the SourceColumn from the relevant
DataTable or DataSet in order to guide the data adapter to use the correct values from
the correct columns when it calls the command.

Finally, you’ll notice that two of the parameters, the primary key AnimalID and the
AccountNumber, are actually output parameters. Their values are generated in the data-
base and are passed back to the application. So this is in line with what has been dis-
cussed so far, these keys are generated by the central policeman—the database. The
application simply listens to the database (out parameters) and, with the help of the
data adapter, overwrites its “fake” values with the “real” values supplied by the database.

Next, let’s see what the stored procedure does.

The stored procedure implementation does mainly three things. First, it calculates an
AccountNumber, which for our purposes is simply a number that increases sequentially
(much like an Oracle sequence emulated in SQL Server).

The second thing it does is insert the new row.

5122ch09.qxd 8/23/05 3:18 PM Page 290

CHAPTER 9 ■ UPDATING DATA 291

1. A little knowledge is a dangerous thing, so I must mention there is a big difference between
SCOPE_IDENTITY() and @@IDENTITY. More on that in a couple of pages, for now let's stay
with the flow of this exercise.

And the third thing it does is extract the newly entered row’s primary key value using
the @@IDENTITY1 SQL Server keyword.

The stored procedure code can be seen in Listing 9-27

Listing 9-27. UP_ANIMALINSERT Stored Procedure Used to Insert a New Row and Send
Back Autogenerated Values

CREATE PROCEDURE UP_ANIMALINSERT
@AnimalID INT OUTPUT,
@AnimalName VARCHAR,
@AccountNumber INT OUTPUT

AS
BEGIN TRANSACTION

INSERT INTO SEEDGENERATOR DEFAULT VALUES
SET @AccountNumber = SCOPE_IDENTITY()

ROLLBACK TRANSACTION

INSERT INTO ANIMALS (ANIMALNAME, ACCOUNTNUMBER) VALUES (@AnimalName,
@AccountNumber)

SELECT @AnimalID = @@IDENTITY
GO

It’s interesting to note how the sequential account number is created is using an emu-
lation of sequences in SQL Server, which is simply a table that looks like this:

CREATE TABLE [SeedGenerator]
([SeedGenerator] [bigint] IDENTITY(1,1) NOT NULL)

ON [PRIMARY]

■Note This technique works, and my intention here was to demonstrate an alternative to using Globally
Unique Identifiers (GUIDs) if you wanted to establish unique values that may not necessarily be tied together
in one table. In this example, however, you could have easily used identity instead because AccountNumbers
needed to be unique within one table. But what if you wanted unique IDs generated to be unique between
various tables? Yes, you could use GUIDs, but GUIDs occupy more space and they suffer from performance
issues. So you can use the previous script to generate number (int, bigint) unique values. However,
a quick word of caution is also in order here. The previous code will have problems in transactional scenar-
ios because to SQL Server the seed generation will appear as a nested transaction (Chapter 11 talks about
transactions in depth). An alternative in that scenario is to use SQLCLR to generate throw-away seed values.

5122ch09.qxd 8/23/05 3:18 PM Page 291

CHAPTER 9 ■ UPDATING DATA292

Figure 9-17. New row added and latest keys fetched from the database

Now if you begin a transaction, insert, and then roll back while getting the latest gener-
ated seed using SCOPE_IDENTITY(), this effectively works as a nonblocking sequence
number generated in SQL Server.

■Tip This trick of generating sequences using a rolled back transaction and SCOPE_IDENTITY can be used
to generate seeds akin to sequences in Oracle. Oracle sequences have an additional buffering mechanism:
they buffer the next 20 sequences for performance reasons, so it isn’t quite exactly the same because these
numbers will be a strict sequence, but its close enough for most applications. Also, you can easily retrieve
the current value using CurVal on a sequence after it has been generated.

8. Finally, compile and run the application. When you click Load and add a row, you
should see output similar to Figure 9-16. Now after adding the row, go ahead and click
Save. You should see an output similar to Figure 9-17.

In Exercise 9.4, if you examine SQL Profiler, the query that was sent to the database looked
somewhat like this:

UP_ANIMALINSERT @AnimalID=@p1 output,@AnimalName='Camel',@AccountNumber=@p3 output

Thus, as you can see, the newly generated IDs were fetched from the central database. Now if
Frans and Erick try to execute the same application at the same time, they won’t run into primary-
key and unique-constraint errors. This is because the true unique IDs are being generated by the
entity that is central and know-all in your architecture—the database. Their respective Windows
Forms applications generate fake keys or no keys, and simply overwrite their in-memory values
when they get reliable values from the central policeman—the database.

There is, however, more than one way to achieve these results. An obvious second option is
to use inline SQL instead of stored procedures to do the job, but that is not what I’m talking about.

Another way of doing it is using the DataAdapter.RowUpdated event. The RowUpdated event
is called every time the DataAdapter updates a new row in the database. This event call occurs

5122ch09.qxd 8/23/05 3:18 PM Page 292

CHAPTER 9 ■ UPDATING DATA 293

after the row has been updated. There’s an equivalent event called RowUpdating, which is called
before the row has been updated.

The RowUpdated event gets a SqlRowUpdatedEventArgs passed into it (in the case of OleDb or
Oracle data providers, it is OleDbRowUpdatedEventArgs or OracleRowUpdatedEventArgs, respectively).
Using the RowUpdatedEventArgs (the base class for SQL/Oracle/OleDbRowUpdatedEventArgs),
you can easily identify the row that was updated last and execute an ExecuteNonQuery method
to retrieve the key values.

As you might have guessed, due to the second database hit and event call, this method is
significantly slower than the stored procedure or batched SQL methods. However, say if you
were working with an Access database using the OleDb .NET data provider, you don’t quite have
the ability to create stored procedures with output parameters.

In that case, you would have to use the RowUpdated event on OleDbDataAdapter and use the
OleDbUpdatedEventArgs.Row property to identify the row and act accordingly. You can also find
the exact nature of the statement executed using OleDbUpdatedEventArgs.StatementType to
differentiate between INSERTs, UPDATEs or DELETEs.

Now, again in Exercise 9.4, you might have noticed that at one point the code uses @@IDENTITY
and at another point it uses SCOPE_IDENTITY(). Why is that?

As a footnote, I mentioned that there is a big difference between the two. The difference is
more in the realm of SQL Server rather than ADO.NET, but since it might be used regularly in
ADO.NET, I will mention the two briefly.

@@IDENTITY returns the last identity value generated on your connection. In other words, if
your insert caused a trigger to fire that did another insert (say in an audit table), you’d end up
getting the identity value of the audit table, not the table you did an insert in. That is obviously
incorrect for our purposes. Thus, SCOPE_IDENTITY(), which is supported by SQL Server 2000
onward, should be used (which returns the last ID generated on the particular scope). Scope can
be a stored procedure, trigger, function, or batch.

The only case where you still might have to use @@IDENTITY instead of SCOPE_IDENTITY() is
where your scope is a batch or stored procedure, and you wish to retrieve the last generated
value after the stored procedure or batch is done executing. In such a case, SCOPE_IDENTITY()
will return a null.

Writing This Application in Oracle
Exercise 9.4 has been demonstrated using SQL Server 2005. It’s notable, however, that the same
ADO.NET concepts apply to any other database. The idea is to get the key values back and
emulate the same behavior using database-specific features.

One key difference with Access was mentioned in which you would have to use the RowUpdated
event to fill in key values. Similarly in Oracle, there are a few differences. You don’t quite have
to resort to the RowUpdated event for OracleDataAdapter, but since you don’t have identity type
columns in Oracle, you would need to use an Oracle-specific feature called sequences to gen-
erate and query identity values. An Oracle sequence is simply a database object that gives you
a convenient way to generate sequential numbers for use in situations such as primary keys to
a table. They aren’t always strictly sequential, but they are unique (unless you reset a sequence).

A sequence can be created using the following PL/SQL statement:

Create Sequence seq_animals start with 1 increment by 1

5122ch09.qxd 8/23/05 3:18 PM Page 293

CHAPTER 9 ■ UPDATING DATA294

This sequence could be used to generate primary key values for the Animals table. Now if
the account numbers need to be strictly sequential (i.e., with no gaps), you would need to dis-
able the cache for a sequence using a statement that looks like this:

Create Sequence seq_accountnumber start with 1 increment by 1 nocache.

The default value of cache is 20. Thus, if the system is shut down, or for any reason the
sequence is not queried for a while, up to the next 20 sequences will be lost.

To generate the next key, you can simply use a SQL statement like this:

Select seq_animals.nextval from dual ;

And to select the last generated value on a sequence you can use a SQL statement that
looks like this:

Select seq_animals.curval from dual;

That’s it. The rest of the concepts (with the exception of using PL/SQL to write your stored
procedures instead of T-SQL in Oracle) are the same between SQL Server and Oracle.

■Note This application could have been made a lot less complicated by simply using GUIDs as primary
keys. Again, it depends on your exact situation, and GUIDs just might be a better solution for your purposes.
It’s important to note, however, that GUIDs occupy a lot of space in indexes and the key itself. They cannot be
as efficient as an int data type can be. An int occupies 4 bytes, whereas a GUID occupies 16. For a single
database scenario, you should use int or long data types as primary keys if performance is a key criterion;
however, for applications involving multiple databases, where the generated keys should be mutually unique,
or where simplicity is the guiding factor and not performance, the GUID might present an easy implementation.

There is yet another way to make this application better. Imagine a situation where the end
users were actually modifying data while connecting to a server over a low bandwidth connec-
tion. Or maybe they, in fact, call a web service to persist their changes.

Now, if the DataTable had hundreds of rows and at any given point either user modifies
only a few of those rows, it seems to be a terrible waste of bandwidth to actually send the full
DataSet or DataTable over. It would be nice if the rows that the DataAdapter will simply ignore
(i.e., the rows with DataRowStates = Unchanged) could be simply filtered out.

Both the DataSet and the DataTable provide a method for this very purpose: the GetChanges
method. Another method that goes hand in hand with GetChanges is the Merge method, which,
as the name suggests, merges two DataSets or DataTables.

Optimizing Your Application: GetChanges and Merge
One upshot of working with disconnected architecture is that you have a disconnected cache of
your data. Actually, you might have more than one disconnected cache of data. Two users, or

5122ch09.qxd 8/23/05 3:18 PM Page 294

CHAPTER 9 ■ UPDATING DATA 295

parts of your application, might need to modify the cache based upon their roles and you, as an
application architect, might be left with the responsibility of reconciling those changes. Not only
that, if there is indeed one entity that holds all the data, it seems like a terrible waste of bandwidth
and resources to pass around an entire DataSet or DataTable when only a few rows have actually
changed.

ADO.NET provides you with two methods for this very quandary on both the DataSet and
DataTable objects.

The first method is GetChanges, which lets you filter out a DataTable or DataSet with only
the changes. Using an appropriate overload, you also have the ability to create a DataTable or
DataSet with rows in a specified RowState.

■Note The resultant DataSet created by DataSet.GetChanges might contain a few rows with DataRowState.
Unchanged to maintain referential integrity based upon the existing relations present in the DataSet.

The second method is the Merge method, which allows you to merge a specified DataSet,
DataTable, or an array of DataRow objects into a DataSet.

You can quickly write an example to examine the behavior of these methods:

1. Create a new Windows Forms application project. Name it Exercise 9.5 and change its
main form’s text property to Exercise 9.5.

2. Add a new strongly typed DataSet called CustProd (this is the same DataSet used in
Chapter 8). The structure of this DataSet is shown in Figure 9-18.

3. Add three DataGridView controls on the form, which will be databound with indi-
vidual tables within the DataSet. Name these three dgCustomers, dgProducts, and
dgCustomerProducts. Also, add two buttons: btnClose with text property set to Exit, and
btnGetChanges with text property set to Get Changes. The form should look like Figure 9-19
in Design view.

Figure 9-18. Structure of the strongly typed DataSet

5122ch09.qxd 8/23/05 3:18 PM Page 295

CHAPTER 9 ■ UPDATING DATA296

Figure 9-19. The form in Design view

4. In the constructor of the form, set up, load, and data bind the DataSet from an XML
file sitting on the disk. This XML file can be found in the associated code download
and it is the same XML file used in Chapter 8. The code for the constructor is shown in
Listings 9-28 and 9-29.

Listing 9-28. Loading and Data Binding the DataSet in the Constructor in C#

public Form1()
{

InitializeComponent();

myDataSet = new CustProd();
dgCustomers.DataSource = myDataSet.Customers;
dgCustomerProducts.DataSource = myDataSet.CustomerProducts;
dgProducts.DataSource = myDataSet.Products;

myDataSet.ReadXml("Data.xml");
myDataSet.AcceptChanges();

5122ch09.qxd 8/23/05 3:18 PM Page 296

CHAPTER 9 ■ UPDATING DATA 297

Listing 9-29. Loading and Data Binding the DataSet in the Constructor in Visual Basic .NET

Private Sub Form1_Load(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
myDataSet = New CustProd()
dgCustomers.DataSource = myDataSet.Customers
dgCustomerProducts.DataSource = myDataSet.CustomerProducts
dgProducts.DataSource = myDataSet.Products

myDataSet.ReadXml("Data.xml")
myDataSet.AcceptChanges()

End Sub

5. In the event handler for btnClose, add the following code to ensure the form is closed
when the user clicks the Exit button.

C#

private void btnClose_Click(object sender, EventArgs e)
{

this.Close();
}

VB.NET

Private Sub btnClose_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs)(_
Handles btnClose.Click
Me.Close()

End Sub

6. Finally, in the btnGetChanges OnClick event handler, add the following code:

C#

private void btnGetChanges_Click(object sender, EventArgs e)
{

CustProd changedDS = (CustProd)myDataSet.GetChanges();
dgCustomers.DataSource = changedDS.Customers;
dgCustomerProducts.DataSource = changedDS.CustomerProducts;
dgProducts.DataSource = changedDS.Products;

}

VB.NET

Private Sub btnGetChanges_Click(_

5122ch09.qxd 8/23/05 3:18 PM Page 297

CHAPTER 9 ■ UPDATING DATA298

Handles btnGetChanges.Click
Dim changedDS As CustProd = CType(myDataSet.GetChanges(), CustProd)
dgCustomers.DataSource = changedDS.Customers
dgCustomerProducts.DataSource = changedDS.CustomerProducts
dgProducts.DataSource = changedDS.Products

End Sub

As you can see, this code performs a GetChanges on the DataSet and rebinds the newly
retrieved DataSet to the UI.

7. Compile and run the application. You should see the application running as shown in
Figure 9-20. The current data with all rows is shown. Because myDataSet.AcceptChanges
was called in the constructor, all row states at this point are UnChanged.

8. Change the CustomerID column of the first row in the CustomerProducts table. So let’s
say, given the structure of the DataSet, the CustomerID was changed from 1 (Bill Gates)
to 2 (John Williams). Click the Get Changes button. You should see an output as shown
in Figure 9-20.

Figure 9-20. The DataSet resulting from a GetChanges operation

5122ch09.qxd 8/23/05 3:18 PM Page 298

CHAPTER 9 ■ UPDATING DATA 299

Interestingly enough in Exercise 9.5, even though the RowState of the modified row in
CustomerProducts is DataRowState.Modified, the other relevant rows shown in the result have
their RowStates set to DataRowState.Unchanged. This is an important point to consider since
GetChanges takes a safe approach and returns all rows that satisfy the current existing relations
defined in the DataSet. Obviously, DataTable.GetChanges is a lot simpler as it does not have to
worry about relations.

Another point to note here is that most of the exercises presented in this chapter concern
themselves with a single table in a DataSet or a DataTable. This greatly simplifies the discussion
as the concepts can be carried over to a multiple table scenario. In a multiple table scenario,
though, where you have to deal with generating valid keys in a disconnected scenario over
multiple relations, the commands and logic required to update the DataSet back into the data-
base can get a bit more involved. It’s in that situation where the ability of GetChanges to retrieve
all affected rows—including the ones with RowStates Unchanged—is invaluable. This will be
demonstrated in the next chapter where multiple table hierarchies will be discussed.

■Tip Like anything, GetChanges has its own set of Don’t Do’s. One important point to consider is that the
time required to perform a GetChanges on a DataSet might increase exponentially with the size of the
DataSet. If you have a rather large DataSet, then consider doing a GetChanges on individual tables instead.
It’s hard to say what might be the upper limit on the number of tables on which doing GetChanges is con-
sidered okay. The actual time taken depends on the number of tables, size of tables, number of rows, and
various relations.

EXTRACTING CHANGES AS AN XML DIFFGRAM

GetChanges offers you a convenient method to extract changes as a DataSet or a DataTable in the same
structure as the original DataSet or DataTable. However, ADO.NET gives you yet another convenient
mechanism to clearly identify the changes in a DataSet or DataTable using a diffgram.

A diffgram is nothing but an XML representation of the disconnected cache with a node that clearly
identifies the changes done. As a matter of fact, in the btnGetChanges OnClick event handler mentioned
previously, you can easily add a single line of code that looks like this:

C#

myDataSet.WriteXml("diffgram.xml", XmlWriteMode.DiffGram);

VB.NET

myDataSet.WriteXml("diffgram.xml", XmlWriteMode.DiffGram)

This line will allow you to extract the diffgram, which is shown in Figure 9-21 with the original
data node compressed for easier viewing.

5122ch09.qxd 8/23/05 3:18 PM Page 299

CHAPTER 9 ■ UPDATING DATA300

Figure 9-21. Viewing the changes as an XML diffgram

Now that you have the changes extracted out as a mini DataSet with the same structure as
the original DataSet, you can use a second method called Merge to integrate those changes with
an existing DataSet elsewhere. The use of Merge is rather simple. It looks something like this:

C#

Table1.Merge(Table2) ;

VB.NET

Table1.Merge(Table2)

A DataSet also has a Merge method on it, so this discussion can be applied to both a DataSet
and a DataTable.

Now I wish I could tell you Merge was as simple as the previous single line of code; however,
because the Merge method could be presented with a number of unique cases, it has to take
decisions on all of those cases. This is best explained by presenting a few sample cases. The
one common theme to remember is that whenever it comes to making a decision, Table1 will
override Table2. I know this doesn’t make much sense yet, but this will become clear in the fol-
lowing cases.

The code for this exercise can be downloaded in Exercise 9.6 in the associated code down-
load. Since you have seen examples of DataSets and DataTables being created and filled many
times over now, I will skip creating the example step by step and present only the pertinent parts.
You can, however, see the entire code in the associated code download.

In this exercise, as usual, the strongly typed DataSet provides us with a convenient aid in
creating the table structures needed to demonstrate various possible cases. This exercise con-

wn in Figure 9-22.

5122ch09.qxd 8/23/05 3:18 PM Page 300

CHAPTER 9 ■ UPDATING DATA 301

With the strongly typed DataSet set up, next add two DataGridView controls to the form,
which will be used to demonstrate the results of the two tables being merged. Also add various
buttons, the purposes of which are clear by their text properties. The form in Design view can
be seen in Figure 9-23.

Figure 9-22. Various DataTables for Exercise 9.6

Figure 9-23. The application’s main form in Design view

The way this exercise works is that you can click on various buttons on the right and pop-
ulate the two DataGridView controls with two DataTables satisfying either of our cases. When
you click the Merge button (Table1.Merge(Table2)), it does exactly what its caption suggests: it
will call Table1.Merge(Table2). The results of the merge will be viewable in the DataGridView
that displays Table1 (that is the DataGridView on the top).

The code for the Merge method is as shown here:

5122ch09.qxd 8/23/05 3:18 PM Page 301

CHAPTER 9 ■ UPDATING DATA302

C#

private void btnMerge_Click(object sender, EventArgs e)
{

DataTable table1 = (DataTable)dgView1.DataSource;
DataTable table2 = (DataTable)dgView2.DataSource;
table1.Merge(table2);

}

VB.NET

Private Sub btnMerge_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles btnMerge.Click
Dim table1 As DataTable = CType(dgView1.DataSource, DataTable)
Dim table2 As DataTable = CType(dgView2.DataSource, DataTable)
table1.Merge(table2)

End Sub

Without much further ado (no pun intended), let’s jump into the various cases.

Merge Case 1: Same Table Structures, No Primary Key
In the strongly typed DataSet, Table0 can be used as a sample table that has no primary keys
defined on it. The two instances of these tables can be loaded as per the following code:

C#

VariousTables.Table0DataTable table1 = new VariousTables.Table0DataTable();
table1.LoadDataRow(new object[] { "1", "One" }, true);
table1.LoadDataRow(new object[] { "2", "Two" }, true);

VariousTables.Table0DataTable table2 = new VariousTables.Table0DataTable();
table2.LoadDataRow(new object[] { "2", "Monkey" }, true);
table2.LoadDataRow(new object[] { "3", "Donkey" }, true);

dgView1.DataSource = table1;
dgView2.DataSource = table2;

VB.NET

Dim table1 As VariousTables.Table0DataTable = _
New VariousTables.Table0DataTable()

table1.LoadDataRow(New Object() {"1", "One"}, True)
table1.LoadDataRow(New Object() {"2", "Two"}, True)

Dim table2 As VariousTables.Table0DataTable = _

5122ch09.qxd 8/23/05 3:18 PM Page 302

CHAPTER 9 ■ UPDATING DATA 303

New VariousTables.Table0DataTable()
table2.LoadDataRow(New Object() {"2", "Monkey"}, True)
table2.LoadDataRow(New Object() {"3", "Donkey"}, True)

dgView1.DataSource = table1
dgView2.DataSource = table2

When you run the application, the data in the two tables is as shown in Figure 9-24.

When you click the Merge button, the tables are merged as shown in Figure 9-25.

Thus as you can see, with no primary keys defined, the Merge method simply adds the
rows—just because it doesn’t know any better. Defining a primary key on the DataTable fixes
the situation somewhat.

Merge Case 2: Same Table Structures, with Primary Key
In the strongly typed DataSet, Table1 can be used as a sample table that has primary keys
defined on it. The two instances of these tables can be loaded as per the following code:

Figure 9-24. Original data before Merge

Figure 9-25. Data after Merge

5122ch09.qxd 8/23/05 3:18 PM Page 303

CHAPTER 9 ■ UPDATING DATA304

Figure 9-26. Original data before Merge

C#

VariousTables.Table1DataTable table1 = new VariousTables.Table1DataTable();
table1.LoadDataRow(new object[] { "1", "One" }, true);
table1.LoadDataRow(new object[] { "2", "Two" }, true);

VariousTables.Table1DataTable table2 = new VariousTables.Table1DataTable();
table2.LoadDataRow(new object[] { "2", "Monkey" }, true);
table2.LoadDataRow(new object[] { "3", "Donkey" }, true);

dgView1.DataSource = table1;
dgView2.DataSource = table2;

VB.NET

Dim table1 As VariousTables.Table1DataTable = _
New VariousTables.Table1DataTable()

table1.LoadDataRow(New Object() {"1", "One"}, True)
table1.LoadDataRow(New Object() {"2", "Two"}, True)

Dim table2 As VariousTables.Table1DataTable = _
New VariousTables.Table1DataTable()

table2.LoadDataRow(New Object() {"2", "Monkey"}, True)
table2.LoadDataRow(New Object() {"3", "Donkey"}, True)

dgView1.DataSource = table1
dgView2.DataSource = table2

When you run the application, the data in the two tables is as shown in Figure 9-26.

5122ch09.qxd 8/23/05 3:18 PM Page 304

CHAPTER 9 ■ UPDATING DATA 305

Figure 9-27. Data after Merge

When you click the Merge button, the tables are merged as shown in Figure 9-27.

So, with primary keys defined, the Merge evaluates the primary keys and whenever it notices
a difference it lets Table1’s rows override those of Table2. So, effectively, you have merged Table2
into Table1.

Merge Case 3: Common Column, No Primary Key
In the strongly typed DataSet, the two tables that satisfy this case can be Table0 and Table2.
They have a common ColumnA, but no primary keys. The two instances of these tables can be
loaded as per the following code:

C#

VariousTables.Table0DataTable table1 = new VariousTables.Table0DataTable();
table1.LoadDataRow(new object[] { "1", "One" }, true);
table1.LoadDataRow(new object[] { "2", "Two" }, true);

VariousTables.Table2DataTable table2 = new VariousTables.Table2DataTable();
table2.LoadDataRow(new object[] { "2", "Monkey" }, true);
table2.LoadDataRow(new object[] { "3", "Donkey" }, true);

dgView1.DataSource = table1;
dgView2.DataSource = table2;

VB.NET

Dim table1 As VariousTables.Table0DataTable = _
New VariousTables.Table0DataTable()

table1.LoadDataRow(New Object() {"1", "One"}, True)
table1.LoadDataRow(New Object() {"2", "Two"}, True)

Dim table2 As VariousTables.Table2DataTable = _
New VariousTables.Table2DataTable()

table2.LoadDataRow(New Object() {"2", "Monkey"}, True)
table2.LoadDataRow(New Object() {"3", "Donkey"}, True)

5122ch09.qxd 8/23/05 3:18 PM Page 305

CHAPTER 9 ■ UPDATING DATA306

Figure 9-28. Original data before Merge

Figure 9-29. Data after Merge

dgView1.DataSource = table1
dgView2.DataSource = table2

When you run the application, the data in the two tables is as shown in Figure 9-28.

When you click the Merge button, the tables are merged as shown in Figure 9-29.

So, with no primary keys defined, and a different column, the Merge method will end up
combining the common column and simply substitute null wherever it cannot find the appro-
priate values.

Merge Case 4: Common Column, with Primary Key
In the strongly typed DataSet, the two tables that satisfy this case can be Table1 and Table2.
They have a common ColumnA with a primary key defined on Table1. The key on Table2 is
optional as I mentioned before; in this merge, Table1 is what really matters. The two instances
of these tables can be loaded as per the following code:

5122ch09.qxd 8/23/05 3:18 PM Page 306

CHAPTER 9 ■ UPDATING DATA 307

C#

VariousTables.Table1DataTable table1 = new VariousTables.Table1DataTable();
table1.LoadDataRow(new object[] { "1", "One" }, true);
table1.LoadDataRow(new object[] { "2", "Two" }, true);

VariousTables.Table2DataTable table2 = new VariousTables.Table2DataTable();
table2.LoadDataRow(new object[] { "2", "Monkey" }, true);
table2.LoadDataRow(new object[] { "3", "Donkey" }, true);

dgView1.DataSource = table1;
dgView2.DataSource = table2;

VB.NET

Dim table1 As VariousTables.Table1DataTable = _
New VariousTables.Table1DataTable()

table1.LoadDataRow(New Object() {"1", "One"}, True)
table1.LoadDataRow(New Object() {"2", "Two"}, True)

Dim table2 As VariousTables.Table2DataTable = _
New VariousTables.Table2DataTable()

table2.LoadDataRow(New Object() {"2", "Monkey"}, True)
table2.LoadDataRow(New Object() {"3", "Donkey"}, True)

dgView1.DataSource = table1
dgView2.DataSource = table2

When you run the application, the data in the two tables is as shown in Figure 9-30.

e merged as shown in Figure 9-31.

Figure 9-30. Original data before Merge

5122ch09.qxd 8/23/05 3:18 PM Page 307

CHAPTER 9 ■ UPDATING DATA308

Figure 9-31. Data after Merge

2. Why is Table1 not a strongly typed DataTable here? Because the final merge results do not satisfy the
unique constraint. As you can see in Figure 9-33, two rows have ColumnA as null, which has a Unique-

.

So, with a primary key defined, and a different column, the Merge method will end up com-
bining the common column and substituting null wherever it cannot find the appropriate val-
ues. But wherever there is a conflict, Table2’s row is thrown out the window and Table1’s row is
kept. Therefore, if there were a third column in either table, which wasn’t the primary key, and
a differing value between Table1 and Table2 existed, you would see Table1 overriding Table2.

Merge Case 5: Absolutely Different Table Structures
In this case, the two table structures have nothing in common. All the columns differ. The
code for loading such DataTables2 can be seen here:

C#

DataTable table1 = new DataTable();
table1.Columns.Add(new DataColumn("ColumnA"));
table1.Columns.Add(new DataColumn("ColumnB"));
table1.LoadDataRow(new object[] { "1", "One" }, true);
table1.LoadDataRow(new object[] { "2", "Two" }, true);

VariousTables.Table3DataTable table2 = new VariousTables.Table3DataTable();
table2.LoadDataRow(new object[] { "3", "Monkey" }, true);
table2.LoadDataRow(new object[] { "4", "Donkey" }, true);

dgView1.DataSource = table1;
dgView2.DataSource = table2;

VB.NET

Dim table1 As DataTable = New DataTable()
table1.Columns.Add(New DataColumn("ColumnA"))
table1.Columns.Add(New DataColumn("ColumnB"))
table1.LoadDataRow(New Object() {"1", "One"}, True)
table1.LoadDataRow(New Object() {"2", "Two"}, True)

5122ch09.qxd 8/23/05 3:18 PM Page 308

CHAPTER 9 ■ UPDATING DATA 309

Dim table2 As VariousTables.Table3DataTable = _
New VariousTables.Table3DataTable()

table2.LoadDataRow(New Object() {"2", "Monkey"}, True)
table2.LoadDataRow(New Object() {"3", "Donkey"}, True)

dgView1.DataSource = table1
dgView2.DataSource = table2

When you run the application, the data in the two tables is as shown in Figure 9-32.

When you click the Merge button, the tables are merged as shown in Figure 9-33.

Thus as you can see, with no common columns, the two tables are merged by simply slap-
ping them together and substituting null wherever a value isn’t found.

Other Ways of Merging DataTables
DataTable.Merge supports three overloads. Exercise 9.6 demonstrates only one of them. The
other two are as follows:

Figure 9-32. Original data before Merge

Figure 9-33. Data after Merge

5122ch09.qxd 8/23/05 3:18 PM Page 309

CHAPTER 9 ■ UPDATING DATA310

• Merge(DataTable, Boolean): Merges a DataTable into the calling DataTable, preserving
changes according to the Boolean argument. A value of True indicates that any changes
to the calling DataTable should be maintained. A value of False indicates that such
changes should be discarded.

• Merge(DataTable, Boolean, MissingSchemaAction): Merges a DataTable into the calling
DataTable, preserving changes according to the Boolean argument and handling an incom-
patible schema according to the MissingSchemaAction argument. The MissingSchemaAction
enumerator is discussed in just a moment.

Merging DataSets
The DataSet class also exposes a Merge() method that’s used to merge one DataSet into another,
a DataTable into a DataSet, or an array of DataRows into a DataSet. This type of action is useful
when you have data for the same purpose coming from two separate sources—say, inventory
data coming from multiple remote locations. Each location can pass a DataSet object to a cen-
tralized application where the DataSets can be merged. The critical difference between DataSet
merging and DataTable merging is that DataSet merging takes into consideration the defined
relations, as well as columns and data in various DataTables.

The DataSet class has the following overloaded Merge() methods:

• Merge(DataRow()): Merges an array of DataRow objects into the calling DataSet.

• Merge(DataSet): Merges a DataSet into the calling DataSet.

• Merge(DataTable): Merges a DataTable into the calling DataSet.

• Merge(DataSet, Boolean): Merges a DataSet into the calling DataSet, preserving changes
according to the Boolean argument. A value of True indicates that any changes to the
calling DataSet should be maintained. A value of False indicates that such changes
should be discarded.

• Merge(DataRow(), Boolean, MissingSchemaAction): Merges an array of DataRow objects
into the calling DataSet, preserving changes to the DataSet according to the Boolean
argument, and handling an incompatible schema according to the MissingSchemaAction
argument.

• Merge(DataSet, Boolean, MissingSchemaAction): Merges a DataSet into the calling
DataSet, treating the other two arguments as mentioned previously.

• Merge(DataTable, Boolean, MissingSchemaAction): Merges a DataTable into the calling
DataSet, treating the other two arguments as mentioned previously.

The MissingSchemaAction argument is an enumerator that specifies how to handle the
merge operation if the object being merged has a different schema from the calling DataSet.
This scenario would occur if, say, a new DataColumn were added to the schema in the merging
DataSet. We’ll have a closer look at this possibility in a moment.

Merging Two DataSets/DataTables with Different Schemas
As described previously, you can merge two DataSets with different schemas and specify how

5122ch09.qxd 8/23/05 3:18 PM Page 310

CHAPTER 9 ■ UPDATING DATA 311

MyDataSet.Merge(myOtherDataSet, True, MissingSchemaAction.Add)

The MissingSchemaAction enumeration is used to specify how schema differences should
be handled. The possible enumerators are shown in Table 9-5.

Table 9-5. MissingSchemaAction Enumeration Values

Value Description

Add Indicates that additional columns defined in the source DataSet
(myOtherDataSet) should be added to the schema of the target DataSet
(myDataSet).

AddWithKey Indicates that additional columns defined in the source DataSet should be
added to the target DataSet along with any primary key information.

Error Indicates that a System.SystemException will be thrown if the target schema
and source schema do not match.

Ignore Indicates that any additional columns in the source DataSet should be ignored
when it is merged into the target DataSet.

Updating Records Using Mapped Names
Until now, our discussion has focused on updating the data source by specifying commands
with hard-coded column names or relying on the fact that column names defined in our com-
mands match the ones defined in the database.

In Chapter 7, you looked at how TableMappings and ColumnMappings help you bridge this
translation gap of different column/table names in fetching data. The same concepts can be
applied to other database operations, such as inserting a new record or updating an existing
one. As a matter of fact, after mapping column names, you can use them throughout your
code to accomplish every kind of database task. Let’s see an example of adding a new record
inside the Microsoft Access DB.MDB database (see Listings 9-30 and 9-31).

Listing 9-30. Example of Adding a Record Using C#

#region Using directives

using System;
using System.Collections.Generic;
using System.Text;
using System.Data.OleDb;
using System.Data.Common;
using System.Data;

#endregion

namespace Exercise_9_7
{

class Program
{

static void Main(string[] args)

5122ch09.qxd 8/23/05 3:18 PM Page 311

CHAPTER 9 ■ UPDATING DATA312

{
DataSet dsUsers = new DataSet("Users");

try
{

// Define a connection object
OleDbConnection dbConn = new OleDbConnection(

"Provider=Microsoft.Jet.OLEDB.4.0;" +
"Password=;User ID=Admin;Data Source=db.mdb");

// Create a data adapter to retrieve records from DB
OleDbDataAdapter daUsers =

new OleDbDataAdapter("SELECT ID,fn,ln,cty,st" +
" FROM tabUsers", dbConn);

// Define each column to map
DataColumnMapping dcmUserID =

new DataColumnMapping("ID", "UserID");
DataColumnMapping dcmFirstName =

new DataColumnMapping("fn", "FirstName");
DataColumnMapping dcmLastName =

new DataColumnMapping("ln", "LastName");
DataColumnMapping dcmCity =

new DataColumnMapping("cty", "City");
DataColumnMapping dcmState =

new DataColumnMapping("st", "State");

// Define the table containing the mapped columns
DataTableMapping dtmUsers = new DataTableMapping("Table", "User");
dtmUsers.ColumnMappings.Add(dcmUserID);
dtmUsers.ColumnMappings.Add(dcmFirstName);
dtmUsers.ColumnMappings.Add(dcmLastName);
dtmUsers.ColumnMappings.Add(dcmCity);
dtmUsers.ColumnMappings.Add(dcmState);

// Activate the mapping mechanism
daUsers.TableMappings.Add(dtmUsers);

// Fill the dataset
daUsers.Fill(dsUsers);

// Declare a command builder to create SQL instructions
// to create and update records.
OleDbCommandBuilder cb = new OleDbCommandBuilder(daUsers);

// Insert a new record in the DataSet
DataRow r = dsUsers.Tables["User"].NewRow();

5122ch09.qxd 8/23/05 3:18 PM Page 312

CHAPTER 9 ■ UPDATING DATA 313

r["LastName"] = "Robinson";
r["City"] = "Houston";
r["State"] = "Texas";
dsUsers.Tables["User"].Rows.Add(r);

// Insert the record in the database
daUsers.Update(dsUsers.GetChanges());

// Align in-memory data with the data source ones
dsUsers.AcceptChanges();

// Print successfully message
Console.WriteLine("A new record has been"

+ " added to the database.");
}
catch (Exception ex)
{

// Reject DataSet changes
dsUsers.RejectChanges();

// An error occurred. Show the error message
Console.WriteLine(ex.Message);

}
}

}
}

Listing 9-31. Example of Adding a Record Using Visual Basic .NET

Imports System.Data.OleDb
Imports System.Data.Common

Module Module1
Sub Main()

Dim dsUsers As New DataSet("Users")

Try
' Define a connection object
Dim dbConn As New _

OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Password=;User ID=Admin;Data Source=db.mdb")

' Create a data adapter to retrieve records from DB
Dim daUsers As New OleDbDataAdapter("SELECT ID,fn,ln,cty,st" & _

" FROM tabUsers", dbConn)

' Define each column to map
Dim dcmUserID As New DataColumnMapping("ID", "UserID")

5122ch09.qxd 8/23/05 3:18 PM Page 313

CHAPTER 9 ■ UPDATING DATA314

Dim dcmLastName As New DataColumnMapping("ln", "LastName")
Dim dcmCity As New DataColumnMapping("cty", "City")
Dim dcmState As New DataColumnMapping("st", "State")

' Define the table containing the mapped columns
Dim dtmUsers As New DataTableMapping("Table", "User")
dtmUsers.ColumnMappings.Add(dcmUserID)
dtmUsers.ColumnMappings.Add(dcmFirstName)
dtmUsers.ColumnMappings.Add(dcmLastName)
dtmUsers.ColumnMappings.Add(dcmCity)
dtmUsers.ColumnMappings.Add(dcmState)

' Activate the mapping mechanism
daUsers.TableMappings.Add(dtmUsers)

' Fill the dataset
daUsers.Fill(dsUsers)

' Declare a command builder to create SQL instructions
' to create and update records.
Dim cb As New OleDbCommandBuilder(daUsers)

' Insert a new record in the DataSet
Dim r As DataRow = dsUsers.Tables("User").NewRow()
r("FirstName") = "Eddie"
r("LastName") = "Robinson"
r("City") = "Houston"
r("State") = "Texas"
dsUsers.Tables("User").Rows.Add(r)

' Insert the record in the database
daUsers.Update(dsUsers.GetChanges())

' Align in-memory data with the data source ones
dsUsers.AcceptChanges()

' Print successfully message
Console.WriteLine("A new record has been" & _
" added to the database.")

Catch ex As Exception
' Reject DataSet changes
dsUsers.RejectChanges()

' An error occurred. Show the error message
Console.WriteLine(ex.Message)

End Try
End Sub

5122ch09.qxd 8/23/05 3:18 PM Page 314

CHAPTER 9 ■ UPDATING DATA 315

In the bolded snippet of code in Listings 9-30 and 9-31, a new row has been created and
filled using the mapped column names. In Listings 9-32 and 9-33, a column is updated using
a mapping mechanism.

Listing 9-32. Example of Updating a Record Using ColumnMappings Using C#

#region Using directives

using System;
using System.Collections.Generic;
using System.Text;
using System.Data.OleDb;
using System.Data.Common;
using System.Data;

#endregion

namespace Exercise_9_8
{

class Program
{

static void Main(string[] args)
{

DataSet dsUsers = new DataSet("Users");
try
{

OleDbConnection dbConn =
new OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;" +
"Password=;User ID=Admin;Data Source=db.mdb");

// Create a data adapter to retrieve records from db
OleDbDataAdapter daUsers =

new OleDbDataAdapter("SELECT ID,fn,ln,cty,st" +
" FROM tabUsers", dbConn);

// Define each column to map
DataColumnMapping dcmUserID =

new DataColumnMapping("ID", "UserID");
DataColumnMapping dcmFirstName =

new DataColumnMapping("fn", "FirstName");
DataColumnMapping dcmLastName =

new DataColumnMapping("ln", "LastName");
DataColumnMapping dcmCity =

new DataColumnMapping("cty", "City");
DataColumnMapping dcmState =

new DataColumnMapping("st", "State");
// Define the table containing the mapped columns

5122ch09.qxd 8/23/05 3:18 PM Page 315

CHAPTER 9 ■ UPDATING DATA316

new DataTableMapping("Table", "User");
dtmUsers.ColumnMappings.Add(dcmUserID);
dtmUsers.ColumnMappings.Add(dcmFirstName);
dtmUsers.ColumnMappings.Add(dcmLastName);
dtmUsers.ColumnMappings.Add(dcmCity);
dtmUsers.ColumnMappings.Add(dcmState);

// Activate the mapping mechanism
daUsers.TableMappings.Add(dtmUsers);

// Fill the dataset
daUsers.Fill(dsUsers);

DataColumn[] dcaKey = { dsUsers.Tables["User"].Columns["UserID"] };
dsUsers.Tables["User"].PrimaryKey = dcaKey;

// Declare a command builder to create SQL instructions
// to create and update records.
OleDbCommandBuilder cb = new OleDbCommandBuilder(daUsers);

// Update an existing record in the DataSet
DataRow r = dsUsers.Tables["User"].Rows.Find(8);

if (r != null)
{

r["FirstName"] = "Venus";
r["LastName"] = "Williams";
r["City"] = "Houston";
r["State"] = "Texas";

// Update the record in the database
daUsers.Update(dsUsers.GetChanges());

// Align in-memory data with the data source ones
dsUsers.AcceptChanges();

// Print success message
Console.WriteLine("The record has been updated " +

"successfully.");
}
else
{

Console.WriteLine("No record found...");
}

}
catch (System.Exception ex)
{

5122ch09.qxd 8/23/05 3:18 PM Page 316

CHAPTER 9 ■ UPDATING DATA 317

dsUsers.RejectChanges();

// An error occurred. Show the error message
Console.WriteLine(ex.Message);

}
}

}
}

Listing 9-33. Example of Updating a Record Using ColumnMappings Using Visual Basic .NET

Imports System.Data.Common
Imports System.Data.OleDb

Module Module1
Sub Main()

Dim dsUsers As New DataSet("Users")

Try
' Define a connection object
Dim dbConn As New _

OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Password=;User ID=Admin;Data Source=db.mdb")

' Create a data adapter to retrieve records from db
Dim daUsers As New OleDbDataAdapter("SELECT ID,fn,ln,cty,st" & _

" FROM tabUsers", dbConn)

' Define each column to map
Dim dcmUserID As New DataColumnMapping("ID", "UserID")
Dim dcmFirstName As New DataColumnMapping("fn", "FirstName")
Dim dcmLastName As New DataColumnMapping("ln", "LastName")
Dim dcmCity As New DataColumnMapping("cty", "City")
Dim dcmState As New DataColumnMapping("st", "State")
' Define the table containing the mapped columns
Dim dtmUsers As New DataTableMapping("Table", "User")
dtmUsers.ColumnMappings.Add(dcmUserID)
dtmUsers.ColumnMappings.Add(dcmFirstName)
dtmUsers.ColumnMappings.Add(dcmLastName)
dtmUsers.ColumnMappings.Add(dcmCity)
dtmUsers.ColumnMappings.Add(dcmState)

' Activate the mapping mechanism
daUsers.TableMappings.Add(dtmUsers)

' Fill the dataset
daUsers.Fill(dsUsers)

5122ch09.qxd 8/23/05 3:18 PM Page 317

CHAPTER 9 ■ UPDATING DATA318

' Set the primary key in order to use the Find() method
' below.
Dim dcaKey() As DataColumn = _

{dsUsers.Tables("User").Columns("UserID")}
dsUsers.Tables("User").PrimaryKey = dcaKey

' Declare a command builder to create SQL instructions
' to create and update records.
Dim cb as OleDbCommandBuilder = New OleDbCommandBuilder(daUsers)

' Update an existing record in the DataSet
Dim r As DataRow = dsUsers.Tables(0).Rows.Find(3)

If Not r Is Nothing Then
r("FirstName") = "Venus"
r("LastName") = "Williams"
r("City") = "Houston"
r("State") = "Texas"

' Update the record in the database
daUsers.Update(dsUsers.GetChanges())

' Align in-memory data with the data source ones
dsUsers.AcceptChanges()

' Print success message
Console.WriteLine("The record has been updated " & _
"successfully.")

Else
Console.WriteLine("No record found...")

End If
Catch ex As Exception

' Reject DataSet changes
dsUsers.RejectChanges()

' An error occurred. Show the error message
Console.WriteLine(ex.Message)

End Try
End Sub

End Module

In Listings 9-32 and 9-33, you can see how the Find method retrieves the DataRow object
reference that is used in the updating process. The code has to define a primary key within the
DataSet in order to use the Find method, which needs a valid primary key value as a parameter
to retrieve the correct record.

5122ch09.qxd 8/23/05 3:18 PM Page 318

CHAPTER 9 ■ UPDATING DATA 319

Summary
This chapter was your first introduction to the updating side of ADO.NET. Until this chapter,
you had examined various facilities ADO.NET provides as far as retrieving data and working
with it in a connected or disconnected mode. This chapter completes the circle by enabling
you to write a complete application from querying to working to updating.

Updating data consists of three operations: add, modify, and delete. In this chapter, you
saw how the DataAdapter object uses various information from DataSets or DataTables and
executes the necessary queries. You saw an easy way to build those queries using the
CommandBuilder object and the pros and cons of that approach; and you saw how you could spec-
ify your own queries if you needed to.

You also saw the various methods available for editing data in DataSet, DataTable, and
DataView objects. Knowing such methods allows you to effectively work on the disconnected
cache of data with ease. Along the same lines, you saw various facilities such as GetChanges,
Merge, and mappings that allow you to create an updating logic for your application that suits
your needs the best.

In this chapter, among others, Exercise 9.4 was concerned with being able to work reliably
in a multiuser scenario. You saw how the disconnected nature of the application leads to situa-
tions where you need to think about concurrency and conflict resolution. Another curious thing
about all the exercises involving interaction with the database in this chapter was that almost
all of them dealt with the simple case of one single DataTable or one table in a DataSet.

The one-table scenario makes it easier to explain the basic concepts, but frequently in your
architecture you’ll be required to save changes from a hierarchical DataSet. The hierarchical
DataSet introduces interesting problems when you think about concurrency, key generation,
and passing back the necessary data per the various relationships.

Chapter 10 continues this discussion and presents more complex and real-world scenarios
involving hierarchical DataSets in a multiuser environment. It takes the discussion on concur-
rency further and explains the various cross-database concurrency management specifics.

5122ch09.qxd 8/23/05 3:18 PM Page 319

5122ch09.qxd 8/23/05 3:18 PM Page 320

321

C H A P T E R 1 0

■ ■ ■

Updating Data: Advanced
Scenarios

In the last chapter, you were introduced to the concept of updating in ADO.NET. This chapter
takes the same discussion a step further by introducing more real-world scenarios and other
real-world problems.

ADO.NET is different from previous data access architectures in the sense that it allows
you to retrieve a purely disconnected cache of records in an object representation of a database
called a DataSet. The DataSet resembles the database, but isn’t quite a database. It allows you
to search, sort, and filter through the records it contains, works with various relations, and lever-
ages the power of both an object representation and XML representation to allow you to easily
update its contents.

But a DataSet isn’t a database, and it shouldn’t be abused as one either; this statement
will become very clear in the contents of this chapter. In a fully connected environment, you
can easily update, insert, or delete various relational data; however, when you are working with
disconnected data, the mundane tasks of fetching the latest generated keys and managing con-
currency issues on the same hierarchical relational data can get quite complex.

Because a DataSet is completely disconnected, all the changes done to it while it’s discon-
nected are then saved back to the database, typically when the user clicks the Save button, or
when some other part of the application architecture does the equivalent of a save. When this
happens, the operation ultimately calls a data adapter’s Update method or something similar.
In most cases, data adapters support updating single tables or row arrays; if you need anything
more complex, it’s generally up to you to write the commands for that.

Now you could modify the DataSet as much as you wish, the only thing that would have
been changed so far would be the in-memory disconnected cache. Until you click Save (by
virtue of which you will start a process that will insert, modify, or delete various changes to the
database), the database is untouched. And even when you do click Save, because of the fact that
you had queried a snapshot of the database as a DataSet some time in history, that snapshot
might be out of date when you do a save. There could be a number of other users who might
be working on the same data, and you need to be mindful of the changes they might have done
between your querying for the data and your attempting to save the changes.

Between querying and saving, a number of things could have happened that you might
need to take care of at save time, including the following:

5122ch10.qxd 8/23/05 3:19 PM Page 321

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS322

• The row you are trying to update could have been deleted by another user.

• The row you are trying to insert has a foreign-key relationship with another row, which
could have been deleted in the meantime by another user.

• The row you are trying to update has already been updated by another user, but he
didn’t update the particular column you are interested in. Should your update be done
or should it be rejected?

• You are trying to perform a hierarchical insert. One of the rows you need to insert is
a foreign key in another table that you need to do an update or insert in—which may
or may not be a part of your DataSet.

Oh my! That is a lot of questions and scenarios. The first thing you, as an architect, need
to do when designing your update logic is to list various scenarios (like those just mentioned),
and decide which approach will work the best for your particular situation. You need to be
concerned about a conflict detection methodology and a concurrency resolution strategy.

Conflict Detection and Concurrency Resolution
The central policeman of a disconnected architecture, the database, is somewhat like a busy
traffic intersection. The bad way to architect would be to arrange for ambulances to carry
patients to the hospital once an accident has occurred. The right and better way to architect
would be to instead put in traffic lights to regulate the traffic better, thus preventing an acci-
dent in the first place. So, via proper application and database design, the first step should be
to sit back and think about the possible cases that might cause a conflict, and see if those can
be resolved using a proper database design.

Preventing Conflicts: Traffic Lights
You should try and design the database in such a way that conflicts do not occur. This might
be too tall of an order to fit most situations, but certain cases can be clearly addressed. For
example, to prevent primary-key conflicts, you could use GUID primary-key columns. GUIDs
are always unique so the issue of overlapping primary keys will never occur.

■Note Remember that GUIDs are not a good candidate for a clustered key in the database, not to mention
that the columns themselves and the indexes on them occupy a lot more space, and don’t perform quite as
well as an int identity column. But for using keys in a distributed system where the key can be generated
either by the application or by the database, a GUID might be a wise choice. Plus, not every database has
a uniqueidentifier data type.

Another method to avoid primary-key conflicts is, in the case of inserts, to let the user request
a number of keys beforehand. In other words, the UI of the application can be designed in such
a manner that it first asks the user how many rows he wishes to insert. Once he communicates
that he wishes to enter, say, 5 rows, then 5 keys are generated for him in the database and sent
across the wire to the application, which are then added to his DataTable. Now should the user

5122ch10.qxd 8/23/05 3:19 PM Page 322

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS 323

choose to discard those primary keys and not save them, you would simply end up wasting
those 5 possible keys, but in many cases that is a better solution than checking for the exis-
tence of a key or throwing an exception. Even if you use Int32, you have quite a few keys to
waste before you start running short, and even when you do run short of keys, by then we’ll all
be wearing silver jumpsuits communicating to a database perhaps on Uranus. Perhaps by then
the world will have moved to 64-bit computing.

This approach perhaps works better for Oracle where you have sequences; however, as
demonstrated in Chapter 9, you can easily emulate a sequence in SQL Server using a Seed
Generator table.

Another approach could be to use a journaling database, which keeps saving your changes
incrementally, rather than updating a particular row all the time. The advantage of this
approach is that conflicts never occur; the downside, obviously, is that at times querying data
out of the database can prove to be challenging.

Depending on your situation and creativity, you could come up with other scenarios and
solutions. But as you can clearly see, none of the approaches is a panacea, which is what makes
it so important that the needs of the application be clearly evaluated before any particular
scheme is sought after.

With the right database design, you can minimize conflicts but you cannot completely
eliminate them. Because of this, you need a conflict detection and concurrency resolution
strategy.

Handling Conflicts: Going to the Hospital After an Accident
There might be certain situations where you can’t help but let a conflict occur. For example,
you might decide that you don’t wish to use GUIDs for extreme performance needs, you don’t
want to use any homegrown sequence generation mechanism because you want to rely on
SQL Server to generate the identities for you. You might decide that a journaling or staging
database doesn’t quite meet your needs. Even when you do use GUIDs, you probably won’t
have any conflicts on inserts, but you’ll still have updates on other columns in the table that
are not GUIDs that might conflict with each other.

Let’s think of a real-world example. Say you have a distributed, disconnected system that
allows you to view and update patient information. In this case, say one user is updating the
patient’s bills with his current address and a clerk sitting at a desk somewhere else in the world
is updating the patient’s address because the patient happened to call in at that very moment.
Here you need to come up with a scheme that allows the system to automatically make deci-
sions about what it needs to do in these types of situations.

It’s generally a bad idea to prompt the user with a conflict situation and ask the user what
needs to be done. The reason behind this is because by the time the user decides what needs
to be done, the data could have changed yet again. It’s best to prompt the user with a failure
message and the refreshed data, and request that he try again.

So how does one go about building a data layer that makes decisions about saving data in
a highly concurrent environment? As it turns out, there is more than one way to do so.

Pessimistic Concurrency
The best way to prevent a conflict with a row you are updating is to ensure nobody else messes
with it while you are working with it. All you need to do is lock the row you wish to update and

5122ch10.qxd 8/23/05 3:19 PM Page 323

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS324

1. As you will see shortly, a better way to implement locking, without explicitly using pessimistic concur-
rency, is to implement locking in the logic that surrounds the database. This way, a user is informed in
advance that the 10 minutes he is about to spend updating a particular screen of information shouldn’t
be done now because another user is busy working with the data at this very moment. Also, in this
approach, you don’t keep a database connection open or overload the central policeman more than

anyone who wishes to update that row, while you still haven’t updated it, simply waits, times
out, or is given an error. That sounds like a great idea, but it has some serious drawbacks.1

First, by locking rows you are creating a serious contention with the one central piece of
architecture in your system—the database. This goes against ADO.NET’s general philosophy,
which emphasizes connecting as late as possible and disconnecting as soon as you can. Now,
not only does the database have to do the “row protection” (or page or table protection) for
you, but it also has to constantly listen to your request if you decide to unlock that row.

Second, this approach goes against another ADO.NET philosophy, which encourages
connection pooling by reducing the actual time you need and keeping the connection open
and reserved for yourself. ADO.NET will allow you to do this should you choose this as your
solution, but it’s not a recommended approach. Rightfully so, ADO.NET encourages you to use
a disconnected architecture, which just doesn’t go hand in hand with resource locking at the
database level. It’s true, however, that you could execute a database-specific command using
the DbCommand object, like the one shown here (a SQL Server command):

Select * from Customers HOLDLOCK where CustomerID = 1093

By using such a command in a transaction, you’d essentially end up locking the rows and
prevent any other user from updating those rows until you commit or abort the transaction.

This creates some interesting problems. The end user could have locked the row by one of
his actions and then, let’s say, that he left for lunch and left the screen open leaving that row
locked. Now while he is out to lunch, nobody else can update that row. Not only that, but you
have the serious contention issue of a lock causing another lock. If it gets bad enough, you
might end up with deadlocks in the database, which will require the intervention of a data-
base administrator to clean up and kill those transactions for everyone else in a concurrent
system—clearly something you’d rather not deal with in a highly concurrent application. So
now you have to worry about implementing a timeout mechanism on the user interface, but
what if the application crashes?

Let’s say the application didn’t crash, but given that application logic can get complex,
what if you had Resource A waiting for Resource B, Resource B waiting for Resource C, and
Resource C waiting for Resource A? You’d have a deadlock, and even though some databases
can detect such a situation, it’s still quite expensive for the one central resource involved.

Since ADO.NET lets you execute commands directly at the database level (using DbCommand),
another way of implementing a solution slightly better than transaction-based row locking is
to create a scrollable, updateable server-side cursor. This can be implemented in ADO.NET by
simply wrapping the CREATE CURSOR command inside a DbCommand. The server-side cursor can
then be positioned to the particular row you wish to work with—hence, apprising your appli-
cation of the latest changes at any given point in time. This does not, however, solve the prob-
lem of having to create and keep an open connection for the life of the cursor, but if you must
do pessimistic locking this might be a better approach.

Yet another method could be to build in a check-in/check-out functionality of rows in the
application. Thus, using some clever application logic, a checked-out row is left alone by other

5122ch10.qxd 8/23/05 3:19 PM Page 324

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS 325

requests. This can be implemented easily by adding a Boolean column to a table. In this manner
you remain disconnected but you still have to worry about timeouts and unexpected applica-
tion crashes.

For these reasons, pessimistic locking in general is highly discouraged in high-demand
applications. This approach, however, is completely safe, which is perhaps why it is called pes-
simistic concurrency—it simply assumes the worst case and plans accordingly.

Even though ADO.NET encourages you to write applications that do not leverage pessimistic
concurrency, ADO.NET doesn’t prevent you from using pessimistic concurrency in situations
where that is the only answer. Toward the end of this chapter, I will demonstrate a situation where,
in lieu of a complete database restructure, pessimistic concurrency is the only good answer.

Optimistic Concurrency
Put simply, optimistic concurrency assumes that locking a resource to prevent data corruption
is not necessary; instead, it relies on various schemes of checking the validity of data before
performing the actual update, delete, or insert. If the row has changed, the update or delete
fails and must be tried again. It might lock the row for the short duration of executing the com-
mand, but it’s not quite as bad as pessimistic locking, which tends to lock the rows between
the first select and the last update/insert/delete.

There are various optimistic concurrency options.

Last-In Wins

As the name suggests, whoever updates last is what the database remembers. This is probably
the simplest optimistic concurrency scheme, and you really don’t have to do anything to imple-
ment it. This is how it works.

Say the row you have to update looks like Table 10-1.

Table 10-1. Updateable Row

AnimalID AnimalType AnimalWeight

1 Puppy 3 lbs

Now say Frans and Erick come by and query this row. The row is now contained in
a disconnected cache, probably a DataRow inside a DataTable somewhere. While Frans was still
updating his row, Erick updates the row to AnimalType = Dog. So the contents of the table now
look like Table 10-2.

Table 10-2. Updated Row

AnimalID AnimalType AnimalWeight

1 Dog 50 lbs

Frans thinks that the row in the database still contains “Puppy” and chooses to update it
to “Mutt”. Under the last-in wins situation, he will simply update the row to Puppy with com-
plete disregard of Erick’s changes. So the row in the table will finally end up looking somewhat
like Table 10-3.

5122ch10.qxd 8/23/05 3:19 PM Page 325

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS326

Table 10-3. Final Updated Row Per Last-In Wins

AnimalID AnimalType AnimalWeight

1 Mutt 50 lbs

Typically, this is done by using a sequence of SQL queries that looks like this:

-- Erick's Select query
Select AnimalID, AnimalType, AnimalWeight from Animals
-- Frans'ss Select query
Select AnimalID, AnimalType, AnimalWeight from Animals
-- Erick's update query
Update Animals Set AnimalType = 'Dog', AnimalWeight = '50 lbs' where AnimalID = 1
-- Frans's update query
Update Animals Set AnimalType = 'Mutt', AnimalWeight = '50 lbs' where AnimalID = 1

Since the row lookup was done using only the primary key, which is probably indexed,
and only the columns changed were updated, this performs fairly well because Frans never
checked for any concurrency/conflicts and saved the time to run those queries.

Check All Columns Before an Update

The problem with the previously mentioned approach is that Erick thinks he’s still working with
a Dog. It’s not until Erick fully refreshes his user interface that he’ll see that Frans changed the
row in the database to Mutt. And when he does do a refresh, by then he might have updated
another pets table using the Dog animal row just because he didn’t know the latest name for
the animal in the database. (Prevent such accidents: using the right database design, you would
obviously not copy the name of the animal, but only the key, i.e., AnimalID).

Perhaps a better approach in this scenario would have been for Frans to check for Erick’s
or any other user’s updates between the time he fetched the data and the time he wished to
update his changes back to the database. So, instead of issuing an UPDATE command that con-
tains only the primary key in the WHERE clause, the UPDATE command’s WHERE clause could instead
contain a check for all values queried in the first place.

In other words, the sequence of commands the database will work with would look like this:

-- Erick's Select query
Select AnimalID, AnimalType, AnimalWeight from Animals
-- Frans's Select query
Select AnimalID, AnimalType, AnimalWeight from Animals

-- Erick's update query
Update Animals

Set AnimalType = 'Dog', AnimalWeight = '50 lbs'
where

AnimalID = 1 and AnimalWeight = '3 lbs' and AnimalType = 'Puppy'
-- Frans's update query
Update Animals

Set AnimalType = 'Mutt', AnimalWeight = '50 lbs'
where

5122ch10.qxd 8/23/05 3:19 PM Page 326

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS 327

These queries take a slightly safer approach; instead of issuing only the primary key as
part of the WHERE clause to identify the one row to be changed, a WHERE clause is constructed
out of all the values in the disconnected data cache that were queried in the first place. By
doing so, at the end of Erick’s UPDATE query, the data in the table looks like as shown in
Table 10-4. Now at this time, when Frans comes and queries for a row based on his original
data, he will simply not update any rows. This can be easily caught using the return value of
the ExecuteNonQuery method on the DbCommand object which will tell you that no rows changed,
when you had expected one row to be changed.

Table 10-4. Updated Row

AnimalID AnimalType AnimalWeight

1 Dog 50 lbs

This is a one-size-fits-all approach and is what the previous data access architectures,
such as Recordsets in ADO classic, used.

Obviously, you don’t corrupt data using this approach. In this approach, once a conflict
has been detected because ExecuteNonQuery returned 0 modified rows (whereas the expected
number was 1), Frans will know that a conflict has occurred. At this point the application should
inform Frans of the conflict by refilling his data cache and asking him to save his changes again
if he wishes to.

This approach is used by classic data access platforms such as the Recordset in ADO clas-
sic and CommandBuilder in .NET Framework 1.1. As a matter of fact, as you saw in Chapter 9, to
ensure backward compatibility, the CommandBuilder object still uses this approach by default.

But, what if one of the columns involved in this comparison was a blob? It would take a lot
to compare a blob, which could even be in megabytes of data. Thankfully, the query generation
engine used in SqlCommandBuilder or OracleCommandBuilder is smart enough to exclude the blob
data types, which has a negative side that blobs will not be checked for this kind of concurrency
check done by various common command builder objects. The query generation engine still,
however, must query the database for the structure of the table and various data types involved.
That query could not only be expensive, but also it might not work if you do not have the proper
access rights. Even if you were able to run this query, and generate a query that contains every
single column in the WHERE clause, simply executing such a generated query might be quite a bit
more expensive than other approaches.

The biggest advantage of this approach, however, is that setting up this kind of optimistic
concurrency model requires very little effort (for a single table at least). If your performance
needs aren’t that severe, given the lesser code maintenance you would have to do in this solu-
tion, maybe this would be the better approach for you.

Check Only Modified Columns and Primary Keys Before an Update

Checking all columns has its downsides: it will not work with blobs, it’s too expensive to generate
such a query, and it takes too long to execute. Plus, if you decide that the programmatic ease
of generating such a query is not worth the performance you might need out of the system,
you may choose a midway approach.

The midway approach involves checking only the modified columns plus the primary
key. So let’s say that Frans and Erick have already queried the table as per Table 10-1. Now

rans agrees that he doesn’t wish to

5122ch10.qxd 8/23/05 3:19 PM Page 327

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS328

rename Puppy to Mutt; rather, he wishes to update the Puppy to Dog. But let’s say Frans has
a heavier dog; his dog is 60 lbs not 50 lbs. So the sequence of queries would look somewhat
like this:

-- Erick's Select query
Select AnimalID, AnimalType, AnimalWeight from Animals
-- Frans's Select query
Select AnimalID, AnimalType, AnimalWeight from Animals

-- Erick's update query
Update Animals

Set AnimalType = 'Dog', AnimalWeight = '50 lbs'
where

AnimalID = 1 and AnimalWeight = '3 lbs' and AnimalType = 'Puppy'
-- Frans's update query, this will now fail.
Update Animals

Set AnimalWeight = '60 lbs'
where

AnimalID = 1 and AnimalWeight = '3 lbs'

This query sequence will succeed for Erick, but it will fail for Frans. At this point, however,
Frans will have the ability to refresh the data back from the database. He will intelligently decide
that, indeed, Erick has already done half the work by updating Puppy to Dog, but Frans doesn’t
quite agree that the dog is only 50 lbs. So Frans will reexecute a set of queries as shown here, to
update only the Dog’s weight:

-- Frans's Select query
Select AnimalID, AnimalType, AnimalWeight from Animals

-- Frans's update query
Update Animals

Set AnimalWeight = '60 lbs'
where

AnimalID = 1 and AnimalWeight = '50 lbs'

This query will now succeed. So in this approach, Frans was prevented from making changes
to a row that had changed. He was rightfully informed that another user had modified the row.
Given such a meaningful message and the latest data on his screen, he could now easily update
the Animal row and change only its weight.

Obviously, this approach has the plus of not having a very complex WHERE clause. Also, such
a WHERE clause would generally be specified by you in advance, instead of being queried from
the database. This would generally lead to better performance in comparison with a query that
compares every single column in the WHERE clause, though query plans could change much too
frequently to be effectively cached.

There are still a few problems with this approach, though.

Checking for Timestamps

In our pursuit to find the best concurrency management scheme, the last approach discussed
y key and the modified columns.

5122ch10.qxd 8/23/05 3:19 PM Page 328

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS 329

The first obvious downside of this approach is that you would need to reformulate the query
every time. While that could be done, it would involve string manipulation either in the data-
base or in the application logic—not to mention that because the query structure would change,
the database will not cache the execution plan, thus leading to lower performance.

Another sinister, but not as obvious, problem is that a hole exists in the previous logic.
Let’s say that in the second pass of queries that Frans was executing, he queried a Dog

that weighed 50 lbs and now he wishes to update the Dog to 60 lbs. In the meantime, a third
user, Sushil, comes between the query and update that Frans did. Sushil changes the Dog to
a Monkey. So the sequence of queries in the second pass would now look somewhat like this:

-- Frans's Select query
Select AnimalID, AnimalType, AnimalWeight from Animals
-- Sushil's Select query
Select AnimalID, AnimalType, AnimalWeight from Animals

-- Sushil's Update query
Update Animals

Set AnimalType = 'Monkey'
where

AnimalID = 1 and AnimalType = 'Dog'
-- Frans's update query
Update Animals

AnimalWeight = '60 lbs'
where

AnimalID = 1 and AnimalWeight = '50 lbs'

So at the end of the execution of these queries

• Sushil thinks he has a Monkey that weighs 50 lbs.

• Erick thinks he has a Dog that weighs 50 lbs.

• Frans thinks he has a Dog that weighs 60 lbs.

But when Pablo (a fourth user) requests for AnimalID = 1, he gets back a Monkey that
weighs 60 lbs.

Naturally, this is not the best approach—even though it’s the best performing approach
that is most easily portable between databases.

The Microsoft SQL Server database offers the Timestamp column. The Timestamp column is
a column on a table that changes every time a DML operation is done to it.

An UPDATE query that makes use of the Timestamp column looks like this:

Update Animals
AnimalWeight = '60 lbs'

where
AnimalID = 1 and TimeStamp = 0x00000000000007D1

It’s important to note that if you choose to use transactional updates (as described in the
next chapter) for optimistic concurrency as implemented in the application to work properly,
the application must use a low transaction level such as ReadCommitted. As you’ll also see in
the next chapter, as you raise isolation levels your concurrent performance goes down. In the

5122ch10.qxd 8/23/05 3:19 PM Page 329

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS330

previously described situation for instance, you gain no advantage by choosing a higher
isolation level such as Serializable, so you should try and keep it as low as possible. In this
case, ReadCommitted would be ideal. The one lower isolation level, ReadUncommitted, should be
avoided if you want any kind of data sanctity. But before I confuse you with too many new words,
let’s reserve a deeper discussion on that in the next chapter.

Another important point to note is that the T-SQL timestamp data type is not the same as
the timestamp data type defined in the SQL-92 standard. The SQL-92 timestamp data type is
equivalent to the T-SQL datetime data type. A future release of Microsoft SQL Server may mod-
ify the behavior of the T-SQL Timestamp data type to align it with the behavior defined in the
standard. At that time, the current timestamp data type will be replaced with a RowVersion
data type.

For you to be able to use a Timestamp column in a table, you have to specify it during the
table creation:

CREATE TABLE SomeTable (identifier int PRIMARY KEY, timestamp)

The column name in this case would be “timestamp”. RowVersion on the other hand
requires you to specify a column name.

Which Concurrency Model Do You Choose: Pessimistic or Optimistic?
So this is weird, while pessimistic concurrency models require you to implement more checks
at the server end (or the logic that surrounds the server), optimistic concurrency models cause
more user frustration where someone (either Erick or Frans) will lose their work.

So what do you do? Well, here are two cardinal rules to follow when architecting your data
access strategy in highly concurrent environments:

1. Given the transactional nature of databases and your operations, you have to lock
resources for some time at some point. The idea is to lower the contention, the time
duration, and the amount of resources you lock. This is achieved by not keeping the
connection open for too long and keeping user interaction out of the time duration the
resources are locked at the database level. In other words, database resources should be
locked for the least amount of time possible.

2. Keep the user in the forefront of your thoughts. A screen that takes 10 minutes to fill
needs a pessimistic logical model wrapped around the logic that sits next to the data-
base. This is because you don’t want to tell the user that his 10 minutes of careful hard
work is lost!

But you shouldn’t break rule 1 either. That is, you cannot lock database resources for 10
minutes at a particular user’s whim. In other words, rows that need to be modified, but
take 10 minutes to specify the modifications, need to implement a check-in/check-out
functionality. Now the actual check-in process, the actual check-out process, and—once
you have the changes ready—the actual update are small, low-contention operations
that don’t involve interactive user inputs. Those can then be wrapped within a single
transaction with implicit resource locking as a result—but only for a very short duration,
and on as little resources as possible.

Many interesting design patterns arise out of this; for instance, here are a few real-world
applications:

5122ch10.qxd 8/23/05 3:19 PM Page 330

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS 331

• A concert ticket booking website can implement functionality to lock your seats for 2
minutes. This way, the seats are checked out to you for 2 minutes, so no explicit clean-
up logic is needed. If another user requests the same seats after 2 minutes, you lose the
seats; that is, your records are implicitly checked in due to time lapse.

• A payment application to an insurance account would need you to first open a batch,
enter checks, and then close a batch before you can apply the batch. Of course, the user
would also request the identity keys in advance for the checks they are about to enter.

• An e-commerce site may decide that checking inventory every time an order is placed
for a popular item is too expensive to do at every order placement. Instead, it may
choose to inform the last five or ten users that their orders cannot be fulfilled or, when
the inventory drops below a certain number, it may show a message informing that
their orders may be delayed.

• When editing a complex screen full of information about a patient, you would first need
to take it out of read-only mode (check out), then do your changes, and finally save (check
in your changes).

The common underlying theme is to avoid situations that lock too many resources for too
long at a given point in time and implement as many optimistic checks to keep the system more
maintainable. But in a real-world application, that is never completely unavoidable. In those
instances, you need to decide on the right combination of approaches that have been men-
tioned here.

Implementing Concurrency: Practical Concerns
Per the previous academic discussion, you could probably come up with a concurrency mechanism
that suits you best. In most cases, you would probably want to go with optimistic concurrency. As
a matter of fact, even where you need strict row locking, you could use alternate mechanisms such
as check-in/check-out logic and not create actual row locks in the database.

When you have selected an appropriate concurrency management strategy, there are
a few things you need to consider when implementing concurrency in your data layer.

Null Values
.NET 1.x doesn’t allow nullable value types like databases or languages such as C++ may allow
you to have. .NET 2.0 did introduce nullable value types, but they are not quite the same as
the nullable value types that may exist in the context of databases or C++; thus, those don’t go
all the way in helping you deal with the null mismatches between databases and .NET. It’s
for this purpose that .NET provides you with various facilities to work with nullable columns
in the database.

A database null is represented by the System.DBNull structure in .NET. Usually, this can be
easily retrieved using the System.Convert.DBNull constant to assign null values to a column.
Alternatively, on reads you can use the DbDataReader.IsNull method to check if a particular
column is null or not. As a better performing alternative, you could also compare the result of
GetValue with DBNull.Value inside a data reader loop.

Strongly typed DataSets make it even easier for you by allowing you to set a particular col-

5122ch10.qxd 8/23/05 3:19 PM Page 331

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS332

C#

rowAnimal.IsAnimalTypeNull();
rowAnimal.SetAnimalTypeNull() ;

VB.NET

rowAnimal.IsAnimalTypeNull()
rowAnimal.SetAnimalTypeNull()

If this were not a strongly typed DataSet, your code would look something like this:

C#

if (rowAnimal.IsNull("AnimalType")) { ... }
// And
rowAnimal("AnimalType") = Convert.DBNull ;

VB.NET

If rowAnimal.IsNull("AnimalType") Then
...
End If
' And
rowAnimal("AnimalType") = Convert.DBNull

Specifically for concurrency concerns, if you do need to check for null values in a SQL
query, your query’s WHERE clause must include

Where AnimalType IS NULL

instead of

Where AnimalType = NULL

If the query needs to adjust for both null and not null values, you could write the WHERE
clause like so:

Where (AnimalType = ? OR ((AnimalType IS NULL) AND (? IS NULL)))

The ? character represents a configurable parameter.

Number of Rows Affected and Triggers
A trigger is a piece of code in your database that gets executed after a certain operation occurs.
Typically, you might want to implement a trigger for auditing purposes on inserts on a table.

The issue triggers create is that, in SQL Server Management Studio, if you inserted a row
into a table that has such a trigger set on it, SQL Server Management Studio would return out-
put that looks like this:

5122ch10.qxd 8/23/05 3:19 PM Page 332

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS 333

(1 row(s) affected)
(1 row(s) affected)

This output is correct since the first row is due to the insert you did and the second is
probably an insert into the log table—thanks to the trigger. The problem is this: when you run
ExecuteNonQuery on such a command, ExecuteNonQuery will tell you that it ended up modify-
ing two rows. Since concurrency management schemes depend on checking how many rows
did get modified, such an approach would create a problem.

The work-around for this is to use SQL Server’s NOCOUNT setting. By setting NOCOUNT ON and
NOCOUNT OFF at appropriate places inside the trigger, you can ensure that you do not confuse
your application logic by reporting changed rows that might not be important from a concur-
rency check point of view.

Similarly, if you have a batched SQL statement, or a stored procedure which has multiple
statements modifying rows, then you need to execute SELECT @@ROWCOUNT to find the exact
number of rows modified at each specific given statement.

Multiple Rows Being Updated
This is a tricky one. You have a DataTable with three rows changed. One is inserted, another is
modified, and the third is deleted. Now, assuming that you have specified an InsertCommand,
UpdateCommand, and DeleteCommand on the DataAdapter, the appropriate commands will get
called one by one based upon the various RowStates.

Say the InsertCommand succeeds, but the modified (UpdateCommand) fails; should you then

• Go ahead and execute the DeleteCommand?

• Stop execution right there?

• Roll back the InsertCommand?

Well, technically per your application logic, you should be able to choose any of these three.
The exact situation might demand that you handle each scenario per its specific requirements.
It’s for this reason that you have the ContinueUpdateOnError property on a DataAdapter. The
behavior is actually quite simple: By leaving ContinueUpdateOnError on false (the default value),
if an error occurs during the execution of a command for a particular changed row, you should
get a DbConcurrencyException. At that point, the DataAdapter will stop executing any further
commands and return.

If you set the ContinueUpdateOnError property to true, the DataAdapter would continue
executing commands. Its default value is false because by setting this property to false, you
complete or fail an entire update operation and report success only on a complete success.
That is, if one row fails the whole operation fails; thus, making the update atomic in nature if
indeed you did wrap it in a transaction.

However, it’s important that, in this case, ADO.NET should somehow inform us of the rows
that have errors in them. This can be easily found out using the DataRow.HasErrors property to
verify if a particular row has errors in it or not. If it does have errors, then you can get the exact
error description using the DataRow.RowError property. Similarly, the DataSet and DataTable
also have the HasErrors property, which lets you easily identify any errors at a global level. If
a DataRow does have an error when it’s databound to a DataGridView control, the particular row
shows an exclamation mark indicating an error, and the tool tip indicates the error description

5122ch10.qxd 8/23/05 3:19 PM Page 333

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS334

Figure 10-1. A sample hierarchical database

Also, once all the errors have been reconciled, you can use the ClearErrors method to
clear all errors on a DataRow, DataTable, or DataSet.

Finally, on an error condition, in certain cases, you not only want to stop execution, but
you also want to roll back anything you have done so far. This can be done using transactions,
which will be covered in Chapter 11.

Working with Hierarchical Data
So far in this chapter and in Chapter 9, you have covered all the fundamentals that would allow
you to deal with various updating scenarios including concurrency in most practical settings.
Strangely enough, most of the examples shown deal with only one DataTable, or a DataSet with
one DataTable. As a matter of fact, drag-and-drop operations, command builders, etc., all work
well with only one table. If you need something more complex, you will need to implement
your own queries.

Alas, the answer is usually never as simple as “implement your own queries”!
It’s quite probable that in working with DataSets you might have hierarchical updates that

might need to be saved into the database. These hierarchical changes pose interesting challenges.
This is best demonstrated using an example. So far the examples have used the Animals table,

which allows you to enter different animal types. Go ahead and add another table to that DataSet.
This is the Pets table, and because each pet is an Animal, there is a foreign-key relationship
between the Pets table and the Animals table using the AnimalID as the foreign key. Also, to make
things even more interesting, go ahead and add a third table called PetBelonging. This table
will be used to save the belongings of a pet you might have. So a Dog called Tashu might have
a collar, a bowl, and a bone. The database table layout diagram can be seen in Figure 10-1.

You can download the code for this discussion in Exercise 10.1, and you can download
the database setup script in setup database.sql from the associated code download (see the
Downloads section of the Apress website at http://www.apress.com).

5122ch10.qxd 8/23/05 3:19 PM Page 334

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS 335

Figure 10-2. The strongly typed DataSet

Because the strongly typed DataSet is intended to store a disconnected cache, some of the
concepts learned in this chapter are used to set up primary keys, seed, and increment values in
the three tables. Thus, in Exercise 10.1 you can see Animals.AnimalID, Pets.PetID, and
PetBelonging.PetBelongingID have been set up as primary keys with AutoIncrementSeed = 0,
and AutoIncrementStep = -1 in the strongly typed DataSet.

Finally, again to mimic the database, two relationships are set up between the three DataTables
representing the foreign keys that exist in the database. The first is FK_Animals_Pets between
Animals.AnimalID and Pets.AnimalID, and the second is FK_Pets_PetBelonging between Pets.
PetID, and PetBelonging.PetID. These relationships have their update rule and delete rule set
to cascade by default.

With the DataSet set up, the three tables can be easily bound to three DataGridViews to
generate columns at design time. Also, just to make sure the user doesn’t meddle with the
autogenerated keys, the primary columns in all three tables, Animals.AnimalID, Pets.PetID,
and PetBelonging.PetBelongingID, have been marked as read only.

The final UI in design time looks like as shown in Figure 10-3.

As you can see in the code download, to make our lives easier the exercise uses a strongly
typed DataSet. The strongly typed DataSet contains three tables as shown in Figure 10-2, which
mimic the database table structure.

5122ch10.qxd 8/23/05 3:19 PM Page 335

Figure 10-3. The user interface for Exercise 10.1 in Design view

As you can see, there are only two buttons: One exits the application, which simply calls
a this.Close/Me.Close. The other button is quite interesting; it just says Save My Data, which
is typically the level of complexity you should expect the user to deal with. Behind Save My
Data it should take care of all various issues a disconnected cache might create.

Finally, in the form’s constructor or load event, with the UI set up as mentioned previously,
you can simply use some TableMappings magic to fill the data in the right tables. The DataSet
being filled is animalsData, which is a private member variable at the form level. This is shown
in Listings 10-1 and 10-2. The FillData/Sub method is called from either the form’s constructor
or from the form’s load event.

Listing 10-1. Filling the DataSet and Data Binding It to the Right DataGridViews in C#

private void FillData()
{

animalsData = new AnimalsDataSet();
SqlDataAdapter sqlDa = new SqlDataAdapter(

"Select * from Animals; Select * from Pets; Select * from PetBelonging",
connectionString);

sqlDa.TableMappings.Add("Table", "Animals");
sqlDa.TableMappings.Add("Table1", "Pets");
sqlDa.TableMappings.Add("Table2", "PetBelonging");
sqlDa.Fill(animalsData);

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS336

5122ch10.qxd 8/23/05 3:19 PM Page 336

Figure 10-4. The application allowing the user to edit data at runtime

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS 337

dgAnimals.DataSource = animalsData.Tables["Animals"];
dgPets.DataSource = animalsData.Tables["Pets"];
dgPetBelonging.DataSource = animalsData.Tables["PetBelonging"];

}

Listing 10-2. Filling the DataSet and Data Binding It to the Right DataGridViews in Visual Basic .NET

Private Sub FillData()
animalsData = New AnimalsDataSet()
Dim sqlDA As SqlDataAdapter = New SqlDataAdapter(_

"Select * from Animals; Select * from Pets;" & _
"Select * from PetBelonging", _

connectionString)
sqlDa.TableMappings.Add("Table", "Animals")
sqlDa.TableMappings.Add("Table1", "Pets")
sqlDa.TableMappings.Add("Table2", "PetBelonging")
sqlDa.Fill(animalsData)

dgAnimals.DataSource = animalsData.Tables("Animals")
dgPets.DataSource = animalsData.Tables("Pets")
dgPetBelonging.DataSource = _
animalsData.Tables("PetBelonging")

End Sub

Now if you run the application, you should see the data populated as shown in Figure 10-4.

e the fun begins!

5122ch10.qxd 8/23/05 3:19 PM Page 337

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS338

Figure 10-5. Newly added data in the application

The disconnected cache will maintain a certain level of data sanctity by virtue of the vari-
ous relationships set up. So it’s safe to assume that in this application, the three cases you would
have to deal with are INSERTs, UPDATEs and DELETEs.

Let’s look at INSERTs first.

Inserting Hierarchical Data
The DataSet schema defined in the application will maintain some level of data sanctity.
Specifically, it will ensure the data types, presence of required fields, and foreign-key values
(or referential integrity).

Given that we have three tables, any data that is inserted into the database will have to
be inserted in a top-down approach. In other words, let’s assume that you want to make the
following changes to the database:

• Add a new animal type: Monkey.

• Add a new pet of type “monkey”: Jimmy Malik.

• Jimmy Malik has a “pet belonging”: swing, which costs 25 dollars.

The changes that you must make to the data are shown in Figure 10-5.

So sit back and think, what is the piece of data that you absolutely need, but do not have
yet in order to save the swing that cost 25 dollars into the PetBelonging table? Naturally, it’s the
pet that the swing belongs to. The pet being Jimmy who cannot be saved into the Pets table
unless an Animal exists that identifies Jimmy as a Monkey.

5122ch10.qxd 8/23/05 3:19 PM Page 338

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS 339

So the first table that needs to be saved is the Animals table, followed by the Pets table
using the key received from the Animals table, and finally the PetBelonging table—thus, a “top-
down” approach. The insert command for the Animals table, insertAnimalCommand, is shown in
Listings 10-3 and 10-4.

Listing 10-3. Setting Up the insertAnimalCommand in C#

SqlCommand insertAnimalCommand = new SqlCommand();
insertAnimalCommand.Connection = testConnection;
insertAnimalCommand = new SqlCommand("UP_ANIMALINSERT");
insertAnimalCommand.CommandType = CommandType.StoredProcedure;

param = new SqlParameter("@AnimalID", SqlDbType.Int, 4, "AnimalID");
param.Direction = ParameterDirection.Output;
insertAnimalCommand.Parameters.Add(param);

param = new SqlParameter("@AnimalType", SqlDbType.VarChar, 50, "AnimalType");
param.Direction = ParameterDirection.Input;
insertAnimalCommand.Parameters.Add(param);

insertAnimalCommand.Transaction = trans;

Listing 10-4. Setting Up the insertAnimalCommand in Visual Basic .NET

Dim insertAnimalCommand As SqlCommand = New SqlCommand()
insertAnimalCommand.Connection = testConnection
insertAnimalCommand = New SqlCommand("UP_ANIMALINSERT")
insertAnimalCommand.CommandType = CommandType.StoredProcedure

param = New SqlParameter("@AnimalID", SqlDbType.Int, 4, "AnimalID")
param.Direction = ParameterDirection.Output
insertAnimalCommand.Parameters.Add(param)

param = New SqlParameter("@AnimalType", SqlDbType.VarChar, 50, "AnimalType")
param.Direction = ParameterDirection.Input
insertAnimalCommand.Parameters.Add(param)

insertAnimalCommand.Transaction = trans

Curiously enough, look at the last statement in these two listings. What is effectively being
done is a transaction is being set up. Even though transactions will be covered in depth in the next
chapter, at this point it’s sufficient to understand that the commands executed upon the three
tables must lie within a transaction because if for some reason an insert on the PetBelongings
table fails, you don’t want to leave orphan rows in either the Pets table or the Animals table.
A transaction will ensure that all the rows will either insert and be committed, or will not insert
and will be rolled back together. Setting up a transaction is fairly easy and can be achieved with
the following code:

5122ch10.qxd 8/23/05 3:19 PM Page 339

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS340

C#

testConnection.Open();
SqlTransaction trans = testConnection.BeginTransaction();

VB.NET

testConnection.Open()
Dim trans As SqlTransaction = testConnection.BeginTransaction()

One immediately apparent downside of setting up a command like this is that you need
to open the connection and keep it open until the transaction is either rolled back or commit-
ted. So this goes back to the two rules previously specified, and necessitates that you keep user
input out of the transaction itself because the user, based on his whim, could now keep the
transaction running and the connection open for an unnecessarily long time.

Also, you may notice that in Listings 10-3 and 10-4, the AnimalID parameter is an “OUT”
parameter; in other words, using the concepts you learned in Chapter 9, as the data adapter
calls the INSERT command for each row added in the data table one by one, the respective
AnimalID has to be fetched back into the Animals DataTable. This is where it gets really interesting.
Because the UpdateRule on FK_Animals_Pets has been set to cascade, these newly fetched
AnimalIDs are then automatically copied to the Pets DataTable.

The stored procedure for inserting an animal into the Animals database is shown in
Listing 10-5.

Listing 10-5. Stored Procedure for Inserting an Animal into the Database

CREATE PROCEDURE UP_ANIMALINSERT
@AnimalID INT OUTPUT,
@AnimalType VARCHAR(50)

AS
INSERT INTO ANIMALS

(AnimalType)
VALUES

(@AnimalType)

SELECT @AnimalID = SCOPE_IDENTITY()
GO

Similarly, the commands for the Pets table and the PetBelonging table can be set up in
.NET code as per Listings 10-6 and 10-7.

Listing 10-6. Setting Up the insertPetCommand and insertPetBelongingCommand in C#

// Moving down the hierarchy - the Pets Table
#region insertPetCommand
SqlCommand insertPetCommand = new SqlCommand();
insertPetCommand.Connection = testConnection;

5122ch10.qxd 8/23/05 3:19 PM Page 340

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS 341

insertPetCommand = new SqlCommand("UP_PETSINSERT");
insertPetCommand.CommandType = CommandType.StoredProcedure;

param = new SqlParameter("@PetID", SqlDbType.Int, 4, "PetID");
param.Direction = ParameterDirection.Output;
insertPetCommand.Parameters.Add(param);

param = new SqlParameter("@FirstName", SqlDbType.VarChar, 50, "FirstName");
param.Direction = ParameterDirection.Input;
insertPetCommand.Parameters.Add(param);

param = new SqlParameter("@LastName", SqlDbType.VarChar, 50, "LastName");
param.Direction = ParameterDirection.Input;
insertPetCommand.Parameters.Add(param);

param = new SqlParameter("@Weight", SqlDbType.Int, 4, "Weight");
param.Direction = ParameterDirection.Input;
insertPetCommand.Parameters.Add(param);

// This parameter will be retreived from the first command insertAnimalCommand
param = new SqlParameter("@AnimalID", SqlDbType.Int, 4, "AnimalID");
param.Direction = ParameterDirection.Input;
insertPetCommand.Parameters.Add(param);

insertPetCommand.Transaction = trans;
#endregion

// Finally moving to the end of the hierarchy - PetBelonging
#region insertPetBelongingCommand
SqlCommand insertPetBelongingCommand = new SqlCommand();
insertPetBelongingCommand.Connection = testConnection;

insertPetBelongingCommand = new SqlCommand("UP_PETBELONGINGINSERT");
insertPetBelongingCommand.CommandType = CommandType.StoredProcedure;

param = new SqlParameter("@PetBelongingID", SqlDbType.Int, 4, "PetBelongingID");
param.Direction = ParameterDirection.Output;
insertPetBelongingCommand.Parameters.Add(param);

param = new SqlParameter("@Name", SqlDbType.VarChar, 50, "Name");
param.Direction = ParameterDirection.Input;
insertPetBelongingCommand.Parameters.Add(param);

param = new SqlParameter("@Price", SqlDbType.Float, 8, "Price");
param.Direction = ParameterDirection.Input;
insertPetBelongingCommand.Parameters.Add(param);

5122ch10.qxd 8/23/05 3:19 PM Page 341

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS342

// This parameter will be retreived from the first command insertPetCommand
param = new SqlParameter("@PetID", SqlDbType.Int, 4, "PetID");
param.Direction = ParameterDirection.Input;
insertPetBelongingCommand.Parameters.Add(param);

insertPetBelongingCommand.Transaction = trans;
#endregion

Listing 10-7. Setting Up the insertPetCommand and insertPetBelongingCommand in Visual
Basic .NET

' Moving down the hierarchy - the Pets Table
' insertPetCommand
Dim insertPetCommand As SqlCommand = New SqlCommand()
insertPetCommand.Connection = testConnection

insertPetCommand = New SqlCommand("UP_PETSINSERT")
insertPetCommand.CommandType = CommandType.StoredProcedure

param = New SqlParameter("@PetID", SqlDbType.Int, 4, "PetID")
param.Direction = ParameterDirection.Output
insertPetCommand.Parameters.Add(param)

param = New SqlParameter("@FirstName", SqlDbType.VarChar, 50, "FirstName")
param.Direction = ParameterDirection.Input
insertPetCommand.Parameters.Add(param)

param = New SqlParameter("@LastName", SqlDbType.VarChar, 50, "LastName")
param.Direction = ParameterDirection.Input
insertPetCommand.Parameters.Add(param)

param = New SqlParameter("@Weight", SqlDbType.Int, 4, "Weight")
param.Direction = ParameterDirection.Input
insertPetCommand.Parameters.Add(param)

' This parameter will be retreived from the first command insertAnimalCommand
param = New SqlParameter("@AnimalID", SqlDbType.Int, 4, "AnimalID")
param.Direction = ParameterDirection.Input
insertPetCommand.Parameters.Add(param)

insertPetCommand.Transaction = trans

' Finally moving to the end of the hierarchy - PetBelonging
' insertPetBelongingCommand
Dim insertPetBelongingCommand As SqlCommand = New SqlCommand()
insertPetBelongingCommand.Connection = testConnection

5122ch10.qxd 8/23/05 3:19 PM Page 342

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS 343

insertPetBelongingCommand = New SqlCommand("UP_PETBELONGINGINSERT")
insertPetBelongingCommand.CommandType = CommandType.StoredProcedure

param = New SqlParameter("@PetBelongingID", SqlDbType.Int, 4, "PetBelongingID")
param.Direction = ParameterDirection.Output
insertPetBelongingCommand.Parameters.Add(param)

param = New SqlParameter("@Name", SqlDbType.VarChar, 50, "Name")
param.Direction = ParameterDirection.Input
insertPetBelongingCommand.Parameters.Add(param)

param = New SqlParameter("@Price", SqlDbType.Float, 8, "Price")
param.Direction = ParameterDirection.Input
insertPetBelongingCommand.Parameters.Add(param)

' This parameter will be retreived from the first command insertPetCommand
param = New SqlParameter("@PetID", SqlDbType.Int, 4, "PetID")
param.Direction = ParameterDirection.Input
insertPetBelongingCommand.Parameters.Add(param)

insertPetBelongingCommand.Transaction = trans

The respective stored procedures can be set up using the code shown in Listing 10-8.

Listing 10-8. Stored Procedures for Inserting a Pet and a PetBelonging into the Database

CREATE PROCEDURE UP_PETSINSERT
@PetID INT OUTPUT,
@FirstName VARCHAR(50),
@LastName VARCHAR(50),
@Weight INT,
@AnimalID INT

AS
INSERT INTO PETS

(FirstName, LastName, Weight, AnimalID)
VALUES

(@FirstName, @LastName, @Weight, @AnimalID)

SELECT @PetID = SCOPE_IDENTITY()
GO

CREATE PROCEDURE UP_PETBELONGINGINSERT
@PetBelongingID INT OUTPUT,
@Name VARCHAR(50),
@Price FLOAT,
@PetID INT

5122ch10.qxd 8/23/05 3:19 PM Page 343

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS344

AS
INSERT INTO PETBELONGING

(Name, Price, PetID)
VALUES

(@Name, @Price, @PetID)

SELECT @PetBelongingID = SCOPE_IDENTITY()
GO

Once the commands are set up, the actual work can be started. As mentioned earlier, the
insertions need to be done in a top-down approach. So, first, an insert is done into the Animals
table, followed by the Pets table, followed by the PetBelonging table.

As you can see in Listings 10-9 and 10-10, an interesting point to note is the transaction. If
any of these INSERT commands throws an exception, it’s important to roll back all the changes,
which can typically be done in the catch block of a try...catch...finally block. Since the finally
block will get executed irrespective of the fact that the transaction commits or rolls back, it’s
a perfect candidate for putting in a call to close the connection and to fill the DataSet again
with the latest data from the database.

Listing 10-9. Persisting Inserts Back into the Database Using Three New Instances of
DataAdapter for Three Tables in C#

// .. Start the work
try
{

sqlDa = new SqlDataAdapter("Select * from Animals", testConnection);
sqlDa.InsertCommand = insertAnimalCommand;
sqlDa.InsertCommand.Connection = testConnection;
sqlDa.Update(animalsData.Animals.Select("", "", DataViewRowState.Added));

sqlDa = new SqlDataAdapter("Select * from Pets", testConnection);
sqlDa.InsertCommand = insertPetCommand;
sqlDa.InsertCommand.Connection = testConnection;
sqlDa.Update(animalsData.Pets.Select("", "", DataViewRowState.Added));

sqlDa = new SqlDataAdapter("Select * from PetBelonging", testConnection);
sqlDa.InsertCommand = insertPetBelongingCommand;
sqlDa.InsertCommand.Connection = testConnection;
sqlDa.Update(animalsData.PetBelonging.Select("", "", DataViewRowState.Added));

// All good, let's commit.
trans.Commit();

}

5122ch10.qxd 8/23/05 3:19 PM Page 344

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS 345

catch (System.Exception)
{

trans.Rollback();
}
finally
{

FillData();
testConnection.Dispose();

}

Listing 10-10. Persisting Inserts Back into the Database Using Three New Instances of
DataAdapter for Three Tables in Visual Basic .NET

' .. Start the work
Try

sqlDa = New SqlDataAdapter("Select * from Animals", testConnection)
sqlDa.InsertCommand = insertAnimalCommand
sqlDa.InsertCommand.Connection = testConnection
sqlDa.Update(animalsData.Animals.Select("", "", DataViewRowState.Added))

sqlDa = New SqlDataAdapter("Select * from Pets", testConnection)
sqlDa.InsertCommand = insertPetCommand
sqlDa.InsertCommand.Connection = testConnection
sqlDa.Update(animalsData.Pets.Select("", "", DataViewRowState.Added))

sqlDa = New SqlDataAdapter("Select * from PetBelonging", testConnection)
sqlDa.InsertCommand = insertPetBelongingCommand
sqlDa.InsertCommand.Connection = testConnection
sqlDa.Update(animalsData.PetBelonging.Select("", "", DataViewRowState.Added))

' All good, let's commit.
trans.Commit()

Catch
trans.Rollback()

Finally
FillData()
testConnection.Dispose()

End Try

After this code is done executing, you can see the retrieved data back in the application as
shown in Figure 10-6. Notice that the newly generated keys correspond with the hierarchical
relationships.

5122ch10.qxd 8/23/05 3:19 PM Page 345

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS346

Figure 10-6. Added data, after clicking the Save button. Notice the Key values.

As you can see in Listings 10-9 and 10-10, a special overload of the DataAdapter’s Update
method was used. DbDataAdapter.Update supports a few other overloads as shown in
Table 10-5.

Table 10-5. DbDataAdapter.Update Overloads

Constant Description

DbDataAdapter.Update(DataRow[]) Calls INSERT, UPDATE, DELETE on various changed rows
specified in the data row array.

DbDataAdapter.Update(DataSet) Calls INSERT, UPDATE, DELETE on various changed rows
in the first table of the DataSet. Note that previous
MSDN documentation versions specify that the
commands will be called on all rows in the DataSet;
that is incorrect.

DbDataAdapter.Update(DataTable) Calls INSERT, UPDATE, DELETE on various changed rows
in the specified DataTable.

DbDataAdapter.Update(DataRow[]. Calls INSERT, UPDATE, DELETE on various changed rows
DataTableMapping) in the specified DataRow array, while taking care of

various mappings.

DbDataAdapter.Update(DataSet, Calls INSERT, UPDATE, DELETE on various changed rows
String) in one DataTable of a DataSet identified by the second

parameter.

The overload used is DbDataAdapter.Update(DataRow[]). The DataRow array is filtered out
for only the added rows using the DataTable.Select method. The reason this was necessary
was because, in hierarchical updates, inserted rows might need a different logic than updated
(DataViewRowState.ModifiedCurrent) or deleted (DataViewRowState.Deleted) rows.

5122ch10.qxd 8/23/05 3:19 PM Page 346

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS 347

Updating Hierarchical Data
Updating data is actually simpler—you simply call UpdateCommand using the data adapter one
by one on all involved tables. Obviously, like the InsertCommand, it would make sense to wrap
all such interactions in a transaction.

Generally, you should also put in a suitable concurrency check, like in this application’s
table structure case, you can simply check for timestamps. So the UPDATE SQL query could look
something like this:

Update Animals
Set AnimalName = @AnimalName
Where AnimalID = @AnimalID and timestamp = @timestamp

The only complication that might arise would be if you decided to update a row that
involved a change in the data of a hierarchical relationship. Even though the DataSet will
maintain foreign-key sanctity, you might end up in a situation where a child table is being
updated to a foreign-key value before the foreign-key value is saved. In other words, if you
decided to change Tashu Malik to a Monkey instead of a Dog but if the Monkey hadn’t been
saved yet, then you’d get an error.

Therefore, it makes sense to do updates in a top-down approach, but make sure that
updates are done after insert commands have been executed.

Deleting Hierarchical Data
Deleting hierarchical data is probably the most different. As you saw earlier, inserts should be
done in a top-down approach; updates must be done after inserts, but in a top-down approach;
and deletions are actually upside down.

Deletes must be done in a down-top approach. This is so because, say for instance, after
having saved Jimmy Malik as a Monkey that has a Swing for a belonging, in the next transaction
you wish to delete Jimmy the Monkey, his Swing, and the animal Monkey.

If you were to go in a top-down approach, you’d first delete the animal Monkey. Right at
that moment, you’d get an error informing you that related rows (namely the row that identi-
fies Jimmy Malik) depend on the row you are trying to delete, thus you cannot delete Monkey.
The exact error would look something like this:

DELETE statement conflicted with REFERENCE constraint
FK__Pets__AnimalID__7F60ED59'.
The conflict occurred in database 'Test', table 'Pets', column 'AnimalID'

Therefore, it’s important that the PetBelonging row that holds a Swing should be deleted
first, followed by the Pets row, and finally by the Animal row.

Putting It All Together: Saving Hierarchical Data
The previous discussion showed you how to segregate the relevant rows and what order you
would operate SQL queries on them in order to save them in the database, while taking care of
concurrency. So here are the conclusions of saving hierarchical data:

5122ch10.qxd 8/23/05 3:19 PM Page 347

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS348

• Do inserts first in a top-down approach.

• Then do updates in a top-down approach.

• Finally, do deletes in a down-top approach.

■Note These are not cardinal, unbreakable rules. They just make sense in most cases, though depending
on the exact structure of your DataSet you might come up with a different approach. It’s important to
understand how a DataAdapter works, and then understand the previous discussion that concludes with
these three points, rather than just memorizing them.

The final “Save My Data” code for the given DataSet in Exercise 10.1 would look somewhat
like Listings 10-11 and 10-12. Obviously, this is just an outline. Generally, you would put such
transactional code in either using blocks or in try...catch constructs.

Listing 10-11. Insert, Update, Delete Code for a Hierarchical DataSet in C#

// First inserts and updates in a top-down approach.
sqlDa = new SqlDataAdapter("Select * from Animals", testConnection);
sqlDa.InsertCommand = insertAnimalCommand;
sqlDa.InsertCommand.Connection = testConnection;
sqlDa.Update(animalsData.Animals.Select("", "", DataViewRowState.Added));

sqlDa = new SqlDataAdapter("Select * from Animals", testConnection);
sqlDa.UpdateCommand = updateAnimalCommand;
sqlDa.UpdateCommand.Connection = testConnection;
sqlDa.Update(animalsData.Animals.Select("", "", DataViewRowState.ModifiedCurrent));

sqlDa = new SqlDataAdapter("Select * from Pets", testConnection);
sqlDa.InsertCommand = insertPetCommand;
sqlDa.InsertCommand.Connection = testConnection;
sqlDa.Update(animalsData.Pets.Select("", "", DataViewRowState.Added));

sqlDa = new SqlDataAdapter("Select * from Pets", testConnection);
sqlDa.UpdateCommand = updatePetCommand;
sqlDa.UpdateCommand.Connection = testConnection;
sqlDa.Update(animalsData.Pets.Select("", "", DataViewRowState.ModifiedCurrent));

sqlDa = new SqlDataAdapter("Select * from PetBelonging", testConnection);
sqlDa.InsertCommand = insertPetBelongingCommand;
sqlDa.InsertCommand.Connection = testConnection;
sqlDa.Update(animalsData.PetBelonging.Select("", "", DataViewRowState.Added));

sqlDa = new SqlDataAdapter("Select * from PetBelonging", testConnection);
sqlDa.UpdateCommand = updatePetBelongingCommand;

5122ch10.qxd 8/23/05 3:19 PM Page 348

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS 349

sqlDa.Update(animalsData.PetBelonging.Select("", "",
DataViewRowState.ModifiedCurrent));

// Finally deletes in a down-top approach.
sqlDa = new SqlDataAdapter("Select * from PetBelonging", testConnection);
sqlDa.DeleteCommand = deletePetBelongingCommand;
sqlDa.DeleteCommand.Connection = testConnection;
sqlDa.Update(animalsData.PetBelonging.Select("", "", DataViewRowState.Deleted));

sqlDa = new SqlDataAdapter("Select * from Pets", testConnection);
sqlDa.DeleteCommand = deletePetCommand;
sqlDa.DeleteCommand.Connection = testConnection;
sqlDa.Update(animalsData.Pet.Select("", "", DataViewRowState.Deleted));

sqlDa = new SqlDataAdapter("Select * from Animal", testConnection);
sqlDa.DeleteCommand = deleteAnimalCommand;
sqlDa.DeleteCommand.Connection = testConnection;
sqlDa.Update(animalsData.Animal.Select("", "", DataViewRowState.Deleted));

Listing 10-12. Insert, Update, Delete Code for a Hierarchical DataSet in Visual Basic .NET

' First inserts and updates in a top-down approach.
sqlDa = New SqlDataAdapter("Select * from Animals", testConnection)
sqlDa.InsertCommand = insertAnimalCommand
sqlDa.InsertCommand.Connection = testConnection
sqlDa.Update(animalsData.Animals.Select("", "", DataViewRowState.Added))

sqlDa = New SqlDataAdapter("Select * from Animals", testConnection)
sqlDa.UpdateCommand = updateAnimalCommand
sqlDa.UpdateCommand.Connection = testConnection
sqlDa.Update(animalsData.Animals.Select("", "", DataViewRowState.ModifiedCurrent))

sqlDa = New SqlDataAdapter("Select * from Pets", testConnection)
sqlDa.InsertCommand = insertPetCommand
sqlDa.InsertCommand.Connection = testConnection
sqlDa.Update(animalsData.Pets.Select("", "", DataViewRowState.Added))

sqlDa = New SqlDataAdapter("Select * from Pets", testConnection)
sqlDa.UpdateCommand = updatePetCommand
sqlDa.UpdateCommand.Connection = testConnection
sqlDa.Update(animalsData.Pets.Select("", "", DataViewRowState.ModifiedCurrent))

sqlDa = New SqlDataAdapter("Select * from PetBelonging", testConnection)
sqlDa.InsertCommand = insertPetBelongingCommand
sqlDa.InsertCommand.Connection = testConnection
sqlDa.Update(animalsData.PetBelonging.Select("", "", DataViewRowState.Added))

5122ch10.qxd 8/23/05 3:19 PM Page 349

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS350

sqlDa = New SqlDataAdapter("Select * from PetBelonging", testConnection)
sqlDa.UpdateCommand = updatePetBelongingCommand
sqlDa.UpdateCommand.Connection = testConnection
sqlDa.Update(animalsData.PetBelonging.Select("", "",

DataViewRowState.ModifiedCurrent))

' Finally deletes in a down-top approach.
sqlDa = New SqlDataAdapter("Select * from PetBelonging", testConnection)
sqlDa.DeleteCommand = deletePetBelongingCommand
sqlDa.DeleteCommand.Connection = testConnection
sqlDa.Update(animalsData.PetBelonging.Select("", "", DataViewRowState.Deleted))

sqlDa = New SqlDataAdapter("Select * from Pets", testConnection)
sqlDa.DeleteCommand = deletePetCommand
sqlDa.DeleteCommand.Connection = testConnection
sqlDa.Update(animalsData.Pet.Select("", "", DataViewRowState.Deleted))

sqlDa = New SqlDataAdapter("Select * from Animal", testConnection)
sqlDa.DeleteCommand = deleteAnimalCommand
sqlDa.DeleteCommand.Connection = testConnection
sqlDa.Update(animalsData.Animal.Select("", "", DataViewRowState.Deleted))

So what if you had a hierarchical relationship set up that didn’t allow you to come up with
such a clean top-down approach? It can still be done, but only as long as your single table fun-
damentals are clear and you understand the reasoning presented in this example.

Let me explain what I mean using a short description of how this argument could be applied
to a many-to-many approach.

Say you have a Customers table, a Products table, and a CustomerProducts table that acts as
a map between Customers and Products since there exists a many-to-many relationship between
the two.

In such a case, there are two tables at the top (Customers and Products) and only one table
at the bottom (CustomerProducts).

But you could still start at any one of the two tables at the top, say the Customers table, and
get your inserts right first. This could be done by creating the DataRow array using GetChildRows
instead of the Select method. Similarly, you could then use the Products table and, using
a similar technique, insert all the newly entered products. At this point, you could then execute
GetChildRows again to find all the relevant rows from the mapping table.

This leaves you with the newly inserted CustomerProducts rows. So how do you find the newly
inserted CustomerProducts rows? Well, you could find them as all rows with RowState = Added
from the relevant DataTable; but remember that in isolating inserts before updates before deletes,
you need to find them as a union of the two sets of GetChildRows DataRow arrays you got from
the Products table and Customers table. Thus, you would need to perform the extra step of
removing duplicates between the two DataRow arrays that you prepared by calling the two
GetChildRows methods.

Then, as usual, updates can follow inserts, and deletes can take a down-top approach.

5122ch10.qxd 8/23/05 3:19 PM Page 350

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS 351

2. Remember when I said you need to sit back and think “How much work are you willing to put into this
data layer?” I wasn’t kidding. This is the utmost ideal solution in a highly transactional system with
many updates and inserts happening concurrently. It also requires the most work. Much like a Ferrari
costs more and is a better car, but still Honda sells more cars—which one do you want? And if you
want a Ferrari, are you willing to pay for one?

This Code Just Won’t Work!
Surprise, surprise! This code won’t work. That’s the bad news; the good news is that you are
very close to the true solution.

Exercise 10.1 has one problem. It might work in a single-user scenario, but not for multiple
users in a highly concurrent system. Consider this: Say Frans started updating Animals, followed
by Pets, followed by PetBelongings. Right at that very moment, Erick decides to start deleting
the very same animal Frans had been working on—this time in the direction of PetBelongings,
then Pets, and then Animals. In fact, why even the same animal? Let’s just say that Erick’s rows
were on the same page that ends up getting locked because Frans’s row happened to be right
there as well. Or maybe Frans is making such heavy-duty inserts to the tables that he starts
locking a lot of pages, and SQL Server simply locks the entire table for Frans. Then Erick, who
is going in the reverse direction as Frans, will be deadlocked.

As it must happen in real life and by Murphy’s law, as soon as you put this application in
production, Frans and Erick end up locking each other, thus creating a deadlock.

What Is the Solution?
One solution is to use only row-level locks. Another solution is to use cascading deletes that
wrap every affected row in multiple tables in one transaction immediately. Both of these solu-
tions will require you to tinker with your production database and make changes you’d rather
not make because of other reasons. But there exists a third solution that doesn’t require you to
change your database structure, but does require some extra hard work in writing additional
code.2

This is the one rare situation that I mentioned at the beginning of the chapter where
pessimistic concurrency is your friend. Assuming that the AnimalID both Frans and Erick were
contending upon was AnimalID = 2, first you could execute a query to lock the rows being
updated in all three tables ahead of time using a SQL query shown here:

SELECT * FROM ANIMALS WITH (HOLDLOCK)
INNER JOIN PETS ON PETS.ANIMALID = ANIMALS.ANIMALID
INNER JOIN PETBELONGING ON PETBELONGING.PETID = PETS.PETID

WHERE ANIMALS.ANIMALID = 1

By doing so, you have effectively locked all the rows that you will be updating ahead of
time. The scope of such an operation should be kept as minimal as possible, thus the correct
place for such code will be inside the scope of a single stored procedure inside the database
wrapped by a Begin Transaction/Rollback/Commit block. This will ensure that rows are not
left locked inadvertently.

In such a case, the correct approach would not be to find all “inserted” rows in the Animals
table and then work on them in one shot, but to work on each inserted Animal row one by one,

5122ch10.qxd 8/23/05 3:19 PM Page 351

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS352

deal with its children Pet rows and PetBelonging rows, and then commit that one single
transaction. The children rows can be found using the relations defined in the DataSet using
the GetChildRows method. Then for the next set of rows, start a new transaction.

Similarly, updated rows could follow the same approach by segregating not only by row
states, but also by segregating out child rows in a manner similar to inserted rows.

And finally for deleted rows, you could use the GetParentRow to find the affected rows up
the chain.

Now if you are raising your eyebrows, eager to point out that a deadlock might still occur
only its probability is reduced, you are absolutely right! A deadlock still might occur, but the
good news is that most advanced database management systems, such as Oracle or SQL Server,
will be able to resolve this contention using deadlock detection mechanisms.

Hierarchical Updates: Conclusion
The logic you need to write to reliably save hierarchical data back into the database needs you
to craft rules around the exact structure of the hierarchy you are dealing with. The basic rules
remain the same: inserts first, updates next, and deletes last. Also, in order to reduce the con-
tention on the hardworking central policeman of your architecture—the database—it makes
sense to segregate such an operation into a number of smaller atomic transactions. Obviously,
these are guidelines more than unbendable rules. But given these guidelines, your exact database
structure, and concurrency requirements, you would be able to come up with a reliable data
persistence mechanism.

So you just looked at an entire chapter devoted to saving three tables correctly, while taking
care of concurrency. Needless to say, this translates into a lot of code and a lot of conditions you
need to be careful of. While previous data access architectures had problems in even letting you
express such logic, at least ADO.NET provides you with a straightforward, albeit long drawn,
solution.

Even then, it’s quite apparent that in saving hierarchical data you have to write a lot more code,
and you have to worry about a lot more scenarios. Not to mention, you can’t use straightforward
update and delete methodologies. Thus, don’t put too many tables in a DataSet. To finish up,
let me reiterate the first rule about DataSets: A DataSet is not a database, and it shouldn’t be
abused as one.

At this point, I would encourage you to come up with a few database structures yourself
and decide how you would update such disconnected in-memory data back into the database.
Here’s a problem statement to get you started: Think of a database structure for an e-commerce
website that sells books, CDs, and DVDs. Each one of these has a price, quantity, and certain
specific attributes (such as books have ISBNs and DVDs have running times). How would you
design such a database? How would you query such a database? And how would you write the
persistence logic for such a database?

Summary
This chapter built upon what you learned in Chapter 9: the basics of updating data in a database.
You took the simple update discussion to a more practical real-world scenario and introduced
issues such as concurrency, handling errors, and hierarchical updates.

5122ch10.qxd 8/23/05 3:19 PM Page 352

CHAPTER 10 ■ UPDATING DATA: ADVANCED SCENARIOS 353

You saw the reason why concurrency management is important and how you can prevent
situations where a conflict might occur by using the right database design. You saw the most
logical and straightforward, but not advised, method of concurrency management: pessimistic
locking. You read that pessimistic locking is a bad choice for a multiple-user scenario, and how
you can emulate pessimistic locking–like results by using a mechanism other than actual locks
on the database such as a check-in/check-out functionality in the logic. As a better approach,
optimistic concurrency was discussed. You saw the various methods of implementing optimistic
concurrency including a SQL Server–specific implementation. You saw the pros and cons of
each approach allowing you to decide clearly which approach you’d rather take in your data
layer design.

Finally, you saw an example of managing updates from a hierarchical DataSet. You saw
how you need to filter out the right rows and execute them in the right sequence to get your
inserts, updates, and deletes into the database as the user had expected them to be saved. You
saw how you need to filter out the right rows and persist them in the right order so your changes
are stored properly and you are not thrown an exception from the database. You saw how much
code you need to write in such a situation, which merits simplifying data representation in your
application to simplistic cases.

An interesting thing you saw in this example was the usage of transactions. Updating the
database and, to some extent, reading from it go hand in hand with transactions. Transactions
give you the ability to run a batch of statements together or roll them all back together. The next
chapter drives the discussion forward by delving into the depths of managing transactional
scenarios in ADO.NET.

5122ch10.qxd 8/23/05 3:19 PM Page 353

5122ch10.qxd 8/23/05 3:19 PM Page 354

355

C H A P T E R 1 1

■ ■ ■

Transactions

Databases hold information. ADO.NET helps you interact with that information. Informa-
tion is critical in today’s information age, and its sanctity is required to be guarded closely.

In a multiuser scenario, or even within a single-user scenario, as multiple processes,
threads, and entities make changes to the database, there is a danger of stepping over some-
one else’s changes. In addition, in certain situations, even within the same logical process, you
may wish to execute a number of statements together.

For example, when you walk to an ATM (automated teller machine), pop in your card,
and request some cash to be withdrawn, there are a distinct number of steps that occur in
such a transaction. A request is made to check if you have the necessary funds, the funds are
disbursed, and the account balance is reduced accordingly.

It’s necessary that no other operation be done between checking the funds and disburs-
ing them, because if that weren’t the case, someone could hack the system while checking the
funds once and withdraw a number of times on the same reported balance.

Also it is critical that the account balance be reduced accordingly as cash is dispensed,
and vice versa if a deposit is made. For example, not only would it be really bad if you didn’t
get the cash, but also if your account balance was reduced.

Thus, all these steps must happen together as if they were one unified step—that is, they
must all commit or all roll back together. The operation that will commit or roll back all of these
steps together is commonly referred to as a transaction.

There are a number of systems involved in this transaction: the database, the ATM, and
who knows how many computers in the middle.

Since a transaction could lock contentious resources for a finite time and also because it
doesn’t come for free, as is logical to expect, wrapping these distributed steps into one trans-
action costs system resources, and at times you might decide not to implement a transaction
but rather implement checks and boundary conditions around a failed condition. This is, in
fact, what most disconnected ATMs would do—add sanity checks at the beginning and ending of
various distributed commands, and limit the maximum damage that can be done. Thus, if
a command sequence fails, you have a recourse action and limited damage.

Therefore, the next time you use an ATM in a shady bar that is not actively connected over
a connection to the bank’s computer, you will have a daily withdrawal limit set on your card
(limiting damage), and there will be a camera watching you (recourse action). Also, the bank’s
computers will maintain enough information for a recourse action to correct the data, if need be.

Thus, it’s important to understand where you can and should leverage transactions to avoid
the need for such checks and recourse, and where you should rely on a potential recourse action

5122ch11.qxd 8/23/05 3:21 PM Page 355

CHAPTER 11 ■ TRANSACTIONS356

where a transaction mishap might occur. In most cases, however, it makes sense to use the
rich framework provided to you to wrap up transactions, but as it turns out, even within that
realm there are many choices and flavors to pick from.

This chapter delves into the basics of transactions as it applies to ADO.NET and databases,
while giving sufficient coverage to distributed transactions using the new System.Transactions
namespace in .NET 2.0. You’ll see the various pros and cons of each approach that will help
you make wise choices applicable to your system architecture.

Also discussed in this chapter is a SQL Server 2005–specific feature—MARS (Multiple Active
Resultsets) and its support in ADO.NET. In short, MARS lets you execute multiple statements
and maintain their results on the same connection. It’s important to note that, in reality, the
statements are not executing in parallel, they are only executing on the same connection.
However, simultaneously, active result sets are being maintained.

This makes me sit back and scratch my head and wonder, what if those two commands
include a select command and an update command? What if there is another insert command
in the mix? What happens if there is a transaction in the mix? MARS gets especially interesting
when viewed within transactional semantics and deserves sufficient attention in this context,
as will be discussed in this chapter.

But first things first, what is a transaction?

What Is a Transaction?
A transaction is a set of operations where either all of the operations must be successful or all
of them must fail to ensure consistency and correct behavior within a system. Let’s look at the
traditional example of a transaction.

Suppose you need to transfer $1,000 from account A to account B. This operation involves
two steps:

1. $1,000 should be deducted from account A.

2. $1,000 should be added to account B.

Say that you successfully completed step 1, but due to some error step 2 failed. If you do not
undo step 1, then the entire operation will be faulty. Transactions help to avoid this. Operations
in the same transaction will only make changes to the database if all the steps are successful.
So in this example, if step 2 fails, then the changes made by step 1 will not be committed to the
database.

Transactions usually follow certain guidelines known as the ACID properties, which ensure
that even complex transactions will be self-contained and reliable.

ACID Properties
Transactions are characterized by four properties popularly called ACID properties. To pass the
ACID test, a transaction must be Atomic, Consistent, Isolated, and Durable. While this acronym
is easy to remember, the meaning of each word is not obvious. Here is a brief explanation:

• Atomic: All steps in the transaction should succeed or fail together. Unless all the steps
from a transaction complete, a transaction is not considered complete.

• Consistent: The transaction takes the underlying database from one stable state to another.

5122ch11.qxd 8/23/05 3:21 PM Page 356

CHAPTER 11 ■ TRANSACTIONS 357

• Isolated: Every transaction is an independent entity. One transaction should not affect
any other transaction running at the same time.

• Durable: Changes that occur during the transaction are permanently stored on some
media, typically a hard disk, before the transaction is declared successful. For instance,
logs could be maintained on a drive so, should a failure occur, the database can be
reconstructed so as to retain transactional integrity.

Note that these are ideal characteristics of a transaction. In the real world, you may choose
to tweak some behavior to suit your requirements. In particular, you can alter the isolation
behavior of a transaction, which will be discussed shortly. Also, constructs, such as nested
transactions that will also be looked at later, allow you to control the atomicity of a transaction.

However, you should only change from these behaviors after careful consideration. The
following sections include discussion of when and how to change them.

Database Transactions
Transactions are frequently used in many business applications because they lend robustness
and predictability to a system. Typically, when you develop a software system, some data source
is used to store the data. In order to apply the concept of transactions in such software systems,
the data source must support transactions. Modern databases, such as Microsoft SQL Server
2005 and Oracle 9i, provide strong support for transactions. For instance, SQL Server 2005
provides support for T-SQL statements such as BEGIN TRANSACTION, SAVE TRANSACTION, COMMIT
TRANSACTION, and ROLLBACK TRANSACTION.

Data access APIs, such as ODBC, OleDb, and ADO.NET, enable developers to use
transactions in their applications. Typically, RDBMSs and data access APIs provide transaction
support as long as you are working with a single database. In many large applications, where
more than one database is involved, you may need to use the Microsoft Distributed Transaction
Coordinator (MSDTC).

Microsoft Transaction Server (MTS) and COM+, which are popular middlewares, also use
MSDTC internally to facilitate multidatabase transactions, or even transactions between dif-
ferent transaction-aware entities, commonly referred to as resource managers. It should be
noted that .NET 1.1 provides access to COM+ functionality via the System.EnterpriseServices
namespace, and in .NET 2.0 you can use the System.Transactions namespace to control
distributed transactions as a better alternative to System.EnterpriseServices.

Local and Distributed Transactions
Transactions can be split into local and distributed categories:

• Local transaction: Uses a transaction-aware data resource (for example, SQL Server)
and has the scope of a single transaction. When a single database holds all of the data
involved in a transaction, it can enforce the ACID rules on its own. This means that on
a single database server, such as SQL Server, you can even use local transactions across
databases, as long as you are using the same connection.

• Distributed transaction: Spanning multiple transaction-aware data resources, distrib-
uted transactions may need to read messages from a Message Queue Server, retrieve
data from a SQL Server database, and write to other databases.

5122ch11.qxd 8/23/05 3:21 PM Page 357

CHAPTER 11 ■ TRANSACTIONS358

Many software packages (such as MSDTC) are available to assist with programming dis-
tributed transactions, which help ensure integrity by controlling commit and rollback
behavior across all data resources, using mechanisms such as a two-phase commit and
rollback.

MSDTC can only be used with applications that have compatible interfaces for trans-
action management. MSMQ, SQL Server, Oracle, Sybase, and several others are such
applications, referred to as resource managers, which are currently available.

Manual and Automatic Transactions
Another way to slice and dice different kinds of transactions is as manual or automatic
transactions.

A manual transaction model

• Allows you to use explicit instructions to begin and end the transaction to control the
transaction boundary.

• Allows you to start a new transaction from within an active transaction (it supports
nested transactions).

A set of objects, such as SqlConnection, SqlTransaction, etc., are provided by the ADO.NET
data providers to help create a connection to the data source; begin, commit, or roll back the
transaction; and finally close the connection manually.

An automatic transaction model wraps around a statement or a number of statements implic-
itly. In other words, additional statements simply enlist automatically in the current running
transaction. If your transaction spans multiple transaction-aware resource managers (such as
SQL Server or MSMQs), an automatic transaction is your best option. System.Transactions or
COM+ will do all of the coordination work, causing extra overhead, but the application design
will be much simpler, reducing coding requirements.

MSDTC is used to manage transactions in a distributed environment, which allows a .NET
application to run a transaction that combines a number of diverse activities such as the following:

• Retrieving data from a SQL Server database

• Inserting an order into an Oracle database

• Writing a message to a Microsoft Message Queue

Transaction Vocabulary
There are some commands that are used frequently in the context of database transactions;
they are BEGIN, COMMIT, SAVE, and ROLLBACK. These are the basic building blocks used in
implementing transactions. Before going any further, let’s take a quick look at what these
commands do:

• BEGIN: Before executing any statements under a transaction, a transaction must be initi-
ated; to do this, you use BEGIN.

• COMMIT: A transaction is said to be committed when all the changes that occurred dur-
ing the transaction are written successfully to the underlying persistent store such as

command.

5122ch11.qxd 8/23/05 3:21 PM Page 358

CHAPTER 11 ■ TRANSACTIONS 359

• SAVE: SAVE allows you to set a marker, or a savepoint, within a transaction where you can
roll back to. This is discussed later in the chapter.

• ROLLBACK: A ROLLBACK occurs when all changes made by the transaction need to be undone
because some part of the transaction has failed. Some architectures, such as MTS, have
a method to abort the transaction by the name of SetAbort, and others might simply
refer to it as Abort.

Now that you know the basics of transactions, let’s see how ADO.NET provides support for
them.

ADO.NET Transaction Support
ADO.NET provides strong support for database transactions. ADO.NET in itself supports
single database transactions, which are tracked on a per-connection basis. It may leverage
System.Transactions to involve cross-database transactions or transactions involving more
than one resource manager.

The transaction functionality is provided with the connection object of ADO.NET. There
are some differences in the implementation of transaction support in ADO.NET and in ADO.

If you have worked with ADO, you’ll recall that it provides methods such as BeginTrans,
CommitTrans, and RollbackTrans for the connection object itself. In the case of ADO.NET, the
connection object is used simply to start a transaction. The commit or rollback of the transac-
tion is taken care of by a dedicated object, which is an implementation of the transaction class.
This enables you to associate different command objects with a single transaction object, so
that those commands participate in the same transaction.

ADO.NET provides connected as well as disconnected data access, and provides support
for transactions in both of these modes. In connected mode, the typical sequence of operations
in a transaction will be as follows:

1. Open a database connection.

2. Begin a transaction.

3. Fire queries directly against the connection via the command object.

4. Commit or roll back the transaction.

5. Close the connection.

Figure 11-1 shows how transactions are handled in connected mode.

5122ch11.qxd 8/23/05 3:21 PM Page 359

CHAPTER 11 ■ TRANSACTIONS360

In disconnected mode, generally, data is fetched first (usually one or more tables) into
a DataSet object, the connection with the data source is closed, the data is manipulated as
required, and then the data is updated back into the database. In this mode, the typical sequence
of operations will be as follows:

1. Open a database connection.

2. Fetch the required data in a DataSet object.

3. Close the database connection.

4. Manipulate the data in the DataSet object.

5. Again, open a connection with the database.

6. Start a transaction.

7. Assign the transaction object to the relevant commands on the data adapter.

8. Update the database with changes from the DataSet.

9. Close the connection.

Figure 11-2 illustrates this sequence of events.

Figure 11-1. Transactions in a connected mode

5122ch11.qxd 8/23/05 3:21 PM Page 360

CHAPTER 11 ■ TRANSACTIONS 361

1. Of notable mention here are the AcceptChangesDuringUpdate and ContinueUpdateOnError properties

Implementing transactions in connected mode is relatively simple, as we have everything
happening live; however, in disconnected mode, while updating the data back into the database,
some care should be taken to account for concurrency issues. Also, depending on your archi-
tecture, it might be necessary to roll back any changes made to the DataSet that might have
been done in a partially successful, but rolled back update.1 An example demonstrating that
can be seen in Chapter 10’s Exercise 10.1.

The following section will discuss the transaction class. It will also look at the commonly
used methods of the transaction class and typical ways of using these methods.

Transaction Class
The various .NET-managed providers available in the .NET Framework, like OleDb, SqlClient,
OracleClient, and ODBC, etc., each has its own implementation of the transaction class: the
OleDb data provider has the OleDbTransaction class, which resides in the System.Data.OleDb
namespace; the ODBC data provider has the OdbcTransaction class, which resides in the
System.Data.Odbc namespace, and so on for the other providers (SqlTransaction class and
OracleTransaction class).

All of these classes implement the IDbTransaction interface from the System.Data name-
space. Most of the properties and methods of these classes are identical; however, each has
some specific methods of its own, as shall be discussed shortly.

This would be a good time to flip back to Chapter 2 and look at Figure 2-3 to examine the
parallelism that various IDbTransaction implementations exhibit, such as SqlTransaction and
OracleTransaction.

Methods of the Transaction Class
Commit and rollback were discussed earlier in this chapter. The transaction classes have two
methods that will be used frequently that reflect these:

• Commit: This method identifies a transaction as successful. Once you call this method,
all the pending changes are written permanently to the underlying database once this
method returns without an error. The exact implementation depends on the data provider,
but typically this translates to executing a COMMIT on the underlying database.

• Rollback: This method marks a transaction as unsuccessful, and pending changes are
discarded. The database state remains unchanged.

Typically, both of these methods are used together. The following code snippet shows how
they are used in the most common way:

C#

using (SqlConnection myConnection = new SqlConnection(connectionString))
{

myConnection.Open();
myTransaction = myConnection.BeginTransaction();

5122ch11.qxd 8/23/05 3:21 PM Page 361

CHAPTER 11 ■ TRANSACTIONS362

myCommand1.Transaction = myTransaction;
myCommand2.Transaction = myTransaction;
try
{

myCommand1.ExecuteNonQuery();
myCommand2.ExecuteNonQuery();
myTransaction.Commit();

}
catch
{

myTransaction.Rollback();
throw;

}
finally
{

myConnection.Close();
}

}

VB.NET

Using myConnection As SqlConnection = New SqlConnection(connectionString)
myConnection.Open()
myTransaction = myConnection.BeginTransaction()
myCommand1.Transaction = myTransaction
myCommand2.Transaction = myTransaction
Try

myCommand1.ExecuteNonQuery()
myCommand2.ExecuteNonQuery()
myTransaction.Commit()

Catch ex As Exception
myTransaction.Rollback()
Throw ex

Finally
myConnection.Close()

End Try
End Using

The command object has a Transaction property that you must set in order to execute
your command within a transaction. The transaction classes also have other properties and
methods, which will be looked at later in the chapter.

Let’s solidify our understanding and develop an application that uses the transactional
features of ADO.NET.

5122ch11.qxd 8/23/05 3:21 PM Page 362

CHAPTER 11 ■ TRANSACTIONS 363

Writing Transactional Database Applications
Implementing a basic transaction using ADO.NET in an application can be fairly straightforward.
The most common sequence of steps that would be performed while developing a transactional
application is as follows:

1. Open a database connection using the Open method of the connection object.

2. Begin a transaction using the BeginTransaction method of the connection object. This
method provides a transaction object that can be used later to commit or roll back the
transaction. Note that the changes caused by any queries executed before calling the
BeginTransaction method will be committed to the database immediately after they
execute.

3. Set the Transaction property of the command object to the transaction object men-
tioned in step 2.

4. Execute the SQL commands using the command object. More than one command object
may be used for this purpose as long as the Transaction property of all the objects is
set to a valid transaction object.

5. Commit or roll back the transaction using the Commit or Rollback method of the
transaction object.

6. Close the database connection.

Note that once you have started a transaction on a certain connection, all the queries that
use that particular connection must fall inside the boundary of the transaction. For example,
two INSERT queries and one UPDATE query can be executed inside a transaction. In the midst, if
you were to execute a SELECT query without the transaction, you’d get an error indicating that
a transaction is still pending. Also, one connection object can have only one pending transac-
tion at a time.

In other words, once you call the BeginTransaction method on a connection object, you
cannot call BeginTransaction again, until you commit or roll back that transaction. In such
situations, you will get an error message stating that parallel transactions are not supported.
To overcome this error, you may use another connection to execute the query.

There is, however, a new SQL Server 2005–specific feature called MARS that lets you
maintain multiple active result sets on one connection, but not multiple transactions. Now
because you can execute multiple interleaved command batches at the same time, it gets
especially interesting in transactional scenarios. Essentially in MARS, nondeterministic
transaction scenarios that involve multiple interleaved commands are disallowed. But that
will be discussed in detail later in this chapter.

Implementing Transactions
So without much further ado, let’s get our hands dirty and write an actual application
demonstrating single database/nondistributed transactions using ADO.NET.

For the purposes of this application, a small Console application will suffice. As usual,
let’s begin with setting up the database for various examples in this chapter.

5122ch11.qxd 8/23/05 3:21 PM Page 363

CHAPTER 11 ■ TRANSACTIONS364

The database is a simple customers/products database with three tables: Customers, which
holds the customer details; Products, which holds the products details; and CustomerProduct,
which holds the many-to-many mapping between the Customers table and the Products
table. The schema for the database is shown in Figure 11-3, or it may be created using the
CreateDatabase.SQL file in the associated code download for this chapter (see the Downloads
section of the Apress website at http://www.apress.com).

To get started, go ahead and populate the Customers table with the rows as shown in
Figure 11-4.

Also, go ahead and add the rows for the Products table as shown in Figure 11-5.

As you can see, both of our customers start with an account balance of 100 dollars. What
this application will try to do is place an order for Superman. Superman will purchase a cape,
and because a cape is worth 4 dollars, his account balance will reduce from 100 to 96 dollars.
This operation will involve two SQL queries. The first query to place an order for Superman

Figure 11-3. Sample database for a transactional application

Figure 11-4. Sample rows for the Customers table

Figure 11-5. Sample rows for the Products table

5122ch11.qxd 8/23/05 3:21 PM Page 364

CHAPTER 11 ■ TRANSACTIONS 365

2. Bonus points for you if you immediately jumped in your seat and thought, “A better way to write this
query would be Set AccountBalance = AccountBalance – 4.” You are right, but I wanted to exemplify
the query as is because what if the query was the result of a disconnected DataSet with the value “96”

Insert into CustomerProduct
(CustomerID, ProductID)

Values
(2, 1)

The second query to update his account balance to 96 will look like this:

Update Customers
Set AccountBalance = 962

Where
CustomerID = 2

One way to make this work would be to wrap up the two queries in a single transaction at
the database level. This can be done easily using a group of statements that look like this:

Begin Transaction
Insert into CustomerProduct

(CustomerID, ProductID)
Values

(2, 1)
Update Customers

Set AccountBalance = 96
Where

CustomerID = 2
Commit

This can be wrapped as inline SQL or as a stored procedure call. What is interesting in
this approach is that it doesn’t let you have fine-grained control (at least not in .NET code)
between the insert and update. That kind of control is especially important when dealing with
disconnected DataSets. For instance, if between the insert and update someone else placed an
order for Superman for a product that costs 100 dollars, then per the previous commands, with-
out a concurrency check built in, your issued commands would result in a negative balance
for Superman (which should not be allowed). That is obviously not the right thing to do. It
corrupts your database and makes Superman mad at you—you don’t want either to happen.

Thus, a better way to implement this scenario would be to have concurrency checks and
transactions based upon individual ADO.NET commands wrapped up in DbTransaction objects.
In code, this would look like Listings 11-1 and 11-2. (You can find the code for Listings 11-1 to
11-6 in the associated code download for this chapter under Exercise 11.1.)

Listing 11-1. Transactional Command Execution in C#

static void Main(string[] args)
{

using (SqlConnection testConnection = new SqlConnection(connectionString))

5122ch11.qxd 8/23/05 3:21 PM Page 365

CHAPTER 11 ■ TRANSACTIONS366

{
SqlCommand myCommand = testConnection.CreateCommand();
SqlTransaction myTransaction = null;
try
{

testConnection.Open();
myTransaction = testConnection.BeginTransaction();
myCommand.Transaction = myTransaction;
myCommand.CommandText =

"Insert into CustomerProduct (CustomerID, ProductID) Values (2, 1)";
myCommand.ExecuteNonQuery();
myCommand.CommandText =

"Update Customers Set AccountBalance = 96 Where CustomerID = 2";
myCommand.ExecuteNonQuery();
myTransaction.Commit();

}
catch (System.Exception)
{

myTransaction.Rollback();
throw ex;

}
finally
{

testConnection.Close();
}

}
}

Listing 11-2. Transactional Command Execution in Visual Basic .NET

Sub Main()
Using testConnection As New SqlConnection(connectionString)

Dim myCommand As SqlCommand = testConnection.CreateCommand()
Dim myTransaction As SqlTransaction = Nothing

Try
testConnection.Open()
myTransaction = testConnection.BeginTransaction()
myCommand.Transaction = myTransaction
myCommand.CommandText = _

"Insert into CustomerProduct (CustomerID, ProductID) Values (2, 1)"
myCommand.ExecuteNonQuery()
myCommand.CommandText = _

"Update Customers Set AccountBalance = 96 Where CustomerID = 2"
myCommand.ExecuteNonQuery()
myTransaction.Commit()

Catch ex As Exception

5122ch11.qxd 8/23/05 3:21 PM Page 366

CHAPTER 11 ■ TRANSACTIONS 367

Try
myTransaction.Rollback()

Catch ex1 As SqlException
Throw ex1

End Try
Finally

testConnection.Close()
End Try

End Using
End Sub

This is extremely similar to Exercise 10.1 shown in Chapter 10. In a real-world application,
you could enhance this code to include concurrency checks or nondatabase operations as well.

■Note This method can be used to wrap commands in a transaction only within one database server. If
commands need to be run between servers and databases (not using linked servers or linked databases), or
involve nondatabase entities, then you have to resort to distributed transactions discussed later in this chapter.

In the next code example, the transaction begins by calling the BeginTransaction method
of the connection object. The BeginTransaction method returns an instance of the transaction
object, which is held in a SqlTransaction variable called myTransaction. This transaction object
can then be assigned to the transaction property of the SqlCommand object:

C#

testConnection.Open();
myTransaction = testConnection.BeginTransaction();
myCommand.Transaction = myTransaction;

VB.NET

testConnection.Open()
myTransaction = testConnection.BeginTransaction()
myCommand.Transaction = myTransaction

If this transaction were to run against an Oracle database, you would have simply used
the OracleTransaction object. The important thing to realize is that the underlying database
must support transactions for this approach to work.

Once the transaction is set up, it’s simply a question of executing various SQL queries
using the command object. This is done as shown in Listings 11-3 and 11-4.

Listing 11-3. Running Various Queries Using the SqlCommand Object in C#

myCommand.CommandText =
"Insert into CustomerProduct (CustomerID, ProductID) Values (2, 1)";

5122ch11.qxd 8/23/05 3:21 PM Page 367

CHAPTER 11 ■ TRANSACTIONS368

myCommand.ExecuteNonQuery();
myCommand.CommandText =

"Update Customers Set AccountBalance = 96 Where CustomerID = 2";
myCommand.ExecuteNonQuery();

Listing 11-4. Running Various Queries Using the SqlCommand Object in Visual Basic .NET

myCommand.CommandText = _
"Insert into CustomerProduct (CustomerID, ProductID) Values (2, 1)"

myCommand.ExecuteNonQuery()
myCommand.CommandText = _

"Update Customers Set AccountBalance = 96 Where CustomerID = 2"
myCommand.ExecuteNonQuery()

You may change the CommandText property of the same object to fire different queries or create
new command objects. Remember that if you use new command objects, their Transaction
property needs to be set. Typically, you could place the appropriate code in a try...catch block,
so that if an error occurs, the transaction can be rolled back. You may also carry out any busi-
ness validations here, and decide whether to commit or roll back the transaction.

Once the application is done with the various operations, it must call either the Commit or
Rollback method of the transaction object as shown in Listings 11-5 and 11-6.

Listing 11-5. Committing or Rolling Back the Changes in C#

catch (System.Exception)
{

myTransaction.Rollback();
}
finally
{

myTransaction.Commit();
testConnection.Close();

}

Listing 11-6. Committing or Rolling Back the Changes in Visual Basic .NET

Catch ex As Exception
myTransaction.Rollback()

Finally
myTransaction.Commit()
testConnection.Close()

End Try

Thus, as you can see, transactions enable you to wrap a number of commands into one
logical command execution unit that follows the ACID rules described earlier in this chapter.

It’s worth noting, however, that in the event you did not call Rollback yourself, the framework
will take care of it for you. But this doesn’t mean that you should be lazy and not call Rollback
simply because the framework might not do it immediately, and thus keep resources busy for

5122ch11.qxd 8/23/05 3:21 PM Page 368

CHAPTER 11 ■ TRANSACTIONS 369

longer than necessary. In case you forget to call Rollback, Rollback will be called when the
underlying physical connection is closed or reused. This is immediate if you are using the API
directly, or when connection pooling is disabled. If connection pooling is enabled, then this would
happen when the physical connection is pruned from the pool, or when the same physical
connection is reused by another SqlConnection instance. Since this might take an unpredictable
amount of time to occur, it is wise to call Rollback yourself.

There are a couple of notable things about Listings 11-1 and 11-2 versus a nontransactional
code update.

First and foremost is the fact that you had to open a connection to the database a few
statements before the command execution. In fact, you cannot do a BeginTransaction without
calling an Open on the database connection first. This means you tie up the physical connection
resource for a longer than usual duration. This has a negative impact on performance in
connection-pooled environments. Also, because the database has to act as the sentry, which
manages the various transactions it has to accept from various concurrent clients, the database
is probably working harder as well.

But do realize that even for statements executed on a database such as SQL Server in auto
commit mode, there is still an implicit transaction that surrounds each statement. Thus, if you
had a number of rows to insert, and each one of them was wrapped in their own implicit trans-
action by virtue of being in auto commit mode, instead of a BEGIN TRANSACTION block specified
by you, you would get lower performance on such a big batch by explicitly not using transactions.
This is because, when modifying data inside a transaction, all data gets written to a temporary
log, and on commit it is very efficiently copied over to the database. In the case of auto commit
mode, each statement needs to be persisted individually.

Therefore, the first direct impact of transactional code is on performance. In single or
lesser statements, transactions may be slower, but in larger sets of data they would generally
be faster. As you shall see later in this chapter, the lowered performance is even more pro-
nounced in the case of distributed transactions. Thus, you should use transactions especially
on smaller statement sets only if you have a compelling need to do so. However, it is important
to emphasize that you shouldn’t skimp on using transactions when the situation truly demands
one—just be aware that everything comes at a price. Saving milliseconds or even microseconds
of execution time, at the cost of corrupting your database, is never the right answer.

Now if you were to run the code in debug mode, pause between the two DML statements,
and run a SELECT query querying the account balance for Superman from the database (or the
products he has ordered) while the transaction has not yet been committed, what state of data
should others see if the table is queried at this time?

If the locks have not yet been placed, you would still see the state of data before any DML
statements had been executed. Is this what you wanted? What if the locks were actually placed?
In certain cases you might want to customize this behavior. You might want to have other parts
of the application wait until you are done with your transaction, thus ensuring that, at the risk
of running at a lower response time (because the subsequent requests had to wait for the trans-
actions to finish), the database provides the latest and greatest state of the data after the
transaction completes. Or in fact, with the latest databases, you might want (while a transaction
is pending) other requests to the same data to actually return a snapshot of the data as it existed
before the transaction began.

It turns out, such level of customizability can be provided by specifying isolation levels on
transactions.

5122ch11.qxd 8/23/05 3:21 PM Page 369

CHAPTER 11 ■ TRANSACTIONS370

3. “Shoot yourself in the foot” may be a very strong term, but in certain instances, it might be necessary
to do this. If you have a rather busy table (lots of inserts and updates), and some part of the applica-
tion doesn’t care about 100 percent data accuracy, but does care about response time for its selects,
then this would be a possible way out of that scenario. Though, the Snapshot isolation takes care of
many of those scenarios.

Examining the Effect of Isolation Levels
Now that you know how to implement basic transactions, let’s go into some more detail and
look at how you can control the behavior of a transaction, and how a transactional batch of
queries affects other queries running on the same resource. This is typically done by specifying
an isolation level on your transactions.

This section will cover isolation levels and how they affect your application. In doing so,
you’ll encounter some terms that are frequently used while discussing isolation levels. In
addition, you’ll see how to set isolation levels in your code.

What Are Isolation Levels?
An isolation level is a measure of the extent to which changes made outside a transaction are
visible inside that transaction. It determines how sensitive your transaction is to changes made
by other transactions.

For example, by default in SQL Server, if two transactions are running independently of
one another, then records inserted by one transaction are not visible to the other transaction,
unless the first transaction is committed.

The isolation level concept is closely related to the locks concept, because by determining
isolation levels for a given transaction you can determine how long the given transaction must
hold locks on resources to protect them against changes that may be made by others.

You may wish to alter the behavior of the transactions so that the second transaction can
view records inserted by the first one. This may amount to reading invalid data (because it isn’t
committed yet), which is typically referred to as a dirty read. But, if you wish to shoot yourself
in the foot by reading invalid data, ADO.NET does give you the facility to do so.3 You can achieve
this through setting isolation levels appropriately. For an ADO.NET programmer, the isolation
level can be set via isolation level enumerated values.

Some Related Terms
Before going any further, it’s important to understand some terms that are used frequently
when discussing isolation levels:

• Dirty read: A dirty read is a condition when a transaction reads data that has yet to be
committed. Consider a case where transaction A inserts some records into a table, but
is pending. Transaction B reads these records. Now, if transaction A rolls back, transac-
tion B will refer to data that is invalid.

• Nonrepeatable read: Consider a case where transaction A reads a record from a table.
Transaction B then alters or deletes the records and commits the changes. Now, if
transaction A tries to re-read the record, it will either be a different version or it will not
be available at all. Such a condition is called a nonrepeatable read.

5122ch11.qxd 8/23/05 3:21 PM Page 370

CHAPTER 11 ■ TRANSACTIONS 371

• Phantom read: Suppose that transaction A has some criteria for record selection. Initially,
transaction A has, say, 100 rows matching these criteria. Now transaction B inserts
some rows that match the selection criteria of transaction A. If transaction A executes
the selection query again, it will receive a different set of rows than in the previous case.
The rows added in this way are called phantom rows.

Possible Isolation Levels in ADO.NET
Let’s now look at the different isolation level values that you can implement with ADO.NET.
These values are accessible via the IsolationLevel enumeration:

• Chaos: The pending changes from more highly isolated transactions cannot be overwritten.
This setting is not supported by SQL Server or Oracle.

• ReadUncommitted: In this case, a dirty read is possible. This means that no shared locks
are placed, and no exclusive locks are honored. This type of isolation level is appropri-
ate when you want to work with all the data matching certain conditions, irrespective
of whether it’s committed or not.

Generally, you would use this isolation level where the application doesn’t require guar-
anteed accuracy in the data it queries, and where the priority is performance over accu-
racy. If performance is the chief criterion in your application design, you should prefer
this isolation level over others, but do understand that it comes at the cost of possibly
inaccurate data. Note that the Snapshot isolation level described shortly provides a much
better alternative than ReadUncommitted in doing nonblocking SELECT queries. Even
though you don’t get the latest data, at least you get committed data. A good, practical
use of ReadUncommitted is data monitoring by an administrator. I recommend that you
use this isolation level sparingly.

In this scenario, there is no concurrency model being followed, unless you implement
your own homegrown concurrency check model such as Timestamps, RowVersions, etc.
These have been discussed in depth in the last chapter. This isolation level is not sup-
ported in Oracle.

• ReadCommitted: Shared locks are held while the data is being read by the transaction.
This avoids dirty reads, but the data can be changed before a transaction completes.
This may result in nonrepeatable reads or phantom rows. This type of isolation level is
appropriate when you want to work with all the data that matches certain conditions,
and is committed.

Shared locks are locks that are placed when a transaction wants to read data from the
database, and no exclusive lock is already held on that data item. No other transactions
can modify the data while shared locks exist on a table or tables. Exclusive locks are the
locks that prevent two or more transactions modifying data simultaneously. An exclusive
lock is issued when a transaction needs to update a table or tables, and no other locks
are already held on the respective tables. Because an exclusive lock is needed, this would
qualify as pessimistic locking on the database.

This isolation level can be used where you need transactional consistency for long
running queries, but you do not care if you may get nonrepeatable reads. This isolation
level is supported in Oracle. Also, this is the default isolation level for both SqlTransaction

5122ch11.qxd 8/23/05 3:21 PM Page 371

CHAPTER 11 ■ TRANSACTIONS372

• RepeatableRead: In this case, shared locks are placed on all data that is used in the pred-
icate (criterion) of a query. This prevents others from modifying the data and also pre-
vents nonrepeatable reads. However, phantom rows are possible. This type of isolation
level is appropriate when you want the records that are read to retain the same values
for future reads.

This kind of transaction ensures that all other modifications to the data are stopped until
the transaction completes. Thus, this kind of transaction lends itself well to situations
where you need consistency within the transaction at the cost of poor concurrent per-
formance of the system. However, phantom reads are still possible, and this technically
qualifies as pessimistic concurrency and should be avoided in a disconnected scenario
if possible. This isolation level is not supported in Oracle.

• Snapshot: This type of isolation level reduces the probability of having a lock placed on
the rows by storing a version of the data that one application can read while another is
modifying the same data. In other words, if transaction A is modifying the data, then
transaction B will not be able to see the changes being done. What’s important is trans-
action B will not get locked and will read the snapshot of the data before transaction
A had begun. So this type of isolation level is ideal for applications that need integrity
of data in long running queries, but that do not plan on modifying the data. This, again,
can be used in an optimistic concurrency model.

In SQL Server 2005, the Snapshot isolation must be enabled at the database level first
before it can be used. This can be done using the following command:

ALTER DATABASE <<TheDataBaseName>> SET ALLOW_SNAPSHOT_ISOLATION ON

• Serializable: In this case, a lock is placed on the data preventing other users from
updating or inserting rows into the DataSet until the transaction is complete. This lock
could be placed on the row, the page, or the table depending on a lot of factors specific
to the underlying database. This type of isolation level is appropriate when you want all
the data you’re working with in your predicate to be exactly the same until you finish
the processing. This isolation level is supported in Oracle.

Generally, this isolation level is useful when the application works on sets of rows, and
needs absolute consistency between all operations it may do within a transaction. This
ensures the cleanest data, but will result in the most database locks and must be used
only when you need pessimistic locking and absolute control over your data. This is
obviously at the cost of performance in a highly concurrent system.

• Unspecified: In this type, a different isolation level from the one specified is being used;
however, the level cannot be determined.

These isolation level values can be supplied while initiating a transaction through the
BeginTransaction method of the DBConnection object. It’s important to note, however, that
whether or not an isolation level will work for a given data provider depends on the underlying
database. You also may read the current value of isolation level using the IsolationLevel
property of the transaction object.

5122ch11.qxd 8/23/05 3:21 PM Page 372

CHAPTER 11 ■ TRANSACTIONS 373

Changing Isolation Levels
To solidify our understanding of isolation levels, let’s develop a small application that changes
the default isolation level of a SQL Server database from ReadCommitted to ReadUncommitted (see
Exercise 11.2 in the associated code download). The application works in the following way:

1. Open a connection to the local Test database and begin a transaction. The isolation
level for this transaction will be the default: ReadCommitted.

2. Open another connection with the database and begin another transaction. However,
the isolation level for this transaction will be set to ReadUncommitted.

3. From the first transaction, a row is inserted into the Customers table.

4. Without committing the first transaction, this row is fetched from the second transaction
with isolation level ReadUncommitted. The results will be shown in the console. This will
prove that, even though the first transaction is yet to be finished, the second transaction
reads records inserted by it, which is evil and the equivalent of the spawn of Satan in
data sanctity and transactional world, but as mentioned before, if you want to shoot
yourself in the foot, feel free.

5. The first transaction will be rolled back and the same query for the second transaction
will be run to fetch the newly inserted (now rolled back) customer again, in order to
show that the results for the very same query are now different, thus proving that
ReadUncommitted is not a reliable transaction isolation level as far as data consistency goes.

So let’s examine the code for this exercise step by step. The first step is to set up two
connections and individual transactions on those connections. The transaction isolation level
for the first transaction is left at the default value of ReadCommitted, and the second is set to
ReadUncommitted. This can be seen in Listings 11-7 and 11-8.

Listing 11-7. Setting Up Two Transactions with Isolation Levels ReadCommitted and
ReadUncommitted in C#

SqlConnection connection1 = new SqlConnection(connectionString);
SqlConnection connection2 = new SqlConnection(connectionString);

SqlCommand command1 = connection1.CreateCommand();
SqlCommand command2 = connection2.CreateCommand();

connection1.Open();
connection2.Open();
SqlTransaction transaction1 = connection1.BeginTransaction();
command1.Transaction = transaction1;
SqlTransaction transaction2 =

connection2.BeginTransaction(IsolationLevel.ReadUncommitted);
command2.Transaction = transaction2;

5122ch11.qxd 8/23/05 3:21 PM Page 373

CHAPTER 11 ■ TRANSACTIONS374

Listing 11-8. Setting Up Two Transactions with Isolation Levels ReadCommitted and
ReadUncommitted in Visual Basic .NET

Dim connection1 As SqlConnection = New SqlConnection(connectionString)
Dim connection2 As SqlConnection = New SqlConnection(connectionString)

Dim command1 As SqlCommand = connection1.CreateCommand()
Dim command2 As SqlCommand = connection2.CreateCommand()

connection1.Open()
connection2.Open()
Dim transaction1 As SqlTransaction = _

connection1.BeginTransaction()
command1.Transaction = transaction1
Dim transaction2 As SqlTransaction = _

connection2.BeginTransaction(IsolationLevel.ReadUncommitted)
command2.Transaction = transaction2

Also note that in this code, two commands are created that will enlist in the specified
transactions. The next step is to set up command text for both commands—the first that will
insert a row and the second that will check for the existence of the inserted row.

These commands are then executed and results are shown. The transaction is then rolled
back and the results are shown. This can be seen in Listings 11-9 and 11-10.

Listing 11-9. Working with Two Commands on the Same Table, in Two Transactions on Different
Isolation Levels in C#

SqlDataReader myReader;
try
{

command1.CommandText =
"INSERT INTO CUSTOMERS (FIRSTNAME, LASTNAME, ACCOUNTBALANCE) "

+ "VALUES ('Bat', 'Man', 100)";
command1.ExecuteNonQuery();

command2.CommandText =
"SELECT FIRSTNAME, LASTNAME from CUSTOMERS where FIRSTNAME = 'Bat'";

myReader = command2.ExecuteReader();

Console.WriteLine("Results when the transaction is midway:");
if (!myReader.HasRows)
{

Console.WriteLine("No Rows Found");
}
while (myReader.Read())
{

Console.WriteLine(
"FirstName: " + myReader[0] + " and LastName: " + myReader[1]);

5122ch11.qxd 8/23/05 3:21 PM Page 374

CHAPTER 11 ■ TRANSACTIONS 375

myReader.Close();

transaction1.Rollback();

command2.CommandText =
"SELECT FIRSTNAME, LASTNAME from CUSTOMERS where FIRSTNAME = 'Bat'";

myReader = command2.ExecuteReader();

Console.WriteLine("Results when the transaction is rolled back:");
if (!myReader.HasRows)

Console.WriteLine("No Rows Found");
while (myReader.Read())
{

Console.WriteLine(
"FirstName: " + myReader[0] + " and LastName: " + myReader[1]);

}
myReader.Close();

}
catch (System.Exception ex)
{

Console.WriteLine(ex.ToString());
}
finally
{

connection1.Dispose(); // Dispose will also close the connection
connection2.Dispose();

}

Listing 11-10. Working with Two Commands on the Same Table, in Two Transactions on
Different Isolation Levels in Visual Basic .NET

Dim myReader As SqlDataReader
Try

command1.CommandText = _
"INSERT INTO CUSTOMERS (FIRSTNAME, LASTNAME, ACCOUNTBALANCE) " & _
" VALUES ('Bat', 'Man', 100)"

command1.ExecuteNonQuery()

command2.CommandText = _
"SELECT FIRSTNAME, LASTNAME from CUSTOMERS where FIRSTNAME = 'Bat'"

myReader = command2.ExecuteReader()

Console.WriteLine("Results when the transaction is midway:")

If Not myReader.HasRows Then
Console.WriteLine("No Rows Found")

End If

5122ch11.qxd 8/23/05 3:21 PM Page 375

CHAPTER 11 ■ TRANSACTIONS376

While myReader.Read()
Console.WriteLine("FirstName: " + myReader(0) + " and LastName: " + ➥

myReader(1))
End While

myReader.Close()

transaction1.Rollback()

command2.CommandText = _
"SELECT FIRSTNAME, LASTNAME from CUSTOMERS where FIRSTNAME = 'Bat'"

myReader = command2.ExecuteReader()

Console.WriteLine("Results when the transaction is rolled back:")
If Not myReader.HasRows Then

Console.WriteLine("No Rows Found")
End If
While myReader.Read()

Console.WriteLine("FirstName: " + myReader(0) + " and LastName: " + ➥

myReader(1))
End While
myReader.Close()

Catch ex As System.Exception
Console.WriteLine(ex.ToString())

Finally
connection1.Dispose() ' Dispose will also close the connection
connection2.Dispose()

End Try

Next, compile and run the application. As you can see, even though the first transaction had
not been committed, the results are still visible in the second transaction. The problem with this
is that, obviously, the person who queried the second query’s results for his purposes now assumes
that the row that was a dirty read actually exists in the database. The results are as shown in
Figure 11-6.

Figure 11-6. Dirty read demonstration using ReadUncommitted isolation level

5122ch11.qxd 8/23/05 3:21 PM Page 376

CHAPTER 11 ■ TRANSACTIONS 377

If you were to make a slight modification and change the isolation level of the first transac-
tion to Serializable and then run the code again, you’d notice that the code will simply hang
at the SELECT command execution. This is because isolation level Serializable will block any
further reads from the underlying data source (row, page, or table) until the first transaction
has either rolled back or committed.

Now try another experiment. Set the isolation level on both transactions to Snapshot and
run the application again. You should probably see an exception as shown in Figure 11-7.

You get this error because this isolation level is disabled by default. To enable it, simply
run the following command:

ALTER DATABASE TEST SET ALLOW_SNAPSHOT_ISOLATION ON

Run the application again and you should see the results shown in Figure 11-8.

Figure 11-7. Running the example with IsolationLevel = Snapshot without enabling them in the
database first

Figure 11-8. Running the example with IsolationLevel = Snapshot after enabling them in the
database

5122ch11.qxd 8/23/05 3:21 PM Page 377

CHAPTER 11 ■ TRANSACTIONS378

Thus, as you can see, by playing with the isolation level you can customize the exact
behavior of your transactions.

■Note Changing the default isolation level is a tricky issue that depends on the level of consistency and
concurrency you want. Generally, you’ll find that the higher the isolation level, the higher the consistency, but
the lower the concurrency, the lower the performance.

The need to run multiple commands on a particular database concurrently brings up yet
another interesting discussion. Say, for example, you had a unique situation where you wanted
to open a connection and lock the rows you were interested in reading from. While the data is
locked, you needed to update the locked data, using a data reader under the same transaction
and isolation level. Because only one command can execute on a connection at a given time,
the locks held by the first connection would prevent the second connection from updating.

This is, however, not true in the case of SQL Server 2005. SQL Server 2005 provides you
with the ability to run multiple commands on the same connection—an ability referred to as
Multiple Active Resultsets, or MARS.

Multiple Active Resultsets
MARS is a new feature supported in SQL Server 2005 and above that allows you to maintain
multiple, simultaneously active result sets in parallel on the same connection.

Oracle has a similar ability of being able to support multiple result sets on the same
connection by using a stored procedure with more than one REF CURSOR. Once you have
a command set up with multiple REF CURSOR parameters, you can simply add parameters of
OracleDbType.RefCursor type with ParameterDirection set to output to the OracleCommand.
Then you can use the following code snippet to access multiple parallel data readers in Oracle:

C#

OracleDataReader firstDataReader =
((OracleRefCursor)twoRefCursorCommand.Parameters[0].Value).GetDataReader();

OracleDataReader secondDataReader =
((OracleRefCursor)twoRefCursorCommand.Parameters[1].Value).GetDataReader();

VB.NET

Dim firstDataReader as OracleDataReader = _
(CType(twoRefCursorCommand.Parameters(0).Value,OracleRefCursor)).GetDataReader()
Dim secondDataReader as OracleDataReader = _
(CType(twoRefCursorCommand.Parameters(1).Value,OracleRefCursor)).GetDataReader()

On the other hand, SQL Server 2005 requires you to simply execute two SqlCommands on
the same SqlConnection. This can be seen in the partial code snippet shown here:

5122ch11.qxd 8/23/05 3:21 PM Page 378

CHAPTER 11 ■ TRANSACTIONS 379

4. As you’ll see later in this chapter, you also need to be using the SqlClient from ADO.NET 2.0 or the

C#

cmd1.Connection = myConnection ;
cmd2.Connection = myConnection ;

SqlDataReader firstReader = cmd1.ExecuteReader() ;
SqlDataReader secondReader = cmd2.ExecutReader() ;

VB.NET

cmd1.Connection = myConnection
cmd2.Connection = myConnection

Dim firstReader As SqlDataReader = cmd1.ExecuteReader()
Dim SqlDataReader As SqlDataReader = cmd2.ExecutReader()

The implications of MARS on a transactional scenario are quite profound, but before
I discuss those, let me quickly discuss a short primer on how MARS works. It’s important to
note that MARS in SQL Server works only in SQL Server 20054 and above, and in SQL Server
2000 and below you are still restricted to running one command per connection.

SQL Server is queried using the SQL SELECT command. By executing the SELECT command,
results are copied into prereserved network buffers, which are then sent to the caller. Network
write operations will succeed and free up used buffers as long as the client is reading from the
buffers. If, for some reason, the client is unable to read, the network buffers will fill up and be
unusable, and either the server will force a timeout or the client will catch up. This is typically
referred to as “default result sets” or firehose cursors, a.k.a. data readers.

Now that you have the ability to read the results of a SQL query, you could write up code
as shown in Listings 11-11 and 11-12 that attempt to run two firehose cursors at the very same
time.

Listing 11-11. Attempting to Run Two Data Readers on the Same Open Connection Concurrently
in C#

SqlCommand cmd = conn.CreateCommand();
SqlCommand cmd2 = conn.CreateCommand();

cmd.CommandText=
"select * from customers";

cmd2.CommandText=
"Update Customers set FirstName='Tarzan' where CustomerId = @CustomerID";

SqlParameter custID=cmd2.Parameters.Add("@CustomerID", SqlDbType.Int);

5122ch11.qxd 8/23/05 3:21 PM Page 379

CHAPTER 11 ■ TRANSACTIONS380

reader=cmd.ExecuteReader();
while (reader.Read())
{

ProcessOperation(); // Some dummy function

custID.Value=reader.GetInt32(0); // CustomerID
cmd2.ExecuteNonQuery();

}

Listing 11-12. Attempting to Run Two Data Readers on the Same Open Connection Concurrently
in Visual Basic .NET

Dim cmd As SqlCommand = conn.CreateCommand()
Dim cmd2 As SqlCommand = conn.CreateCommand()

cmd.CommandText=
"select * from customers"

cmd2.CommandText=
"Update Customers set FirstName='Tarzan' where CustomerId = @CustomerID"

Dim custID As SqlParameter = cmd2.Parameters.Add("@CustomerID",SqlDbType.Int)

reader=cmd.ExecuteReader()
While reader.Read()

ProcessOperation() ' Some dummy function

custID.Value=reader.GetInt32(0) ' CustomerID
cmd2.ExecuteNonQuery()

End While

By attempting to execute this code, you would get an InvalidOperationException as
shown here:

InvalidOperationException, There is already an open DataReader associated with this
Connection which must be closed first.

Okay, so when you executed ExecuteNonQuery, cmd2 tried to execute a command and
attempted to maintain a parallel result set to the reader SqlDataReader, and because that is
not permissible, by default you get an error.

But the code in Listings 11-11 and 11-12 can be made to work in SQL Server 2005 using
MARS, all you need to do is add MultipleActiveResultsets = true5 in the connection string.
By doing so, you instruct ADO.NET that you are interested in keeping multiple active result
sets open on this connection.

5. This is SqlClient-specific. MARS can be made to work with the latest versions of OleDb and ODBC,
but the connection keyword used is different. For OleDb, the keyword is MarsConn; for ADO (and
OleDb if connecting using service components), it is Mars Connection; and for ODBC, it is
MARS_Connection.

5122ch11.qxd 8/23/05 3:21 PM Page 380

CHAPTER 11 ■ TRANSACTIONS 381

MARS, however, is not a parallel execution of commands; the commands execute in an
interleaved fashion, and only simultaneously active result sets can be maintained.

Interleaved Command Execution
As just mentioned, MARS does not involve running parallel commands; instead, it interleaves
the commands. In other words, within the execution of a batch, other commands can be run.
The MARS infrastructure allows multiple batches to execute in an interleaved fashion, how-
ever, the execution can switch at only well-defined points. As a matter of fact, you can group
all commands in two major groups.

The first group consists of commands that are allowed interleaved execution before com-
pletion. These include the SELECT, FETCH, READTEXT, RECEIVE, BULK INSERT, and asynchronous
cursor population commands.

The second group consists of all other commands, such as INSERT or UPDATE, that must
execute as a complete batch before any other command can be executed.

What this means is that, if there is an Update statement running, and a second batch is
submitted, that batch will be executed only after the Update statement completes.

On the other hand, an UPDATE statement can freely interleave a SELECT command’s execution.
However, because an UPDATE statement interjected the SELECT command, no results are produced
from the SELECT command until the UPDATE command completes. This makes sense from a data
sanctity point of view. Keep in mind that the Update statement could have interleaved in the
middle of the SELECT query, which means some of the results could have already been sent to
the client, only the rest of the results are held back until the UPDATE statement finishes.

MARS When Not Using SqlClient
Listings 11-11 and 11-12 were demonstrated using the SqlClient .NET data provider. It’s
important to note, however, that OleDb has had MARS-like behavior for quite some time now.
There is one big difference, however.

Previous versions of OleDb make it look like they are supporting parallel result sets on the
same connection; whereas, in reality, they were using implicit connections. This has two signif-
icant downsides:

• At a given point, you may have more connections than you realize. Connection pooling
performance will degrade and this problem will typically raise its head under heavy
load in production.

• As the isolation levels of various transactions are raised, you might get deadlocks. SQL
Server will resolve the deadlocks, but that is still not what you were trying to achieve.

The SQL Native Client OleDb provider and ODBC driver that ship with SQL Server 2005,
however, do support MARS. This means that as long as you have the latest OleDb provider
and ODBC driver installed on your system, you can still use MARS with System.Data.OleDb
and System.Data.Odbc.

One point to mention is that the connection string keyword you need to specify to enable
MARS is different for OleDb and ODBC than it is for SqlClient. In order to use MARS with OleDb,
you need to add the following to your connection string:

5122ch11.qxd 8/23/05 3:21 PM Page 381

CHAPTER 11 ■ TRANSACTIONS382

MarsConn=yes

Or, if you are connecting using OleDb service components, add

MARS Connection=True

For ODBC, you need to add

MARS_Connection=yes

If you forget to add these keywords, the behavior will revert to what it was like for previous
versions of OleDb providers and ODBC drivers. That is, you will start using implicit connections.

MARS and Transactions
In a MARS-enabled world, you can run multiple interleaved commands and maintain parallel
result sets, but you cannot run multiple transactions at the same time on the same connection.

This means that you have to be careful when mixing older versions of OleDb with transac-
tions of a high isolation level. As mentioned earlier, it might appear on the surface with older
versions of OleDb that multiple commands are, indeed, working in the same transaction and
same connection; however, previous versions of OleDb will simply use a new connection and
you might end up in a deadlock. Older versions of ODBC, on the other hand, respond with
a “connection busy” error.

Let’s say that you tried doing the same in a MARS-enabled world. This could include
SqlClient connecting with SQL Server 2005, or OleDb or ODBC connecting with the SQL
Native Client for SQL Server 2005.

In a MARS-enabled world, a transaction on multiple commands including a transaction
with a higher isolation level can be made to work. This is not because MARS can handle multiple
parallel transactions; in fact, you cannot have multiple parallel transactions on one connection
that enables multiple interleaved commands and parallel result sets. But because all those
commands are indeed working on one single connection, and maintaining their result sets in
parallel while remaining on one single transaction at the same isolation level on the same
connection, is how you are able to run multiple interleaved commands on the same transaction
and on the same connection. And once you achieve multiple interleaved commands in one
transaction on one single connection, the isolation level could be whatever you wish.

This raises interesting questions and possibilities about how transactions work in a MARS-
enabled world.

If you attempt to6 run two commands on the same transaction, then the regular interleaving
rules apply. So what are the interleaving rules?

If the command being executed is reading results and belongs to one of the commands
that allows interleaving (SELECT, FETCH, READTEXT), and another operation attempts to modify
the data (INSERT/UPDATE, etc.), then, as per the interleaving rules, the DQL (Data Query Language)
statement will need to yield to the DML statement. Once the read operation has been blocked,
the read operation ensues after the changes have been completed by the DQL command.

ministic transactions.

5122ch11.qxd 8/23/05 3:21 PM Page 382

CHAPTER 11 ■ TRANSACTIONS 383

In this scenario, however, you cannot accurately predict if this will happen or not. This is
due to several factors, like if the client is keeping up with the server, the network packet size,
etc. Also, the DQL statement can yield to the DML statement at only specific well-defined points
that depend on many factors. Therefore, whether or not the client would see the changes in
his select statement, done as a result of the update statement, depends on if the update state-
ment was run before the select statement finished or not. In other words, whether the client
sees the changes or not, depends on the position of the changes in the result set and if the
changed rows have already been “put on the wire” or not—and that is impossible to predict.

If two commands attempt to modify the same data, then the commands are serialized in
order, and are run one after another. The final results depend on the command order execution,
which is always sequential and never parallel (even in multithreaded environments).

If the command being run is a BULK INSERT command, then other DDL, DML, or read
operations are not allowed on the target object of a bulk insert. In such a case, an error is gen-
erated telling that there are conflicting pending requests under the same transaction.

Always remember, though, that these scenarios occur under a single connection/single
transaction situation. Multiple transactions on one SqlConnection under MARS do not work.

MARS and Transaction Savepoints
Savepoints, as discussed later in this chapter, are a technique that allow you to set flags within
a transaction’s lifetime, which allow you to roll back to a savepoint instead of rolling back all the
work. Because MARS allows only one running transaction, multiple command batches running
in an interleaved fashion in MARS would completely confuse each other’s logic.

Because you cannot run multiple transactions in MARS, and because you cannot have more
than one set of savepoints in one transaction, by rolling back to a particular savepoint in one
batch of commands, you might end up rolling back some of another batch’s work.

It is for this reason that if serialized commands are executing, then MARS will allow you to
set savepoints; but if commands begin to get interleaved, then savepoints cannot be set. In fact,
such nondeterministic transactions will be explicitly disallowed in MARS. This means, if you
have a result set already active, and a BEGIN TRANSACTION is requested on the same connection
that already has a result set in parallel, then such a request would fail.

But how can you be sure that a parallel result set exists? That depends on a lot of circum-
stances. Before you request your Insert command to be executed, it is quite possible that the
Select command result has already been consumed by the client. In this case, your transaction
savepoint will succeed. But if the client was busy doing something else, the network was
crowded, or for any other reason there still existed a parallel result set, then the savepoint will
fail. So how can you be sure that a clearly interleaved command operation will, or will not, let
you set a savepoint on the transaction? The answer is you cannot be sure of this, and thus you
shouldn’t base your architecture on it. The only way to be completely sure that there are no
active result sets is to close all your readers.

5122ch11.qxd 8/23/05 3:21 PM Page 383

CHAPTER 11 ■ TRANSACTIONS384

MARS—A LITTLE PRACTICAL WORD OF ADVICE

You might wonder why I chose to mention the very specific details of MARS such as interleaving rules, serialized
commands versus interleaved commands, and their effect on transactions. It is extremely important that you
understand all of these rules before you decide to use MARS in your application architecture.

As mentioned previously, whether a command will be interleaved or serialized cannot be accurately deter-
mined. This is because it depends on a lot of features, stemming from the fact that you cannot accurately
predict when the full result set for a query has been put on the wire for the client to consume. So what does
this mean? Well, consider the code shown here:

C#

using (SqlConnection testConnection = new SqlConnection(marsConnectionString))
{

testConnection.Open();
SqlCommand myCommand = testConnection.CreateCommand();
myCommand.CommandText = "exec sp_who";
SqlDataReader myDataReader =
myCommand.ExecuteReader(CommandBehavior.Default);
Boolean flag = myDataReader.Read();
try
{

SqlTransaction myTran = testConnection.BeginTransaction();
}
catch(Exception e){

Console.WriteLine(e);
}

}

VB.NET

Using testConnection As SqlConnection = _
new SqlConnection(marsConnectionString)

testConnection.Open()
Dim myCommand As SqlCommand = testConnection.CreateCommand()
myCommand.CommandText = "exec sp_who" 'this does not repro the problem.
Dim myDataReader As SqlDataReader = _
myCommand.ExecuteReader(CommandBehavior.Default)

Dim flag As Boolean = myDataReader.Read()
Try

Dim myTran As SqlTransaction = testConnection.BeginTransaction()
Catch e As Exception

Console.WriteLine(e)
End Try

End Using

This code will work fine because there is just one result set being maintained and a transaction in this
scenario should not cause a problem. But now go ahead and change the CommandText of myCommand to

5122ch11.qxd 8/23/05 3:21 PM Page 384

CHAPTER 11 ■ TRANSACTIONS 385

exec sp_who;exec sp_who;exec sp_who;exec sp_who;exec sp_who;➥

exec sp_who;exec sp_who;exec sp_who;

In this scenario, when BeginTransaction is called, SQL Server will determine whether or not a new
transaction can be created deterministically or not. If it can be, then you don’t get an error. But just because
chances are that the client has not yet caught up with the multitude of results the server produced (i.e., a parallel
result set exists when BeginTransaction was called), you end up getting an exception that says

The transaction operation cannot be performed because there are other
threads working on this transaction.

While this might not seem such a big deal on the face of it, what this means in practical terms is that
when the application is working with a small amount of data (development environment), everything will
work just fine. But when the size of the database grows, you will start seeing this error intermittently.

So just be careful when using MARS and try to understand exactly what happens behind the scenes.

MARS Deadlocks Within One Transaction
This is a situation you need to be careful of when using MARS. Imagine that you are running
an Update command on a particular table. Within the Update command, you have a trigger
specified on the table, which then runs a Select command to return certain results.

This sounds quite harmless until you consider the fact that the Select command in the
trigger will run once every time the Update command changes a row. So, in a MARS scenario,
where an Update command (or any other DML command) does not allow a Select command
to execute (unless the interleaved Update command has executed fully), you would have a dead-
lock situation where the Select command in the trigger cannot execute until the Update command
is done executing, and the Update command cannot execute because a trigger action (the Select
command) is still pending execution.

Thus, you have a deadlock. Luckily for us, SQL Server 2005’s deadlock monitor will detect
this and it will fail the Select statement—alleviating us from the deadlock. You will still, however,
not get the results you were expecting.

■Tip As a general rule when using MARS, always remember that all you’re doing is running seemingly parallel,
but in practice interleaved, command-execution blocks.

Advanced Single Database Techniques
Up till now, you have seen how to implement transactions using ADO.NET. You’ve also seen
how to change a transaction’s isolation level. Now it’s time to move on to some advanced
topics: savepoints, nested transactions, and using transactions with disconnected data access
techniques.

5122ch11.qxd 8/23/05 3:21 PM Page 385

CHAPTER 11 ■ TRANSACTIONS386

Savepoints
Whenever you roll back a transaction, it nullifies the effects of every statement from that trans-
action. In some cases, you may not want to roll back each and every statement, so you need
a mechanism to roll back only part of a transaction. You can implement this through the use
of savepoints.

Savepoints are markers that act like a bookmark: you may mark a certain point in the flow
of a transaction and then roll back up to that point, rather than completely rolling back the
transaction. The Save method of the transaction object accomplishes this. Note that the Save
method is available only for the SqlTransaction class, and not for the OleDbTransaction or the
System.Data.OracleClient.OracleTransaction classes. The Oracle Data Provider for .NET
(ODP.NET), however, does allow you to implement savepoints. If you, however, wanted to
implement savepoints using OracleTransaction under System.Data.OracleClient, you could
always execute direct queries using the OracleCommand object, or you could simply wrap it up
in a package or stored procedure.

Let’s develop a simple example that illustrates the use of the Save method. This example
will focus on the SqlTransaction object since it supports savepoints right out of the box (see
Exercise 11.3 in the associated code download).

The code for this example can be seen in Listings 11-13 and 11-14.

Listing 11-13. Implementing Savepoints in ADO.NET Using C#

static void Main(string[] args)
{

using (SqlConnection testConnection = new SqlConnection(connectionString))
{

SqlCommand testCommand = testConnection.CreateCommand();
testConnection.Open();

SqlTransaction myTransaction = testConnection.BeginTransaction();
testCommand.Transaction = myTransaction;

try
{

testCommand.CommandText =
"Insert into Customers (FirstName, LastName, AccountBalance) " +

" Values ('Bat','Man',100)";
testCommand.ExecuteNonQuery();
myTransaction.Save("firstCustomer");

testCommand.CommandText =
"Insert into Customers (FirstName, LastName, AccountBalance) " +

" Values ('The','Joker',100)";
testCommand.ExecuteNonQuery();

myTransaction.Rollback("firstCustomer");

5122ch11.qxd 8/23/05 3:21 PM Page 386

CHAPTER 11 ■ TRANSACTIONS 387

testCommand.CommandText =
"Insert into Customers (FirstName, LastName, AccountBalance) " +

" Values ('Robin','Sidekick',100)";
testCommand.ExecuteNonQuery();
myTransaction.Commit();

testCommand.CommandText = "Select * from Customers";
SqlDataReader sqlDa = testCommand.ExecuteReader();

while (sqlDa.Read())
{

Console.WriteLine(
" FirstName: " + sqlDa["FirstName"] +
" LastName = " + sqlDa["LastName"] +
" AccountBalance = " + sqlDa["AccountBalance"]);

}
sqlDa.Close();

}
catch (System.Exception ex)
{

Console.WriteLine(ex.ToString());
}
testConnection.Close();

} // testConnection.Dispose is called automatically.
}

Listing 11-14. Implementing Savepoints in ADO.NET Using Visual Basic .NET

Sub Main()
Using testConnection As SqlConnection = New SqlConnection(connectionString)

Dim testCommand As SqlCommand = testConnection.CreateCommand()
testConnection.Open()

Dim myTransaction As SqlTransaction = testConnection.BeginTransaction()
testCommand.Transaction = myTransaction

Try
testCommand.CommandText = _

"Insert into Customers (FirstName, LastName, AccountBalance)" _
& " Values ('Bat','Man',100)"

testCommand.ExecuteNonQuery()
myTransaction.Save("firstCustomer")

testCommand.CommandText = _
"Insert into Customers (FirstName, LastName, AccountBalance)" _
& " Values ('The','Joker',100)"

testCommand.ExecuteNonQuery()

5122ch11.qxd 8/23/05 3:21 PM Page 387

CHAPTER 11 ■ TRANSACTIONS388

myTransaction.Rollback("firstCustomer")

testCommand.CommandText = _
"Insert into Customers (FirstName, LastName, AccountBalance)" _
& " Values ('Robin','Sidekick',100)"

testCommand.ExecuteNonQuery()
myTransaction.Commit()

testCommand.CommandText = "Select * from Customers"
Dim sqlDa As SqlDataReader = testCommand.ExecuteReader()

While sqlDa.Read()
Console.WriteLine(_

" FirstName: " + sqlDa("FirstName") + _
" LastName = " + sqlDa("LastName") + _
" AccountBalance = " + sqlDa("AccountBalance"))

End While
sqlDa.Close()

Catch ex As System.Exception
Console.WriteLine(ex.ToString())

End Try
testConnection.Close()

End Using
End Sub

Here, the application executed a total of three queries that insert customers. After inserting
the first customer, the application issued a savepoint by using the following statement:

mytransaction.Save("firstCustomer")

The application then inserts one more row and rolls back up to the savepoint called
firstCustomer. Note how the same Rollback method is used with the savepoint name as
a parameter (to roll back the whole transaction just don’t use the parameter). The application
then inserts another row and, finally, commits the transaction. Then the customers are displayed
to confirm that the effect of the first insert is, indeed, committed to the database.

Figure 11-9 shows the execution results of this application.

Figure 11-9. Example of savepoints

5122ch11.qxd 8/23/05 3:21 PM Page 388

CHAPTER 11 ■ TRANSACTIONS 389

Note that the missing customer IDs are due to the fact we rolled back some inserts.
There are a couple of things that can make savepoints messy. One of the common mistakes

programmers make while working with savepoints is they forget to call either Commit or Rollback
after rolling back to a certain savepoint. Savepoints can be thought of as bookmarks: you still
need to explicitly call Commit or Rollback. Another point to note is that once you roll back to
a savepoint, all the savepoints defined after that savepoint are lost. You must set them again if
they are needed.

Nested Transactions
As you saw in the previous section, savepoints allow a transaction to be arranged as a sequence
of actions that can be rolled back individually. Nesting, on the other hand, allows a transaction
to be arranged as a hierarchy of such actions. In cases of nested transactions, one transaction
can contain one or more other transactions. To initiate such nested transactions, the Begin method
of the transaction object is used. This method is available only for the OleDbTransaction class,
and not for the SqlTransaction or the OracleClientTransaction class. The following code snippet
illustrates the usage of the Begin method:

C#

Mytransaction = myconnection.BeginTransaction() ;
myanothertransaction = mytransaction.Begin() ;

VB.NET

Mytransaction = myconnection.BeginTransaction()
myanothertransaction = mytransaction.Begin()

The Begin method returns an instance of another transaction object, which we can use
just like the original transaction object. However, rolling back this transaction simply rolls back
the current transaction, and not the entire transaction.

■Note Savepoints and nested transactions provide a means of dividing a transaction into multiple “sub-
transactions.” The SqlClient data provider and ODP.NET support savepoints with the Save method of the
transaction object, whereas the OleDb data provider supports nested transactions with the Begin method of
the transaction object.

Using Transactions with a DataSet and Data Adapter
In the exercises presented thus far in this chapter, you used the command object directly to fire
queries against the database. However, you can also use the DataSet and DataAdapter objects.
You might want to do this, for instance, if you had bound data in a DataSet to controls and
wanted to implement batch updates.

5122ch11.qxd 8/23/05 3:21 PM Page 389

CHAPTER 11 ■ TRANSACTIONS390

You would first fetch all the records needed, place them in the DataSet, and then manipu-
late them as required. Finally, you might send new values back to the database. Since the data
adapter uses command objects internally to update changes back to the database, you would,
essentially, be using the same techniques as discussed previously.

There is, however, one important point to be careful of when working with a DataSet. Say
you had a DataTable with four rows that you needed to save (update, delete, or insert) back to
the database. The first logical approach would be to use transactions with a DataAdapter and
DataSet and wrap the four ensuing commands in one transaction, as shown in the following code:

C#

testConnection.Open();
SqlTransaction myTransaction = testConnection.BeginTransaction();
myUpdateCommand.Transaction = myTransaction;
sqlDA.UpdateCommand = myUpdateCommand;
try
{

sqlDA.Update(customersTable);
myTransaction.Commit();

}
catch (Exception ex)
{

myTransaction.RollBack();
}
finally
{

testConnection.Close();
}

VB.NET

testConnection.Open()
Dim myTransaction as SqlTransaction = testConnection.BeginTransaction()
myUpdateCommand.Transaction = myTransaction
sqlDA.UpdateCommand = myUpdateCommand
Try

sqlDA.Update(customersTable)
myTransaction.Commit()

Catch
myTransaction.RollBack()

Finally
testConnection.Close()

End Try

Unfortunately, this code snippet has a major problem. Let’s say that as your application
was executing commands for the four rows one by one, the first row’s command executed fine,
the second worked fine, and the third threw an exception. In this case, while the database

5122ch11.qxd 8/23/05 3:21 PM Page 390

CHAPTER 11 ■ TRANSACTIONS 391

would roll back the first and second executed command’s changes, in the DataSet itself, the
row states for the first two rows would have changed back to UnModified. Thus, at this point,
you would have no easy recourse of setting the row states back to what they should have been.

In .NET 1.1, the solution for this problem would be to extract a smaller DataSet with only
the changes using the GetChanges method, and work with that smaller DataSet instead. In the
event of a successful transaction, you could then refresh the data and Merge the new and fresh
data back from the database into the DataSet.

There are, however, numerous problems with this approach. One big problem is that Merge
and GetChanges are potentially expensive commands to run. In .NET 1.1, the time required to
run Merge or GetChanges increases exponentially with the increase in complexity in the DataSet.
In .NET 2.0, the internal logic is vastly improved and the decrease in performance is linear, but
they are still expensive commands to run. A bigger problem is that if you were using any of the
events, such as RowUpdated, to set error values in your DataSet (which in this case would be the
smaller DataSet extracted using GetChanges), then all your user-friendly errors will now have to
be “hand merged” back to the original DataSet, or they will simply be lost. Then there are other
issues surrounding the fact that you might have specified autoincrement primary keys in your
original DataSet, and an automated merge will simply mess up all the primary-key values
extracted out of the database. In fact, I am sure there are even more scenarios you could think
of where this approach would cause problems.

It is for this purpose that .NET 2.0 has introduced a new property, called
AcceptChangesDuringUpdate, on the DataAdapter object. Setting AcceptChangesDuringUpdate to
true instructs the data adapter that it should not change row states on rows as it is executing
the commands on various rows. Instead, you will have to call AcceptChanges on the DataSet as
a whole at the end of your update. This can be seen in the associated code download under the
AccChanges code sample, or in the following code snippet:

C#

testConnection.Open();
SqlTransaction myTransaction = testConnection.BeginTransaction();
sqlDA.UpdateCommand.Transaction = myTransaction;
sqlDA.AcceptChangesDuringUpdate = false;

try
{

sqlDA.Update(ds);
myTransaction.Commit()
ds.AcceptChanges();

}
catch (Exception ex)
{

MessageBox.Show(ex.ToString());
}

5122ch11.qxd 8/23/05 3:21 PM Page 391

CHAPTER 11 ■ TRANSACTIONS392

VB.NET

testConnection.Open()
Dim myTransaction as SqlTransaction = testConnection.BeginTransaction()
myUpdateCommand.Transaction = myTransaction
sqlDA.UpdateCommand = myUpdateCommand
sqlDA.AcceptChangesDuringUpdate = false;
Try

sqlDA.Update(customersTable)
myTransaction.Commit()

Catch
myTransaction.RollBack()

Finally
testConnection.Close()

End Try

In this code snippet, the application updates the data source using the myDataAdapter
data adapter. The important thing to note here is that, by doing so, you can roll back the entire
transaction. Therefore, if you had four changes to persist, and the third change gave you an
error, not only could you now stop at the third change, but you could also roll back the first
and second changes.

As you saw in the previous chapter, this is incredibly useful in persisting relational data.
Especially since this gives you the ability to span multiple data adapters and various commands
executed on them, or just multiple command objects, across multiple changed rows using the
same transaction object, or a finite set of command objects.

Distributed Transactions
As you have seen in this chapter so far, the DBTransaction object can be used to group together
various commands on one database and execute them all as one unitary transaction. But let’s
say that one of our customers wishes to make a transfer between his checking and savings
account using an ATM.

This could be achieved using two command objects: one that inserts a debit into his sav-
ings account, and another that makes a credit of an equal amount to his checking account. If
you specify the same DbTransaction object on either command’s transaction property, both
the commands would then be a part of the same transaction.

This statement, however, is not completely true. This statement holds true only if both of
the tables lie within the same database. If the checking and savings accounts exist in different
databases, you need a different approach to enlist both these operations, involving two separate
databases in one transaction.

Such a transaction that can span multiple resources is referred to as a distributed transaction.

Important Players in Distributed Transactions: RMs and DTCs
In a distributed transaction, you could have units that perform the actual work and report
a success or a failure. These units can be referred to as resource managers (RMs). In addition
to the RMs, you need an application that listens to and coordinates between RMs, which is

5122ch11.qxd 8/23/05 3:21 PM Page 392

CHAPTER 11 ■ TRANSACTIONS 393

typically referred to as the Distributed Transaction Coordinator (DTC)7 also referred to as the
transaction manager.

The transaction coordinator that ships with Windows is the Microsoft Distributed Transaction
Coordinator (MSDTC). MSDTC is a Windows service that provides transactional coordination
for distributed applications.

Here is a typical flow of a distributed transaction:

1. An application begins a transaction requesting one from the MSDTC. This application
is commonly also referred to as the initiator.

2. The application then asks the RM to do its work as a part of the same transaction (this
is actually configurable), and the RMs register with the transaction manager as a part
of the same transaction. This is commonly referred to as enlisting in a transaction.

3. If all goes well, the application commits the transaction.

4. If something fails, either step can issue a rollback.

5. In either case, the transaction coordinator coordinates with all the RMs to ensure that
they all either succeed and do the requested work, or they all roll back their work.

MSDTC is used by MTS/COM+, System.EnterpriseServices, and, starting with .NET 2.0, in
the new System.Transactions namespace. In fact, you can bypass both COM+ and .NET and
simply use the MSDTC proxy msdtcprx.dll.

Two-Phase Commits
In a distributed transaction scenario, various RMs need to implement a reliable commit protocol,
the most common implementation of which is known as a two-phase commit.

In a two-phase commit, the actual commit for the work is split into two phases. The first
phase involves preparing the changes required for the commit. At this point, the RM commu-
nicates to the transaction coordinator that it has its changes prepared and ready to be committed,
but not actually committed yet.

Once all the RMs give the green flag to the transaction coordinator, the transaction
coordinator then lets everyone know that it is okay to go ahead and commit their changes.

This picture is obviously oversimplified, and entire books have been written on transaction
coordinators and RMs, but that discussion is beyond the scope of this book.

This brings up an interesting question: Who can participate in a distributed transaction?
It’s not just the database, or a number of databases that can participate in a distributed trans-
action. In fact, anything that has the ability to enlist itself in an MSDTC transaction can enlist
itself in a distributed transaction managed by the MSDTC. For instance, MSMQ can enlist in
a transaction that has two other SqlConnection objects that connect to two different databases.

Implementing a Distributed Transaction: The .NET 1.1 Way
To appreciate the beauty of .NET 2.0’s distributed transactions implementation, it’s first necessary
to become familiar with the ugly duckling of .NET 1.1’s implementation. So let’s look at that

5122ch11.qxd 8/23/05 3:21 PM Page 393

CHAPTER 11 ■ TRANSACTIONS394

first. If you are already familiar with this, or not interested in becoming friends with the ugly
duckling, you may jump directly to the “Implementing a Distributed Transaction: The .NET 2.0
Way” section.

In .NET 1.1, distributed transactions can be implemented using the System.
EnterpriseServices namespace, which provides you with a convenient method to access
MSDTC functionality.

To do so, your project must be a class library. This is so because Component Services is
designed to run without a UI. The class that will enlist itself in an MSDTC transaction needs to
inherit from ServicedComponent and it will need to be in the Global Assembly Cache (GAC).
Because it needs to be in the GAC, you will also need to strongly name it, using the sn.exe tool
that comes with the .NET SDK.

Finally, you need to specify the TransactionAttribute at the top of the class specifying its
behavior when it encounters an MSDTC transaction. This is done using the TransactionOption
enumeration. The various TransactionOption enumeration values are shown in Table 11-1.

Table 11-1. TransactionOption Enumeration Values

Constant Description

Disabled This component does not participate in transactions. This is also the default
value.

NotSupported This component runs outside the context of a transaction.

Supported This component participates in a transaction if one exists, but does not
require a transaction or creates one for itself.

Required This component must have a transaction. If no transaction exists, one will be
created. If one exists, it will participate in the transaction.

RequiresNew This component requires a transaction and will create a brand new transaction
for itself.

Thus, in this manner, you could create a number of components that enlist themselves in
an MSDTC transaction via Enterprise Services. Each of these calls SetComplete upon success
or SetAbort upon failure. By calling SetComplete, you are notifying the transaction coordinator
that you are ready and willing with your changes, pending others. If anyone else in the chain
calls SetAbort, then all bets are off and no changes are committed.

You can see example code for such a component in Listings 11-15 and 11-16.

Listing 11-15. ODP.NET Component with the Ability to Enlist Itself in a Distributed Transaction
Using Enterprise Services in C#

using System;
using System.EnterpriseServices;
using System.Data;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;
using System.Runtime.CompilerServices;
using System.Reflection;

// returns the name of Assembly, that is used by CLR to bind the Assembly

5122ch11.qxd 8/23/05 3:21 PM Page 394

CHAPTER 11 ■ TRANSACTIONS 395

// Name of a file containing the strong name key
[assembly: AssemblyKeyFile(@"DistributedTransaction.snk")]

namespace DistributedTransactionExample
{

// Apply a Transaction Attribute class to this class
[Transaction(TransactionOption.Required)]

// Inherit from ServicedComponent class.
public class DistributedTransaction : ServicedComponent
{

public static void updateAmounts(int id, float amount)
{

OracleCommand debitCommand ;
OracleCommand creditCommand ;
try
{

string cmdTxt =
"UPDATE Credit SET CreditAmount =" + amount + " WHERE CreditID =" + id;

// OracleCommand for credit database
creditCommand =

new OracleCommand(cmdTxt, creditConnectionString);

// OracleCommand for debit database
debitCommand = new

OracleCommand(cmdTxt, debitConnectionString);

// Executes the Oracle Commands
creditCommand.ExecuteNonQuery();
debitCommand.ExecuteNonQuery();

}
finally
{

// Release all resources held by OracleCommand objects
creditCommand.Dispose();
debitCommand.Dispose();

}
}

}
}

Listing 11-16. ODP.NET Component with the Ability to Enlist Itself in a Distributed Transaction
Using Enterprise Services in Visual Basic .NET

Imports System
Imports System.EnterpriseServices

5122ch11.qxd 8/23/05 3:21 PM Page 395

CHAPTER 11 ■ TRANSACTIONS396

Imports Oracle.DataAccess.Client
Imports Oracle.DataAccess.Types
Imports System.Runtime.CompilerServices
Imports System.Reflection

' returns the name of Assembly that is used by CLR to bind the Assembly
<assembly: ApplicationName("DistributedTransaction")> _

' Name of a file containing the strong name key
<assembly: AssemblyKeyFile("DistributedTransaction.snk")> _

Namespace DistributedTransactionExample
' Apply a Transaction Attribute class to this class
' Inherit from ServicedComponent class.
<Transaction(TransactionOption.Required)> _
Public Class DistributedTransaction Inherits ServicedComponent
Public Shared Sub updateAmounts(ByVal id As Integer, ByVal amount As single)

Dim creditCommand As OracleCommand
Dim debitCommand As OracleCommand
Try

Dim cmdTxt As String =
"UPDATE Credit SET CreditAmount =" & amount & " WHERE CreditID =" & id

' OracleCommand for credit database
creditCommand =

New OracleCommand(cmdTxt, creditConnectionString)

' OracleCommand for debit database
debitCommand = New

OracleCommand(cmdTxt, debitConnectionString)

' Executes the Oracle Commands
creditCommand.ExecuteNonQuery()
debitCommand.ExecuteNonQuery()

Finally
' Release all resources held by OracleCommand objects
creditCommand.Dispose()
debitCommand.Dispose()

End Try
End Sub

End Class
End Namespace

This is the old way of doing things and, as you can see, it requires considerable effort as far
as strong naming and splitting your transactional components into neatly segregated units that
can be registered in Component Services is concerned. Another way of doing this in .NET 1.1

5122ch11.qxd 8/23/05 3:21 PM Page 396

CHAPTER 11 ■ TRANSACTIONS 397

(only Windows 2003 or Windows XP Service Pack 2) is by using the ServiceConfig class as
shown in the following code sample:

C#

ServiceConfig config = new ServiceConfig();
config.Transaction = TransactionOption.Required;
ServiceDomain.Enter(config);
try
{

// Do your transactional code here, SqlConnections will auto enlist.
}
catch(Exception e)
{

Console.WriteLine(e.Message);
// Exception - abort abort abort !!
ContextUtil.SetAbort();

}
finally
{

ServiceDomain.Leave();
}

VB.NET

Dim config As ServiceConfig = New ServiceConfig()
config.Transaction = TransactionOption.Required
ServiceDomain.Enter(config)
Try

' Do your transactional code here, SqlConnections will auto enlist.
Catch e As Exception

Console.WriteLine(e.Message)
' Exception - abort abort abort !!
ContextUtil.SetAbort()

Finally
ServiceDomain.Leave()

End Try

But even this requires either Windows 2003 or Windows XP Service Pack 2. But this is
a relatively cleaner method of dealing with distributed transactions in .NET 1.1.

Rightfully so, .NET 2.0 came up with a better architecture leveraging the System.Transactions
namespace.

Implementing a Distributed Transaction: The .NET 2.0 Way
Distributed transactions can be easily implemented in .NET 2.0 using the System.Transactions
namespace. The best way to see this is to look at an example.

5122ch11.qxd 8/23/05 3:21 PM Page 397

CHAPTER 11 ■ TRANSACTIONS398

The application you are going to see involves two databases. The first database is the Credits
database, with one table “Credits”. Credits simply has a CreditID and a CreditAmount. Similarly,
there is a second table called the “Debits” table. The Debits table has a DebitID and a DebitAmount.
You can find the relevant SQL script to set up these databases in the associated code download
under the CreateDistributedDatabase.sql file in Exercise 11.4.

The code you are going to see attempts to wrap the two matching insert operations into
one transaction. In other words, if a debit fails, the previously inserted credit must also be
rolled back.

The code for this example is really simple. It can be seen in Listings 11-17 and 11-18. There
is no need for strong names, segregating your code into separate assemblies, or putting them
in the GAC. All of that mess is simply replaced by the code you see here:

Listing 11-17. Implementing a Distributed Transaction in .NET 2.0 Using C#

static void Main(string[] args)
{

try
{

using (TransactionScope myTransaction = new TransactionScope())
{

using (SqlConnection connection1 = new SqlConnection(connectionString1))
{

connection1.Open();
SqlCommand myCommand = connection1.CreateCommand();
myCommand.CommandText =

"Insert into Credits (CreditAmount) Values (100)";
myCommand.ExecuteNonQuery();

}

Console.WriteLine(
"The first connection transaction has done its work" +
", moving on to the second.");

Console.ReadLine();

using (SqlConnection connection2 = new SqlConnection(connectionString2))
{

connection2.Open();
SqlCommand myCommand = connection2.CreateCommand();
myCommand.CommandText = "Insert into Debits(DebitAmount) Values (100)";
myCommand.ExecuteNonQuery();

}
myTransaction.Complete() ;

}
}
catch (System.Exception ex)
{

Console.WriteLine(ex.ToString());
}

5122ch11.qxd 8/23/05 3:21 PM Page 398

CHAPTER 11 ■ TRANSACTIONS 399

Listing 11-18. Implementing a Distributed Transaction in .NET 2.0 Using Visual Basic .NET

Sub Main()
Try

Using myTransaction As TransactionScope = New TransactionScope()
Using connection1 As SqlConnection = New SqlConnection(connectionString1)

connection1.Open()
Dim myCommand As SqlCommand = connection1.CreateCommand()
myCommand.CommandText = _

"Insert into Credits (CreditAmount) Values (100)"
myCommand.ExecuteNonQuery()

End Using

Console.WriteLine(_
"The first connection transaction has done its work," & _
" moving on to the second.")
Console.ReadLine()

Using connection2 As SqlConnection = New SqlConnection(connectionString2)
connection2.Open()
Dim myCommand As SqlCommand = connection2.CreateCommand()
myCommand.CommandText = _

"Insert into Debits(DebitAmount) Values (100)"
myCommand.ExecuteNonQuery()

End Using
myTransaction.Complete()

End Using
Catch ex As System.Exception

Console.WriteLine(ex.ToString())
End Try

End Sub

As you can see, the transaction is contained with the help of a using block. The applica-
tion creates a new instance of a TransactionScope, which identifies the portion of code that
will enlist itself in the transaction. Thus, all code that appears between the constructor of
TransactionScope and the Dispose call on the created TransactionScope instance will fall in
the created transaction.

Another thing one of the constructors on TransactionScope allows you to do is suggest an
isolation level to the individual RMs inside the transaction. I say suggest, and not define, an
isolation level because the RM can choose to ignore that request and implement a higher iso-
lation level should it be necessary to do so.

Then, within the using block, various RMs come into play—in our case, two SqlConnection
objects connecting to two different databases. Let’s go ahead and dissect the running of this
application bit by bit.

When you compile and run the application, set a breakpoint at the end of the first
connection’s command ExecuteNonQuery execution. If, at that point, you go to SQL Server
Management Studio and run the SQL command:

5122ch11.qxd 8/23/05 3:21 PM Page 399

CHAPTER 11 ■ TRANSACTIONS400

Figure 11-10. Dirty read as a result of the first part of a distributed transaction

Figure 11-11. The Transaction List does not show any transactions until a second RM comes into
the picture.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
BEGIN TRANSACTION
SELECT CREDITAMOUNT FROM CREDITS
COMMIT

you’ll notice that SQL Server 2005 reports that one row has been inserted so far, as shown in
Figure 11-10. Do note, however, that since this insert is contingent upon the second connection’s
insert, this is a dirty read. But because, in this instance, you are interested in peeking beneath
the action and you do intend to do a dirty read, you can use the uncommitted isolation level to
actually read the halfway modified row. Just for fun, can you guess what would happen if you were
to remove the isolation level and then run only the Select statement? Try it!! Here is a hint: the
distributed transaction is executing the transaction at a high isolation level, such as Serializable.

erver 2005.

Another thing to note here is that if you go to the Control Panel ➤ Administrative Tools ➤
Component Services applet and navigate through the tree on the left side to view the transaction
list (as shown in Figure 11-11), nothing appears under the Distributed Transaction Coordinator’s
Transaction List, as long as SqlConnection connection2 doesn’t come into the picture.8

5122ch11.qxd 8/23/05 3:21 PM Page 400

CHAPTER 11 ■ TRANSACTIONS 401

Now, step through the code in debug mode. As soon as you trip over the connection2.Open
line in code, you’ll notice that a transaction appears in the DTC’s list of transactions. This is
shown in Figure 11-12.

Figure 11-12. The Transaction List shows a transaction only when a second RM comes into the
picture.

This is quite an important concept that is typically referred to as promotable enlistment
of transactions. Do note, however, that of the currently implemented .NET data providers
shipping with .NET 2.0, promotable enlistment is supported only by SqlConnection connecting
with SQL Server 2005. Other scenarios, such as SqlClient connecting with SQL Server 2000,
OracleConnection, etc., do work with distributed transactions, but they are handled exclusively
by MSDTC.

Promotable Enlistment: A Quick Primer
MSDTC is expensive. It generates a lot of network traffic 9 and it possibly could run into network
issues, such as firewalls, etc. Thus, it’s unfair that every single transaction, whether or not it
needs full distributed support, should pay the price of MSDTC. For instance, depending on
your logic, your database transaction might be limited to a single database. In that instance, it
would be overkill to involve MSDTC.

It’s for situations like these that a new facade layer called the Lightweight Transaction
Manager (LTM) has been introduced in .NET 2.0. The LTM is what manages a transaction, as
long as it doesn’t need MSDTC.

9. To be specific, MSDTC generates a lot of network roundtrips. The actual data transferred isn’t that
mance.

5122ch11.qxd 8/23/05 3:21 PM Page 401

CHAPTER 11 ■ TRANSACTIONS402

The important part to realize is that LTM is not something you write. In fact, you write an
RM to take advantage of the LTM. In the case of ADO.NET 2.0, the SqlConnection object is an
example of an RM that is already written for you, which takes advantage of the LTM and
promotable enlistment. The only thing you have to do to take advantage of LTM is to use
SqlConnection.

Before I can explain the specific conditions under which a transaction escalates from an LTM
to an MSDTC, I need to explain a few other basic concepts revolving around System.Transactions.

Volatile Enlistment
An RM that deals with resources that are not permanent in nature, such as an in-memory cache,
is a good candidate for volatile enlistment. This means that the RM can go ahead and perform
the first phase of the two-phase commit process, but if it is unable to perform the second phase,
it does not need to explicitly recover the first phase. In other words, it does not need to provide
a recovery contract.

RMs that intend to use volatile enlistment generally do so by using the Transaction.
EnlistVolatile method.

Durable Enlistment
A durable enlistment, on the other hand, has permanent (durable) data that depends on the
transaction for consistency. A good example of durable enlistment could be a transactional file
system. Say, for instance, you are copying a file from one location to another. In this case, if
you happen to be overwriting an already existing file, in the event of an abort you would need
to restore the already existing state (i.e., restore the previous file). Thus, in case of a failure,
a durable transaction will have logged transactions that it is participating in and it will recover
those transactions with the help of the transaction manager to get the final rolled back outcome.
When it is done recovering the transaction, it responds to the transaction manager to let it
know that it has completed recovery, so the transaction manager can report a successful
recovery/rollback.

RMs that intend to use durable enlistment generally do so by using the Transaction.
EnlistDurable method.

Promotable Enlistment
Promotable enlistment refers to the process where a remote durable resource, located in
a different appdomain/process/machine, participates in an LTM transaction without causing
it to escalate to an MSDTC transaction. In other words, where performance is a criterion,
you might choose to enlist the transaction as promotable enlistment using Transaction.
EnlistPromotableSinglePhase, indicating that if certain conditions are met, then the transaction
would then escalate to MSDTC. The SqlConnection object is a good example of an object that
makes use of promotable enlistment.

So what are the conditions that lead to the escalation of a transaction being managed by
the LTM to the MSDTC? A transaction will be escalated to MSDTC when any of the following
occurs:

5122ch11.qxd 8/23/05 3:21 PM Page 402

CHAPTER 11 ■ TRANSACTIONS 403

• At least one durable resource that doesn’t support single-phase notifications is enlisted
in the transaction

• At least two durable resources that support single-phase notifications are enlisted in
the transaction

• A request to marshal the transaction to a different appdomain or different process is done

Being able to limit transactions within the LTM significantly reduces the overload of
creating and managing a transaction. The good news is that as long as the RM is promotable
enlistment–aware, you (as a user of that RM) get this performance benefit for free. You do,
however, have to understand how promotable enlistment works, should you choose to imple-
ment your own RMs.

This, as you can tell, has a significant positive impact on performance; however, in the
case of SQL Server 2005, it gets even better.

Usually in distributed transactions involving databases, the isolation level of such trans-
actions is Serializable. This ensures the best database consistency, at the cost of expensive locks
and poor concurrent performance. However, with SQL Server 2005, as long as there is only one
RM involved, you can still get away with a lower isolation level, such as ReadCommitted. As soon
as the second RM comes into picture, the isolation level could be10 bumped up to Serializable.

Do note, however, that by using one of the overloads of TransactionScope’s constructor,
you can specify the desired or suggested isolation level that the RMs should use. Which isola-
tion level the RMs choose to use depends on their implementation.

System.Transactions: Manually Enlisting and Multithreaded
Environments
So how would you use System.Transactions.Transaction in a multithreaded environment? An
instance of System.Transactions.Transaction, which can be accessed using Transaction.Current,
is stored at thread-level storage. This means if you had, say, two instances of SqlConnection on
different threads (or any other RM for that matter), in order for them to enlist within the same
distributed transaction, you’d need to come up with a thread-safe approach.

Let me kill two birds with one stone with an example that demonstrates manual enlisting
in a distributed transaction and a thread-safe approach of letting RMs in multiple threads
enlist in the same transaction (see Exercise 11.5 in the associated code download).

Here are the two tricks I am going to use. In order for a SqlConnection instance to enlist
itself in a transaction, it needs to use the following code snippet:

C#

connection2.EnlistTransaction(tran);

VB.NET

connection2.EnlistTransaction(tran)

10. Why “could be”? Because the final decision rests on the RM—SqlConnection. In certain instances, it
in a distributed transaction.

5122ch11.qxd 8/23/05 3:21 PM Page 403

CHAPTER 11 ■ TRANSACTIONS404

In this code, connection2 is an instance of a SqlConnection and tran is an instance of
System.Transactions.Transaction.

So how do you get an instance of that transaction? Well, first of all, you cannot instantiate it
directly. You could either create a new instance of System.Transactions.CommittableTransaction
or you have to use System.Transactions.Transaction.Current to access the currently running
transaction. Once you access it, a thread-safe approach would be to clone that transaction by
calling Transaction.Clone. This is shown here:

C#

Transaction tran = Transaction.Current.Clone();

VB.NET

Transaction tran = Transaction.Current.Clone()

Once your transaction is cloned, you can pass it to a thread’s entry point as shown here:

C#

Thread myThread;
myThread =

new System.Threading.Thread(new ParameterizedThreadStart(ThreadEntryPoint));
Transaction tran = Transaction.Current.Clone();
myThread.Start(tran);

VB.NET

Dim myThread As Thread
myThread =

New System.Threading.Thread(New ParameterizedThreadStart(ThreadEntryPoint))
Dim tran As Transaction = Transaction.Current.Clone()
myThread.Start(tran)

The ThreadEntryPoint is nothing but a method that serves as the entry point for the
thread. In this method you can manually enlist a SqlConnection instance into the currently
running transaction. This is shown in the following code:

C#

private static void ThreadEntryPoint(object transactionInstance)
{

isThreadRunning = true ;
Transaction tran = (Transaction)transactionInstance;
using (SqlConnection connection2 = new SqlConnection(connectionString2))
{

connection2.Open();
connection2.EnlistTransaction(tran);

5122ch11.qxd 8/23/05 3:21 PM Page 404

CHAPTER 11 ■ TRANSACTIONS 405

// Do something here - this connection is manually enlisted.
tran.Rollback(); // ok to do

}
isThreadRunning = false ;

}

VB.NET

Private Sub ThreadEntryPoint(ByVal transactionInstance As Object)
isThreadRunning = true
Dim tran As Transaction = CType(transactionInstance, Transaction)
Using connection2 As SqlConnection = New SqlConnection(connectionString2)

connection2.Open()
connection2.EnlistTransaction(tran)
' Do something here - this connection is manually enlisted.
tran.Rollback() ' ok to do

End Using
isThreadRunning = false

End Sub

Take note in this code that one of the comments says that it is okay to Rollback. This
means that a cloned transaction can Rollback, but it cannot Commit. The full code can be seen
in Listings 11-19 and 11-20.

Listing 11-19. Thread-safe and Manual Enlistment in a System.Transactions.Transaction Using C#

private static string connectionString1 = "...";
private static string connectionString2 = "...";
private static bool isThreadRunning = false;
static void Main(string[] args)
{

try
{

using (TransactionScope myTransaction = new TransactionScope())
{

Thread myThread;
myThread =

new System.Threading.Thread(new
ParameterizedThreadStart(ThreadEntryPoint));

Transaction tran = Transaction.Current.Clone();
myThread.Start(tran);

using (SqlConnection connection1 = new SqlConnection(connectionString1))
{

connection1.Open();
// Do something here - this connection will auto-enlist

}

5122ch11.qxd 8/23/05 3:21 PM Page 405

CHAPTER 11 ■ TRANSACTIONS406

// Wait for the other thread to finish
while (isThreadRunning)
{

Console.Write("\rWaiting for thread to finish .. ");
}
myTransaction.Complete();

}
}
catch (System.Exception ex)
{

Console.WriteLine(ex.ToString());
}

}

private static void ThreadEntryPoint(object transactionInstance)
{

isThreadRunning = true;
Transaction tran = (Transaction)transactionInstance;
using (SqlConnection connection2 = new SqlConnection(connectionString2))
{

connection2.Open();
connection2.EnlistTransaction(tran);
// Do something here - this connection is manually enlisted.
tran.Rollback(); // ok to do

}
isThreadRunning = false;

}

Listing 11-20. Thread-safe and Manual Enlistment in a System.Transactions.Transaction Using
Visual Basic .NET

Private connectionString1 As String = "..."
Private connectionString2 As String = "..."
Private isThreadRunning As Boolean = False

Sub Main()
Try

Using myTransaction As TransactionScope = New TransactionScope()
Dim myThread As Thread
myThread = _

New System.Threading.Thread(_
New ParameterizedThreadStart(AddressOf ThreadEntryPoint))

Dim tran As Transaction = Transaction.Current.Clone()
myThread.Start(tran)

Using connection1 As SqlConnection = _
New SqlConnection(connectionString1)

5122ch11.qxd 8/23/05 3:21 PM Page 406

CHAPTER 11 ■ TRANSACTIONS 407

' Do something here - this connection will autoenlist
End Using
' Wait for the other thread to finish
While (isThreadRunning)

Console.Write("\rWaiting for thread to finish ..")
End While
myTransaction.Complete()

End Using
Catch ex As System.Exception

Console.WriteLine(ex.ToString())
End Try

End Sub

Private Sub ThreadEntryPoint(ByVal transactionInstance As Object)
isThreadRunning = True
Dim tran As Transaction = CType(transactionInstance, Transaction)
Using connection2 As SqlConnection = New SqlConnection(connectionString2)

connection2.Open()
connection2.EnlistTransaction(tran)
' Do something here - this connection is manually enlisted.
tran.Rollback() ' ok to do

End Using
isThreadRunning = False

End Sub

Now, much like Exercise 11.4, if you put a breakpoint on the following line:

C#

connection2.EnlistTransaction(tran);

VB.NET

connection2.EnlistTransaction(tran);

you would note that the transaction appears in the DTC as soon as this line is executed. This
confirms that, indeed, the second connection is now listed in the transaction and the transaction
has been promoted to the DTC; whereas before, this line’s execution (connection2) was not
enlisted, thus manual enlistment is working. Also, because the transaction has executed a roll-
back in the subsequent line of code, you’ll note that in the original thread the transaction will
not successfully commit and you’ll get an exception as shown here:

System.Transactions.TransactionAbortedException: The transaction has aborted.

Thus, in this case, the application creates a clone of a Transaction object instance and
you can use that to enlist the SqlConnection instance in a distributed transaction when you
consider it necessary to do so. Once you have a Transaction instance, you can then enlist
SqlConnection objects inside the current transaction.

There is yet another class that you could use for manual enlistment: System.Transactions.
new instance of CommittableTransaction,

5122ch11.qxd 8/23/05 3:21 PM Page 407

CHAPTER 11 ■ TRANSACTIONS408

only the creator of the distributed transaction can commit the transaction. In other words, copies
of a CommittableTransaction obtained through System.Transactions.Transaction.Clone
cannot be committed.

Note that in .NET 1.1, you could achieve the same using System.EnterpriseServices using
the EnlistDistributedTransaction method. Also, it is important to note that once a connec-
tion is enlisted, it cannot be unenlisted.

These examples using System.Transactions will also work for other databases, such as Oracle.
However, promotable enlistment works only for SqlConnection connecting with SQL Server 2005.

Judicious Use of Transactions
Even though ADO.NET provides good support for transactions, it’s not always necessary to use
transactions. A more accurate statement perhaps could be that you should use transactions when
you can, but not overuse them. Every time you use a transaction, you carry some overhead. Plus,
transactions may involve some kind of locking of table rows. Thus, unnecessary use of trans-
actions will cause performance penalties. As a rule of thumb, use a transaction only when your
operation requires one. For example, if you are simply selecting records from a database, or
firing a single query, then most of the time you will not need an explicit transaction because your
statement is already wrapped in an implicit transaction. However, as mentioned previously, it’s
important to note that in multistatement updates, transactions can actually make the operation
faster, rather than slower. Also, if it comes down to a choice between a few milliseconds saved
versus compromising your data sanctity, the right answer is to not worry about the milliseconds
and keep your data clean.

This effect is even more pronounced when using distributed transactions involving MSDTC.
Because true distributed transactions (involving more than one RM in different appdomains or
durable RMs) involve running the underlying ADO.NET transactions in IsolationLevel.
Serializable, and because you could run into network issues, and finally because MSDTC
generates a lot of network traffic,11 distributed transactions are typically extremely expensive
and problematic.

As a matter of fact, in a database scenario or ADO.NET world, you should prefer to use
distributed transactions only when you have a nondatabase entity, such as an RM that you
wrote yourself enlisting itself in the transaction, or when you cannot wrap the multidatabase
transaction inside the database using SQL. For instance, in many scenarios, you can get away
with using linked tables or linked servers.

If you do have nondatabase RMs involved, or you cannot get away with wrapping up
distributed transactions inside the database itself, then you could apply sanctity checks at the
end of a transaction so incorrectly committed transactions can be recovered from in a non-
transactional form.

But if that is not a suitable solution, then you should try and use the System.Transactions
namespace–based transactions. However, always remember to limit the scope of your transaction
to as little as possible.

11. Actually MSDTC will cause a lot of roundtrips with small payloads, and a lot of roundtrips is what
really kills performance. (See “Querying the Database for Multiple Result Sets” in Chapter 5.) Even
though MSDTC isn’t querying the database, the same principles apply—too many roundtrips affect

5122ch11.qxd 8/23/05 3:21 PM Page 408

CHAPTER 11 ■ TRANSACTIONS 409

Transactional features are provided by the underlying RDBMS, ADO.NET, or MSDTC. The
choice between these actually depends on what you want to accomplish:

• RDBMS transactions offer the best performance as they only need a single roundtrip to
the database. They also provide the flexibility associated with explicitly controlling the
transaction boundary. The negative side to RDBMS transactions is that you also need
code in T-SQL (which may be not as easy as using VB.NET or C#) and that your code is
separated into two locations (in the .NET project and also on SQL Server).

• ADO.NET transactions are easy to code and provide the flexibility to control the trans-
action boundary with explicit instructions to begin and end the transaction. To achieve
this ease and flexibility, a performance cost is incurred for extra roundtrips to the database
to complete the transaction.

• MSDTC transactions will be the only choice if your transaction spans multiple
transaction–aware RMs, which could include more than one database, MSMQ, and
so on. They greatly simplify the application design and reduce coding requirements.
However, since the MSDTC service does all of the coordination work, it may have some
extra performance overhead.

Transactions and Performance
Always keep in mind that a lengthy transaction that performs data modification to many
different tables can effectively block the work of all other users in the system. This may cause
serious performance problems. While implementing a transaction, the following practices can
be followed in order to achieve acceptable results:

• Keep transactions as short as possible.

• Avoid returning data with a SELECT in the middle of a transaction, unless your state-
ments depend on the data returned.

• If you use the SELECT statement, select only the rows that are required so as not to lock
too many resources and to keep performance as good as possible. If your architecture
permits you to do so, simply move the selects out of the transaction.

• Try to write transactions completely in either T-SQL or in the API. Mixing and matching
will only cause confusion. Also, try and give preference to wrap transactions from the
client using the API rather than T-SQL. There could be instances where you may need to
wrap a transaction completely within T-SQL; if that is what you need, it is perfectly accept-
able. What you want to avoid is beginning a transaction using SqlTransaction and rolling
back or committing from within the stored procedure or the other way around.

• Avoid transactions that combine multiple, independent batches of work. Put such
batches in individual transactions.

• Avoid large updates if at all possible. Of course this doesn’t mean that you should give
up transactional robustness to avoid a large update. If you can’t avoid it, then don’t—
just don’t unnecessarily increase the size of your transaction as it will cause more resources
to lock.

5122ch11.qxd 8/23/05 3:21 PM Page 409

CHAPTER 11 ■ TRANSACTIONS410

Default Behavior for Transactions
One point to note is the default behavior of transactions. By default, if you do not explicitly
commit the transaction, then the transaction is rolled back. Even though default behavior
allows the rolling back of a transaction, it’s always a good programming practice to explicitly
call the Rollback method. This will not only release any locks from data, but also make code
much more readable and less error-prone.

Transactions and User Confirmation
When developing applications that deal with transactions interactively, some care must be
taken to avoid locking issues. Consider a case in which you are developing an application that
transfers money from one account to another. You develop a user interface, in the form of
a typical message box, which requires confirmation about the money transferred. Now, consider
that your application conforms to the following sequence of operations:

1. Open a connection.

2. Begin a transaction.

3. Execute various queries.

4. Ask for user confirmation about the transaction by prompting a message box.

5. Upon confirmation, commit the transaction.

6. In the absence of a confirmation, roll back the transaction.

If, after step 4, the user is unable to confirm the transaction (perhaps they leave for
a meeting), the locks will still be maintained on the rows under consideration. Also, a live con-
nection is maintained with the database. This might cause problems for other users. In such
cases, we can instead perform steps 1, 2, and 3 after getting confirmation from the user.

In general, you should avoid such scenarios where there is the need for user action in the
middle of a transaction. If you don’t know exactly how long an action within a transaction lasts,
then you should try and get enough information that allows you to fully commit or roll back
the transaction in one code sequence.

Simultaneous ADO.NET and RDBMS Transactions
Although rare, you might encounter cases where you use ADO.NET transactions as well as
RDBMS transactions. Suppose that you have one stored procedure that uses transactions
internally, and you call this stored procedure as a part of your own ADO.NET transaction. In
such cases, both the transactions work as if they are nested. In such cases, the ADO.NET com-
mit or rollback decides the outcome of the entire process. However, there are chances of getting
into errors if you roll back from the stored procedure or place improper nesting levels (see the
“Nested Transactions” section earlier in this chapter).

Mixing T-SQL and API transactions is a bad idea. It will only cause confusion. If you begin
a transaction in T-SQL, then end it in T-SQL; if you begin a transaction in the API (ADO.NET),
then end it in the API.

5122ch11.qxd 8/23/05 3:21 PM Page 410

CHAPTER 11 ■ TRANSACTIONS 411

Summary
This chapter completes a series of three chapters that allows you to judiciously decide the best
possible way to update data back into the data source while maintaining data sanctity. While
Chapters 9 and 10 dealt with just updating as well as updating in advanced scenarios by taking
care of hierarchy and concurrency issues, this chapter introduced you to the powerful topic of
transactions.

You were introduced to transactions within one database, the various nuances of transac-
tions in light of savepoints, nested transactions, and a new SQL Server 2005–specific feature called
MARS. In addition, this chapter discussed the various possible ways to enforce distributed
transactions along with the pros and cons of each approach, so you are armed with knowledge
to design your data layer correctly per your application needs.

The concepts presented in these three chapters are essential since there is no silver
bullet for data access and data layer design. It’s difficult to outline a particular practice as
a one-size-fits-all best practice, so the concepts presented in these chapters allow you to judi-
ciously decide where and how to use what mix of data source updates, concurrency checks,
transactions, or distributed transactions.

While ADO.NET deals mostly with databases, and handling and working with data stored
in such data sources, another popular method of storing and transmitting data as chunks is
XML. It’s quite logical to think that XML would have profound implications on ADO.NET’s
architecture. You have already seen some XML features in DataSets, etc., but ADO.NET’s XML
support is far richer.

The next chapter adds icing to the cake because it explains the various XML facilities
available in ADO.NET, and SQL Server 2005 in general. By understanding and leveraging vari-
ous XML features available to data access, you can truly create a well-architected data access
architecture.

5122ch11.qxd 8/23/05 3:21 PM Page 411

5122ch11.qxd 8/23/05 3:21 PM Page 412

413

C H A P T E R 1 2

■ ■ ■

XML and ADO.NET

Lingua franca: A common language used by speakers of different languages

It wouldn’t be a stretch of imagination to say that if English is the lingua franca of the world,
XML is probably the lingua franca of the computer world. XML by the very nature of it allows
you to create a structured and hierarchical representation of your data. Because it is text-based,
it can flow freely from one platform to another; and because parsers and standard schema exist
on most platforms for its validation, it is the almost de facto choice for transferring data between
different applications on different platforms.

Since ADO.NET is a data access architecture, and XML is a popular method to hold and
move data, it is quite reasonable to expect that ADO.NET has significant interoperability with
XML built in it. As a matter of fact, in the .NET Framework itself, there is the System.XML name-
space that is entirely devoted to working with data in XML form.

In Chapter 6, you have already seen some interoperability within the DataSet object and
XML. You saw how easy it is to convert both a DataSet and a DataTable to XML and vice versa.
You also saw how XSD schemas, which are XML, dictate the structure and data validity of
a strongly typed DataSet.

This chapter and the next present concepts specific to SQL Server. This chapter carries
that discussion forward and introduces you to the ability of leveraging the XML features built
in SQL Server. This chapter also looks into the new XML data type in SQL Server 2005 and how
you can use that to build better architected applications.

Finally, this chapter looks at the SqlXml data provider that has been included as a part of
the .NET Framework 2.0, but was also available in a previous version as a part of Microsoft Data
Access Components (MDAC) and could be used in .NET 1.1 and before.

But first, let’s start with the basics and examine how you can leverage the XML features
built in the Microsoft SQL Server database.

SQL Server Native XML Support
Given that XML lends you the ability to hold islands of data without a dedicated database, and
given the fact that most of your data will reside in a database somewhere, it’s critical that there
should be a method to extract XML data out of a relational database such as SQL Server. Also,
when programming with such data islands of XML, frequently you’ll be manipulating, trans-
mitting, or receiving them using a language such as C# or VB.NET. It is critical that the data
access block of such platforms, ADO.NET, should provide you with an easy way to leverage

5122ch12.qxd 8/23/05 3:22 PM Page 413

CHAPTER 12 ■ XML AND ADO.NET414

such XML features of SQL Server. But before discussing how to use the XML support that SQL
Server provides, it’s critical to understand what kind of native XML support that SQL Server
provides.

The introduction of SQL Server 2000 heralded a suite of new XML-related features that
could be readily exploited by an ADO.NET application. SQL Server 2005 took the picture one step
further by introducing the XML data type that could be stored in a prevalidated, preindexed
form as XML in the database. But first, let’s investigate three of the key SQL Server 2005 XML
features:

• FOR XML: The FOR XML clause of a SQL SELECT statement allows a row set to be returned
as an XML document. The XML document generated by a FOR XML clause is highly cus-
tomizable with respect to the document hierarchy generated, per-column data trans-
forms, representation of binary data, XML schema generated, and a variety of other
XML nuances.

• OPENXML: OPENXML in T-SQL allows a stored procedure call to manipulate an XML document
as a row set. Subsequently, this row set can be used to perform a variety of tasks including
SELECT, INSERT, DELETE, and UPDATE.

• The new XML data type: With the introduction of SQL Server 2005, SQL Server now con-
tains a new native data type to represent XML documents. This data type is different
from the other two methods of interacting with the database in the sense that it acts on
a new native data type “xml”, which can be prevalidated against a schema stored along
with the table definition in the database.

For example, SELECT queries containing FOR XML clauses could be used to generate an XML
document using tables such as Doctors, Pharmacies, and Medications. The results of such a query
(an XML document) could correspond with a properly formed medical prescription, and
could be used by both an insurance company and the pharmacy that will ultimately dispense
the prescription. In such a case, the XML document is immediately generated in the appropri-
ate format using FOR XML, and therefore doesn’t require the kind of programmatic massaging
that’s supported by the classes in System.Xml.

As suggested previously, where FOR XML generates XML, OPENXML is utilized in the consump-
tion of XML. Imagine a pharmacy that receives prescriptions in the form of XML documents.
These prescriptions could be used to update an underlying SQL Server database, in conjunction
with SQL INSERT, UPDATE, and DELETE commands. There is no need to parse the XML document
and generate the appropriate SQL command from that process. Instead, the XML document is
included as part of the SQL command. What’s elegant about the XML-specific features of SQL
Server is that no intricate steps are required by ADO.NET in order to exploit them. Queries con-
taining a FOR XML clause, for example, require no extra ADO.NET coding in order to execute them.
However, you do need to be aware that a query contains a FOR XML clause when it’s executed,
because you have to execute it using the ExecuteXmlReader method of the SqlCommand class.

In this part of the chapter, you’ll look at the construction of two console applications that
demonstrate these SQL Server XML features being exploited using ADO.NET:

• Exercise 12.1 demonstrates a method to use the various styles of the FOR XML query
(RAW, AUTO, PATH, and EXPLICIT).

• Exercise 12.2 demonstrates using OPENXML to INSERT, DELETE, and UPDATE in a table using
data provided in an XML document.

5122ch12.qxd 8/23/05 3:22 PM Page 414

CHAPTER 12 ■ XML AND ADO.NET 415

You’ll also look at a variety of ways to construct SQL script files that demonstrate FOR XML
and OPENXML. In some instances, these scripts must be run before sample applications can be run.

FOR XML
The T-SQL extension to the SELECT statement, FOR XML, is defined in the following way:

FOR XML mode [, XMLDATA][, ELEMENTS][, BINARY BASE64]

The permissible FOR XML modes are RAW, AUTO, PATH, and EXPLICIT, listed in order from the
least sophisticated to the most sophisticated. These modes generate SQL as follows:

• RAW: Generates a two-dimensional XML grid, where each row returned by the query is
contained in an element named <row>. The values of the column returned by the query
are represented by attributes in the <row> elements.

• AUTO: Generates a potentially hierarchical XML document, where the value returned for
every column is contained in an element or an attribute.

• PATH: Generates a potentially hierarchical XML document and gives you a much simpler
way than cumbersome EXPLICIT queries to describe a hierarchical structure of elements
and attributes. This mode is new in SQL Server 2005, and you should try to use this instead
of FOR XML EXPLICIT whenever you can.

• EXPLICIT: Allows you to specify the precise form used to contain the value of each column
returned by the query. The values of columns can be returned as attributes or elements,
and this distinction can be specified on a per-column basis. The exact data type used to
represent a column can also be specified, as can the precise XML document hierarchy
generated by the query.

■Note The optional components of a FOR XML query (XMLDATA, ELEMENTS, and BINARY BASE64) will be
discussed in conjunction with the detailed overview of each mode.

FOR XML Queries: A Quick Overview
A FOR XML RAW query is the most basic form of a FOR XML query. As stated previously, the XML
document generated contains one type of element, named <row>. Each <row> element corre-
sponds to a row returned by the query. This simplicity can lead to a great deal of replicated
data, since there is no hierarchy within the generated XML document.

An example of a FOR XML RAW query, to be executed against SQL Server’s AdventureWorks
database, is as follows:

SELECT
Loginid, Title,
Humanresources.Department.Departmentid, Humanresources.Department.Name

FROM

5122ch12.qxd 8/23/05 3:22 PM Page 415

CHAPTER 12 ■ XML AND ADO.NET416

Humanresources.Employee
INNER JOIN Humanresources.Department ON
Humanresources.Employee.Departmentid = Humanresources.Department.Departmentid

WHERE Humanresources.Department.Departmentid = 7
FOR XML RAW

The XML document generated by this query contains a lot of elements named <row>—one
per row of data returned. True to form, the FOR XML RAW query generates duplicate data, since
every element shown contains the attribute DepartmentID, but the value of the DepartmentID
attribute is the same for many different <row> elements:

<row LOGINID="adventure-works\guy1" TITLE="Production Technician - WC60"
DEPARTMENTID="7" NAME="Production" />
<row LOGINID="adventure-works\jolynn0" TITLE="Production Supervisor - WC60"
DEPARTMENTID="7" NAME="Production" />
<row LOGINID="adventure-works\ruth0" TITLE="Production Technician - WC10"
DEPARTMENTID="7" NAME="Production" />
<row LOGINID="adventure-works\barry0" TITLE="Production Technician - WC10"
DEPARTMENTID="7" NAME="Production" />
...

A FOR XML query of AUTO type exploits the hierarchical nature of certain SQL queries. Each
table associated with a FOR XML AUTO query is represented as an XML element. To demonstrate
that, reword the previously mentioned query as shown here:

SELECT
Humanresources.Department.Departmentid, Humanresources.Department.Name,
Humanresources.Employee.Loginid, Humanresources.Employee.Title

FROM
Humanresources.Department
INNER JOIN Humanresources.Employee On
Humanresources.Department.Departmentid = Humanresources.Employee.Departmentid

WHERE Humanresources.Department.Departmentid = 7
FOR XML AUTO

When you run this query, SQL Server will take advantage of the fact that there is only one
DepartmentID, and logically it will nest various employees that appear under this department
ID. The results are as shown here:

<HUMANRESOURCES.DEPARTMENT DEPARTMENTID="7" NAME="Production">
<HUMANRESOURCES.EMPLOYEE LOGINID="adventure-works\guy1" TITLE="Production

Technician - WC60" />
<HUMANRESOURCES.EMPLOYEE LOGINID="adventure-works\jolynn0" TITLE="Production

Supervisor - WC60" />
<HUMANRESOURCES.EMPLOYEE LOGINID="adventure-works\ruth0" TITLE="Production

Technician - WC10" />
...
...
...

5122ch12.qxd 8/23/05 3:22 PM Page 416

CHAPTER 12 ■ XML AND ADO.NET 417

<HUMANRESOURCES.EMPLOYEE LOGINID="adventure-works\olinda0" TITLE="Production
Technician - WC20" />
<HUMANRESOURCES.EMPLOYEE LOGINID="adventure-works\tom0" TITLE="Production

Technician - WC10" />
</HUMANRESOURCES.DEPARTMENT>

The criterion SQL Server follows is that the columns mentioned first are attempted to be
grouped together first. For example, this query takes advantage of the fact that there is only
one DepartmentID and, hence, it uses the FOR XML AUTO directive to specify that all results should
be grouped under the particular DepartmentID. If you had written the query like so:

SELECT
Humanresources.Employee.Loginid, Humanresources.Employee.Title,
Humanresources.Department.Departmentid, Humanresources.Department.Name

FROM
Humanresources.Department
INNER JOIN Humanresources.Employee On
Humanresources.Department.Departmentid = Humanresources.Employee.Departmentid

WHERE Humanresources.Department.Departmentid = 7
FOR XML AUTO

then the results you’d receive would be in the form of

...
<HUMANRESOURCES.EMPLOYEE LOGINID="adventure-works\guy1" TITLE="Production Technician
- WC60">
<HUMANRESOURCES.DEPARTMENT DEPARTMENTID="7" NAME="Production" />

</HUMANRESOURCES.EMPLOYEE>
...

FOR XML EXPLICIT is the most advanced and customizable form of the FOR XML query.
Using this form, a specific position within the XML data hierarchy can be specified for each
table-column pairing. FOR XML EXPLICIT queries use per-column directives to control the
form of the XML data generated, so that one column from a table may generate an XML element,
while another column may generate an attribute. The following snippet from a FOR XML EXPLICIT
query’s SELECT clause demonstrates how the DepartmentID and Name from the AdventureWorks
HumanResources.Department table can be specified as either an attribute or an element within
the same XML document:

SELECT
1 As Tag,
Null As Parent,
Departmentid As [Department!1!Departmentid],
Name As [Department!1!Name!Element]

FROM
Humanresources.Department

FOR XML EXPLICIT

Ignoring the Tag and Parent parts of this query for now, the alias following the first
instance of DepartmentID contains no directive, so it’s treated as an attribute (the default).

5122ch12.qxd 8/23/05 3:22 PM Page 417

CHAPTER 12 ■ XML AND ADO.NET418

However, the element directive in the alias following the second Name column causes that
column to be represented as an element. I’ll go into more detail later on, but a portion of the
XML generated by the previous SQL is as follows:

<DEPARTMENT DEPARTMENTID="12">
<NAME>Document Control</NAME>

</DEPARTMENT>
<DEPARTMENT DEPARTMENTID="1">
<NAME>Engineering</NAME>

</DEPARTMENT>
<DEPARTMENT DEPARTMENTID="16">
<NAME>Executive</NAME>

</DEPARTMENT>
...

FOR XML PATH is a new addition to SQL Server 2005. As you’ll see shortly, with multiple
tables and multiple levels of hierarchy, FOR XML EXPLICIT queries get rather cumbersome to
manage. In fact, most of what FOR XML EXPLICIT lets you do can be done using FOR XML PATH.
There are very few scenarios such as CDATA sections where you may still need to use FOR XML
EXPLICIT. These are discussed later in this chapter.

For example, if you wished to write the previous query in FOR XML PATH, it could easily be
written like so:

SELECT
DepartmentID "Department/@DepartmentID",
NAME "Department/Name"

FROM
HumanResources.Department

FOR XML PATH ('')

As you can see, this is a simple SELECT query with some XPath-looking syntax after each
column. The first "Department/@DepartmentID" specifies that DepartmentID should appear as
an attribute under the department node, and the second "Department/Name" specifies that
Name should appear as an element under Department. The results of this query look exactly like
the FOR XML EXPLICIT query and are shown here:

<Department DepartmentID="12">
<Name>Document Control</Name>

</Department>
<Department DepartmentID="1">
<Name>Engineering</Name>

</Department>
<Department DepartmentID="16">
<Name>Executive</Name>

</Department>

Thus, as you can see, the various modes of FOR XML allow you to easily render a relational
and tabular structure into a hierarchical XML structure.

5122ch12.qxd 8/23/05 3:22 PM Page 418

CHAPTER 12 ■ XML AND ADO.NET 419

FOR XML’s Optional Arguments
The following optional arguments can be used in conjunction with a FOR XML query:

• ELEMENTS is only applicable to a FOR XML AUTO query, and specifies that the value of each
column returned will be represented as an element within the XML document, rather
than as an attribute (the default).

• BINARY BASE64 causes any binary data within the XML document to be represented in
base-64 encoding. Such data is found in columns of BINARY, VARBINARY, or IMAGE type.
The BINARY BASE64 option must be specified in order for FOR XML RAW and FOR XML EXPLICIT
queries to retrieve binary data.

By default, a FOR XML AUTO query handles binary data by creating a reference within the
XML document to the location of the binary data. The disadvantage of doing this, how-
ever, is that it limits an XML document’s portability. When BINARY BASE64 is specified
for a FOR XML AUTO query, the generated XML document will contain the binary data.

• XMLDATA generates a schema for the XML document generated by the FOR XML query.
This schema is placed at the start of the XML document.

The following SQL is identical to one of our earlier examples, save that it contains the
optional XMLDATA argument:

SELECT
Humanresources.Employee.Loginid, Humanresources.Employee.Title,
Humanresources.Department.Departmentid, Humanresources.Department.Name

FROM
Humanresources.Department
INNER JOIN Humanresources.Employee On
Humanresources.Department.Departmentid = Humanresources.Employee.Departmentid

WHERE Humanresources.Department.Departmentid = 7
FOR XML AUTO, XMLDATA

A portion of the XML document generated by this query (including the schema) is as
follows:

<Schema name="Schema1" xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">
<ElementType name="HUMANRESOURCES.EMPLOYEE" content="eltOnly" model="closed"

order="many">
<element type="HUMANRESOURCES.DEPARTMENT" maxOccurs="*" />
<AttributeType name="LOGINID" dt:type="string" />
<AttributeType name="TITLE" dt:type="string" />
<attribute type="LOGINID" />
<attribute type="TITLE" />

</ElementType>
<ElementType name="HUMANRESOURCES.DEPARTMENT" content="empty" model="closed">
<AttributeType name="DEPARTMENTID" dt:type="i2" />
<AttributeType name="NAME" dt:type="string" />
<attribute type="DEPARTMENTID" />

5122ch12.qxd 8/23/05 3:22 PM Page 419

CHAPTER 12 ■ XML AND ADO.NET420

<attribute type="NAME" />
</ElementType>

</Schema>

FOR XML RAW
Let’s start looking more closely at SQL Server’s FOR XML queries. Another example of a FOR XML
RAW query is

SELECT Thumbnailphoto
FROM Production.Productphoto
FOR XML RAW, BINARY BASE64

The presence of the BINARY BASE64 argument here causes the binary data (the Photo column
of IMAGE type) to be encoded and placed within the XML-generated document. In fact, although
BINARY BASE64 is classified as an “optional” argument, it’s required for queries of RAW and EXPLICIT
type when the query contains a column of binary type. A portion of the output generated by
this query, with the data in Photo truncated for clarity, is as follows:

<row FirstName="Steven" LastName="Buchanan" Photo="FRwv ... atBf4=" />
<row FirstName="Laura" LastName="Callahan" Photo="FRwvA ... +tBf4=" />
<row FirstName="Nancy" LastName="Davolio" Photo="FRwvAA ... StBf4=" />
<row FirstName="Anne" LastName="Dodsworth" Photo="FRwv ... 6tBf4=" />
...

Had you not specified BINARY BASE64 here, the previous query would have produced
a very clear error message:

Msg 6829, Level 16, State 1, Line 1
FOR XML EXPLICIT and RAW modes currently do not support addressing binary data as
URLs in column 'THUMBNAILPHOTO'. Remove the column, or use the BINARY BASE64 mode,
or create the URL directly using the 'dbobject/TABLE[@PK1="V1"]/@COLUMN' syntax.

FOR XML AUTO
FOR XML’s AUTO mode supports the use of BINARY BASE64, but doesn’t require it. When the BINARY
BASE64 option isn’t specified, references to any binary data will be included in the generated
XML document. In order to demonstrate such references, consider the following SQL query:

SELECT Productphotoid, Thumbnailphoto
FROM Production.Productphoto
FOR XML AUTO

Here, the ProductPhotoID column has been deliberately included as it is the primary key,
and it will be used to generate an XPath reference to the Product’s thumbnail photo. This is the
kind of thing you get:

<PRODUCTION.PRODUCTPHOTO ProductPhotoID="1" THUMBNAILPHOTO=
"dbobject/PRODUCTION.PRODUCTPHOTO[@ProductPhotoID='1']/@ThumbNailPhoto" />
<PRODUCTION.PRODUCTPHOTO ProductPhotoID="69" THUMBNAILPHOTO=
"dbobject/PRODUCTION.PRODUCTPHOTO[@ProductPhotoID='69']/@ThumbNailPhoto" />

5122ch12.qxd 8/23/05 3:22 PM Page 420

CHAPTER 12 ■ XML AND ADO.NET 421

<PRODUCTION.PRODUCTPHOTO ProductPhotoID="70" THUMBNAILPHOTO=
"dbobject/PRODUCTION.PRODUCTPHOTO[@ProductPhotoID='70']/@ThumbNailPhoto" />
<PRODUCTION.PRODUCTPHOTO ProductPhotoID="72" THUMBNAILPHOTO=
"dbobject/PRODUCTION.PRODUCTPHOTO[@ProductPhotoID='72']/@ThumbNailPhoto" />
...

Referencing XML data is clearly more readable than including binary data. Since the binary
data itself is not contained in the XML document, copying the document to another location
results in references that can no longer be resolved—references to binary data are not portable.
Microsoft-specific references to binary data should be avoided unless the deployment envi-
ronment is Microsoft-homogeneous.

Moving on, the Production.ProductPhoto table of the AdventureWorks database con-
tains a primary key called ProductPhotoID, which is also the name of a foreign key in the
Production.ProductProductPhoto table (mapping table between product and product photo).
An example of a FOR XML AUTO query that accesses the ProductProductPhoto and ProductPhoto
is shown here:

SELECT
PP.Productphotoid, PP.Thumbnailphoto, PPP.Modifieddate

FROM
Production.Productphoto PP

INNER JOIN
Production.Productproductphoto PPP On
PP.Productphotoid = PPP.Productphotoid

FOR XML AUTO

A portion of the output generated by this query is as follows:

...
<PP PRODUCTPHOTOID="111" THUMBNAILPHOTO=
"dbobject/PRODUCTION.PRODUCTPHOTO[@ProductPhotoID='111']/@ThumbNailPhoto">
<PPP MODIFIEDDATE="2001-06-01T00:00:00" />
<PPP MODIFIEDDATE="2001-06-01T00:00:00" />
<PPP MODIFIEDDATE="2001-06-01T00:00:00" />
<PPP MODIFIEDDATE="2001-06-01T00:00:00" />
<PPP MODIFIEDDATE="2001-06-01T00:00:00" />

</PP>
<PP PRODUCTPHOTOID="113" THUMBNAILPHOTO=
"dbobject/PRODUCTION.PRODUCTPHOTO[@ProductPhotoID='113']/@ThumbNailPhoto">
<PPP MODIFIEDDATE="2003-06-01T00:00:00" />
<PPP MODIFIEDDATE="2003-06-01T00:00:00" />
<PPP MODIFIEDDATE="2003-06-01T00:00:00" />
<PPP MODIFIEDDATE="2003-06-01T00:00:00" />

</PP>
...

This document exploits the relationship between ProductPhoto and ProductProductPhoto.
Each ProductPhotoID (element <PP>) contains subelements corresponding to itself (element
<PPP>). Instead of this, you could also specify the ELEMENTS option and modify the query as

5122ch12.qxd 8/23/05 3:22 PM Page 421

CHAPTER 12 ■ XML AND ADO.NET422

SELECT
PP.Productphotoid, PP.Thumbnailphoto, PPP.Modifieddate

FROM
Production.Productphoto PP

INNER JOIN
Production.Productproductphoto PPP ON
PP.Productphotoid = PPP.Productphotoid

FOR XML AUTO, ELEMENTS

This will produce output as shown here:

<PP>
<PRODUCTPHOTOID>78</PRODUCTPHOTOID>
<THUMBNAILPHOTO>
dbobject/PRODUCTION.PRODUCTPHOTO[@ProductPhotoID='78']/@ThumbNailPhoto

</THUMBNAILPHOTO>
<PPP>
<MODIFIEDDATE>2002-06-01T00:00:00</MODIFIEDDATE>

</PPP>
<PPP>
<MODIFIEDDATE>2002-06-01T00:00:00</MODIFIEDDATE>

</PPP>
...
</PP>
<PP>
...
</PP>

As you can see, as a consequence of doing this, the attributes used to contain per-column
data in the generated document would be replaced by elements.

This ability to choose between elements and attributes is useful, but there’s no way to indi-
cate that some columns should have their data contained in attributes, while other columns have
their data contained in elements. What’s lacking is the ability for each column to declare its
own representation within the XML document (attribute or element, the level of the hierarchy
at which it is to be placed, etc.). The FOR XML EXPLICIT mode, which I will discuss next, will
address that shortcoming.

FOR XML EXPLICIT
The EXPLICIT mode of FOR XML provides a tremendous amount of flexibility when it comes to the
generation of XML documents, but the tradeoff is a fair amount of complexity with respect to
the writing of such queries. To understand this fully, let’s experiment with a FOR XML EXPLICIT
query that will be executed against the set of tables shown in Figure 12-1. This can also be cre-
ated in your local SQL Server instance using the ForXmlExplicit.SQL that can be found in the
associated code download for this chapter.

5122ch12.qxd 8/23/05 3:22 PM Page 422

CHAPTER 12 ■ XML AND ADO.NET 423

Figure 12-1. Schema for the FamilyDB database

These tables are not meant to be realistic; rather, they’re intended to demonstrate how to
represent a relational hierarchy as an XML hierarchy. The subsequent code examples will also
make use of this database called FamilyDB. However, you can create them in any database you
like, so long as you make the appropriate changes to the code. The tables are related as follows:

• GrandParent contains a primary key called GrandParentID.

• Daughter contains a primary key called DaughterID and a foreign key called GrandParentID
that refers to an entry in the GrandParent table.

• Son contains a primary key called SonID and a foreign key called GrandParentID that
refers to an entry in the GrandParent table.

• ChildOfSon contains a primary key called ChildOfSonID and a foreign key called SonID
that refers to an entry in the Son table.

Using FOR XML EXPLICIT and this hierarchy of relational database tables, you could generate
an XML document with the following format:

• A root element named <GrandParent>, which will contain each row of the GrandParent
table and all of the grandparent’s children and grandchildren. This root element will
contain the data retrieved from the GrandParent table by the FOR XML EXPLICIT query.

• Directly below the <GrandParent> element will exist elements named <Daughter> and
<Son>. Each of these elements will contain the data retrieved from their respective tables,
Daughter and Son.

• At the level below the <Son> element will exist the <ChildOfSon> element. This will con-
tain the data retrieved from the ChildOfSon table.

The mechanism that FOR XML EXPLICIT uses to support the generation of a specific hierarchy
is to assign a tag to each element within the XML hierarchy. Every element declares a tag value,
and the value of its parent. For our proposed hierarchy, this is as shown in Table 12-1.

5122ch12.qxd 8/23/05 3:22 PM Page 423

CHAPTER 12 ■ XML AND ADO.NET424

Table 12-1. Hierarchy Description for Our Query

Level Tag Parent

GrandParent 1 0

Son 2 1

Daughter 3 1

ChildOfSon 4 2

The GrandParent has a tag value of 1, and a parent value of 0. (When the parent of a level
in the XML hierarchy is set to zero, this indicates that the element is at the root of the XML
document.) Notice that both Son (tag 2) and Daughter (tag 3) have a parent value of 1 (the
GrandParent level of the XML hierarchy). Daughter is at the second, rather than the third, level
of the hierarchy because its parent’s value is 1. The ChildOfSon is assigned a tag value of 4, and
is associated with a parent whose tag value is 2 (a Son).

Each column of a FOR XML EXPLICIT query specifies a per-column encoding that includes
a tag value. The form that this per-column encoding takes is as follows:

columnName AS [ContainedElementName!Tag!AttributeOrElementName!Directive]

The subcomponents that make up the explicit declaration of a column are

• ContainedElementName: The name of the element in which this column returned by the
query will be contained. For example, each column of the GrandParent table will be
contained in the <GrandParent> element, whether as an element or an attribute.

• Tag: The tag value associated with a column. For example, each column of the Son table
is associated with a tag value of 2, while each column of the Daughter table is associated
with a tag value of 3.

• AttributeOrElementName: The name of the element or attribute that will contain this
returned column’s data.

• If no Directive is specified, then this is the name of the attribute (for example,
[Son!2!SonID] where the attribute containing the data is named SonID).

• If the Directive specified is xml, element, or CDATA, then AttributeOrElementName
specifies the name of the element that will contain this column’s data (for example,
[GrandKid!4!GrandKidData!xml], where the element containing the data is named
GrandKidData).

• If a Directive is specified, then AttributeOrElementName is optional.

• If no AttributeOrElementName is specified, then the column’s data is included as
child content of the element specified by ContainedElementName.

• Directive: Used to specify the format that data should take (hide, element, xml, xmltext,
or CDATA), and to specify references between columns. Supplying a directive for a column
is optional. We will review the directives in full a little later on.

5122ch12.qxd 8/23/05 3:22 PM Page 424

CHAPTER 12 ■ XML AND ADO.NET 425

FOR XML EXPLICIT: Two-Level Example
Before things get out of hand, let me demonstrate a query that works with only two levels of the
three-level database that you just created. This query is designed to demonstrate how a FOR XML
EXPLICIT hierarchy can be created, by using UNION ALL to combine the results of multiple queries:

SELECT 1 as Tag,
NULL as Parent,
G.GrandParentID as [GrandParent!1!GrandParentID],
NULL as [Son!2!SonName]

FROM GrandParent G
WHERE G.GrandParentID IN (Select GrandParentID from Son)
UNION ALL
SELECT 2 as Tag,

1 as Parent,
S.GrandParentID,
LTRIM(RTRIM(S.SonName))

FROM GrandParent G, Son S
WHERE G.GrandParentID = S.GrandParentID
ORDER BY [GrandParent!1!GrandParentID], [Son!2!SonName]
FOR XML EXPLICIT , ROOT('XML')

Here you can see two subqueries: SubQuery1 and SubQuery2. The first of these retrieves
columns from the GrandParent table—on this occasion, just GrandParentID. Specifying a tag of
1 and a parent of 0 means that the data retrieved will be at the root of the XML document. The
children of this <GrandParent> element will use the tag value in order to indicate it as their par-
ent in the XML hierarchy.

SubQuery2 retrieves the SonID column from the Son table, and by specifying a tag value of 2
and a parent of 1 dictates that the elements of this subquery are to be stored in a subelement
of a <GrandParent> element.

The subqueries of our FOR XML EXPLICIT query are combined using UNION ALL. Using a SQL
union means that every subquery must retrieve the same columns as every other subquery.
Notice that SubQuery1 returns a value for the Son table’s SonID:

0 AS [Son!2!SonName]

The value for SonID in each row returned by SubQuery1 is 0, but the value isn’t displayed
because its tag value is specified as 2. In other words, the data associated with this column only
appears at tag level 2. Similarly, the Son’s subquery, SubQuery2, contains a 0 representing the
GrandParentID column. This value is never displayed either, because the data displayed for the
Son table is at tag level 2, and GrandParentID is at tag level 1.

It’s extremely important to note that this query is not the same as the regular row/column
result T-SQL query that you might be used to. For instance, try removing the ORDER BY clause
specified in the previous query, and compare the results. You’ll notice that the element grouping
is completely incorrect if the ORDER BY clause is missing.

The XML document generated by the previous query is as follows:

<XML>
<GrandParent GrandParentID="1">
<Son SonName="Han" />

5122ch12.qxd 8/23/05 3:22 PM Page 425

CHAPTER 12 ■ XML AND ADO.NET426

</GrandParent>
<GrandParent GrandParentID="2">
<Son SonName="Darth" />
<Son SonName="Luke" />

</GrandParent>
</XML>

Entity Encoding
Before delving further into the tantalizing world of FOR XML EXPLICIT directives, let’s look at an
equally important concept: entity encoding. Entity encoding is the means by which XML special
characters can be included in data. What are special characters? The “less-than” character (<)
is special because it’s used to start each element within an XML document. For example, how
would an XML parser handle data of the following form?

<CompareThis> MassOfEarth < MassOfJupiter </CompareThis>

This is not actually well-formed XML, because the < character inside the element’s data leads
to a parsing error. In this XML-like snippet, the less-than character indicates the start of each
tag, and is also part of the data associated with the element: MassOfEarth < MassOfJupiter.
The previous snippet could be made well-formed by using entity encoding to change how the
less-than character is represented:

<CompareThis> MassOfEarth < MassOfJupiter </CompareThis>

< is the entity encoded form of the less-than character, so there is no ambiguity for XML
parsers here. The characters deemed as special by XML include &, ', >, <, and ". When you need
them, they should by written within an XML document using the alternative representations
shown in Table 12-2.

Table 12-2. Various Entity Encoding Representations

Character Name Character Literal Entity Encoding Representation

Ampersand & &

Apostrophe ' '

Greater-than > >

Less-than < <

Quotation mark " "

This concept of entity encoding is pertinent to the next section’s discussion of the FOR XML
EXPLICIT directives.

Directives
The short SQL query you just saw demonstrated how the FOR XML EXPLICIT clause in T-SQL
can be used to generate a specific hierarchy. However, real-life situations will present you with
loftier goals where you might need to exercise what you will see next: “directives” for the FOR
XML EXPLICIT clause. The FOR XML EXPLICIT directives presented in this section include what

5122ch12.qxd 8/23/05 3:22 PM Page 426

CHAPTER 12 ■ XML AND ADO.NET 427

Table 12-3. FOR XML EXPLICIT Directives

Directive Description

element Causes a particular column in the query to be represented by an element rather
than an attribute.

hide Causes a column in the SELECT clause of the query not to generate XML, and
therefore not to be included in the XML document generated.

xml Causes the data associated with a column to be included in the XML document,
but not to be entity encoded.

xmltext Causes the data associated with a column to be included in the XML document
as XML. A column can contain XML, and this will be placed in the generated XML
document.

CDATA Causes the data associated with a column to be included in the generated XML
document as CDATA data type.

ID Causes the data associated with a column to be included in the generated XML
document as ID data type.

IDREF Causes the data associated with a column to be included in the generated XML
document as IDREF data type.

IDREFS Causes the data associated with a column to be included in the generated XML
document as IDREFS data type.

Just before I get to the main example, let’s take a closer look at a few of these directives.
For a start, the data associated with a column specified using the element directive is contained
within an XML element in the generated document. An example of this is as follows:

[GrandKid!4!ChildOfSonName!element]

The data associated with a column that’s been configured like this will be contained in an
element called <ChildOfSonName>, like this:

<GrandKid>
<ChildOfSonName>Kyle</ChildOfSonName>
...

</GrandKid>

Next, the xml directive causes the data in the column to which it applies not to be entity
encoded when placed in the XML document. This means, for example, that any < characters
are not converted to <. An example of such a specification is

[GrandKid!4!GrandKidData!xml]

The XML generated by this directive is as follows, where quote and question-mark charac-
ters are not entity encoded, even though they are classified as special characters within XML:

<GrandKid>
<GrandKidData>"/?%#</GrandKidData>
...

</GrandKid>

5122ch12.qxd 8/23/05 3:22 PM Page 427

CHAPTER 12 ■ XML AND ADO.NET428

Moving on, when the xmltext directive is specified for a column, the data associated with this
column is assumed to be well-formed XML, and is included in the document at the beginning
of the child content of the element containing it. An example of using the xmltext directive is

Diary AS [GrandParent!1!!xmltext]

The output generated by this part of a SQL query is completely dependent on the data
contained in the Diary column. For the case of the GrandParent named Olivia, the Diary column
contains XML corresponding to the chapters of a diary. The <Chapter> elements in the follow-
ing XML snippet are not generated by SQL Server, but rather extracted as data from the Diary
column of the GrandParent table, courtesy of the xmltext directive:

<GrandParent GrandParentName="Olivia">
<Chapter>ChapNum="1" Body="It was the best of times"</Chapter>
<Chapter>ChapNum="2" Body="It is a far, far"</Chapter>

Finally for now, when the hide directive is specified for a column, the column is not included
in the generated XML document. Such hidden columns can be used to affect the overall architec-
ture without having their data appearing in the XML document. These columns will ultimately be
included in an ORDER BY clause, because they are typically used to order data.

An example of specifying a hidden column is

[GrandParent!1!OrderByGrandParentName!hide]

Each subquery of the large FOR XML EXPLICIT query that you’ll look at next contains
a column corresponding to GrandParentName, aliased to OrderByGrandParentName. This column
is not displayed because of the hide directive. In fact, the ORDER BY clause of our sample query
looks like this—a total of four hidden columns are used to specify the order of the data generated:

ORDER BY [GrandParent!1!OrderByGrandParentName!hide],
[Son!2!OrderBySonName!hide],
[Daughter!3!OrderByDaughterName!hide],
[GrandKid!4!OrderByChildOfSonName!hide]

It’s worth bearing in mind that the directives are not the only controllers of per-column
encoding. To understand this, consider the following portion of a query:

GrandParentID AS [GrandParent!1!],
GrandParentName AS [GrandParent!1!OrderByGrandParentName!hide],
RTRIM(GrandParentName) AS [GrandParent!1!GrandParentName],
Diary AS [GrandParent!1!!xmltext],

Here, the values retrieved from the GrandParent table will all be contained in the XML
element, <GrandParent>. The data associated with the GrandParentName column is contained
in the attribute GrandParentName (third line). For the GrandParentID column, however, there is
no attribute name specified, and therefore there is no attribute to contain this column’s data.
Under these circumstances, the data associated with the GrandParentID column is contained
directly in the <GrandParent> element. A sample of the XML generated by this portion of our
query is as follows:

5122ch12.qxd 8/23/05 3:22 PM Page 428

CHAPTER 12 ■ XML AND ADO.NET 429

<GrandParent GrandParentName="Jeb">
<Chapter> ChapNum="1" Body="They call me Ishmael"</Chapter>
<Chapter> ChapNum="2" Body="Whale sinks"</Chapter>

</GrandParent>

The <Chapter> elements and their corresponding attributes are again retrieved from the
Diary column, but notice that in this snippet of XML, the “1” is not associated with an attribute.
This “1” is the value of the GrandParentID column.

FOR XML EXPLICIT: Three-Level Example
So far, each directive has been presented in piecemeal fashion, but all of the pieces you have
seen so far have actually been part of a larger query—a query that generates a three-level XML
hierarchy in the following form:

<GrandParent> contains Son and Daughter elements
<Son> contains GrandKid elements
<GrandKid> </GrandKid>

</Son>
<Daughter> </Daughter>

</GrandParent>

The query in question is a union of four separate queries combined using UNION ALL.
These subqueries perform the following tasks in generating the XML document:

• Retrieve the grandparent data at level 1 of the hierarchy

• Retrieve the son data at level 2 of the hierarchy

• Retrieve the daughter data at level 2 of the hierarchy

• Retrieve the grandchild (child of son) data at level 3 of the hierarchy

The query itself looks like as shown in Listing 12-1

Listing 12-1. Putting Everything Together: Hierarchical FOR XML EXPLICIT Query with Various
Directives

-- Generate the Grandparent level of the hierarchy
SELECT 1 AS Tag,

0 AS Parent,
GrandParentID AS [GrandParent!1!],
GrandParentName AS [GrandParent!1!OrderByGrandParentName!hide],
RTRIM(GrandParentName) AS [GrandParent!1!GrandParentName],
Diary AS [GrandParent!1!!xmltext],
0 AS [Son!2!SonID],
'' AS [Son!2!OrderBySonName!hide],
'' AS [Son!2!SonName],
'' AS [Son!2!!CDATA], -- PermanentRecord
0 AS [Daughter!3!DaughterID!element],

5122ch12.qxd 8/23/05 3:22 PM Page 429

CHAPTER 12 ■ XML AND ADO.NET430

'' AS [Daughter!3!OrderByDaughterName!hide],
'' AS [Daughter!3!DaughterName!element],
'' AS [Daughter!3!SomeData!element],
0 AS [GrandKid!4!ChildOfSonID!element],
'' AS [GrandKid!4!OrderByChildOfSonName!hide],
'' AS [GrandKid!4!ChildOfSonName!element],
'' AS [GrandKid!4!GrandKidData!xml]

FROM GrandParent

UNION ALL

-- Generated the Son level of the hierarchy
SELECT 2 AS Tag,

1 AS Parent,
0, -- GrandParent.GrandParentID
G.GrandParentName AS [GrandParent!1!OrderByGrandParentName!hide],
'', -- GrandParent.Name
'', -- GrandParent.Diary
SonID,
RTRIM(SonName),
RTRIM(SonName),
PermanentRecord,
0, -- Daughter.DaughterID
'', -- Daughter.OrderByDaughterName
'', -- Daughter.DaughterName
'', -- Daughter.SomeData,
0, -- ChildOfSon.ChildOfOnID,
'', -- ChildOfSon.OrderByChildOfSonName
'', -- ChildOfSon.ChildOfSonName
'' -- ChildOfSon.GrandKidData

FROM GrandParent AS G, Son AS S
WHERE G.GrandParentID = S.GrandParentID

UNION ALL

-- Generate the Daughter level of the hierarchy
-- that is in the same level as the Son's data
SELECT 3 AS Tag,

1 AS Parent,
0, -- GrandParent.GrandParentID
G.GrandParentName AS [GrandParent!1!OrderByGrandParentName!hide],
'', -- GrandParent.Name
'', -- GrandParent.Diary
0, -- Son.SonID
'', -- Son.SonName (hidden)
'', -- Son.SonName

5122ch12.qxd 8/23/05 3:22 PM Page 430

CHAPTER 12 ■ XML AND ADO.NET 431

DaughterID,
RTRIM(DaughterName),
RTRIM(DaughterName),
SomeData,
0, -- ChildOfSon.ChildOfOnID,
'', -- ChildOfSon.OrderByChildOfSonName
'', -- ChildOfSon.ChildOfSonName
'' -- ChildOfSon.GrandKidData

FROM GrandParent AS G, Daughter AS D
WHERE G.GrandParentID = D.GrandParentID

UNION ALL

-- Execute grandchild (child of son) level of the query
SELECT 4 AS Tag,

2 AS Parent,
0, -- GrandParent.GrandParentID
G.GrandParentName AS [GrandParent!1!OrderByGrandParentName!hide],
'', -- GrandParent.Name
'', -- GrandParent.Diary
0, -- Son.SonID
RTRIM(S.SonName),
'', -- Son.SonName
'', -- Son.PermentRecord
0, -- Daughter.DaughterID
'', -- Daughter.OrderByDaughterName
'', -- Daughter.DaughterName
'', -- Daughter.SomeData,
CS.ChildOfSonID,
RTRIM(CS.ChildOfSonName),
RTRIM(CS.ChildOfSonName),
CS.GrandKidData

FROM GrandParent AS G, Son AS S, ChildOfSon AS CS
WHERE G.GrandParentID = S.GrandParentID AND S.SonID = CS.SonID

ORDER BY [GrandParent!1!OrderByGrandParentName!hide],
[Son!2!OrderBySonName!hide],
[Daughter!3!OrderByDaughterName!hide],
[GrandKid!4!OrderByChildOfSonName!hide]

FOR XML EXPLICIT, ROOT(‘XML’)

The ROOT keyword is new to SQL Server 2005, and it allows you to wrap the whole output
in one node, in our case the node will be named “XML”. The output for the sizable query
shown in Listing 12-1 can be seen in Figure 12-2.

5122ch12.qxd 8/23/05 3:22 PM Page 431

CHAPTER 12 ■ XML AND ADO.NET432

Sizable query indeed. The query is HUGE! Typing it is one story, getting it right is a whole
other story, and understanding it, yet another story. Thankfully, SQL Server 2005 has introduced
a new FOR XML PATH syntax that allows you to write queries with relative ease, which you would
have to otherwise write using FOR XML EXPLICIT.

Figure 12-2. Output of the FOR XML EXPLICIT

5122ch12.qxd 8/23/05 3:22 PM Page 432

CHAPTER 12 ■ XML AND ADO.NET 433

SQL Server 2005 and FOR XML PATH
So the query used in Listing 12-1 was huge. Specifically, it reads from four tables, and based
upon the relationships between those four tables, you had to split the query into four separate
SQL statements tied together with a UNION ALL clause.

Actually, it’s more complex than that. A UNION ALL clause in regular T-SQL (not using FOR XML)
would simply require you to make sure that the column sets match, both logically and physically.
However, when working with XML data, and FOR XML EXPLICIT queries, you have to logically
make sure that all your “tags” match, and that you specify the correct ORDER BY clause in the
very end.

Obviously, this is a fairly complex routine to achieve something rather straightforward.
Luckily for this very reason, SQL Server 2005 has introduced the new FOR XML PATH syntax.

The usage is fairly simple. Consider the following query:

SELECT 1 as Tag,
NULL as Parent,
G.GrandParentID as [GrandParent!1!GrandParentID],
NULL as [Son!2!SonName]

FROM GrandParent G
WHERE G.GrandParentID IN (Select GrandParentID from Son)
UNION ALL
SELECT 2 as Tag,

1 as Parent,
S.GrandParentID,
LTRIM(RTRIM(S.SonName))

FROM GrandParent G, Son S
WHERE G.GrandParentID = S.GrandParentID
ORDER BY [GrandParent!1!GrandParentID], [Son!2!SonName]
FOR XML EXPLICIT , ROOT('XML')

If you wanted to write this same query using the FOR XML PATH syntax, it would look like this:

SELECT
RTRIM (G.GRANDPARENTNAME) [@GRANDPARENTNAME],
(

SELECT
RTRIM (S.SONNAME) [@SONNAME]

FROM
DBO.SON S

WHERE
S.GRANDPARENTID = G.GRANDPARENTID

FOR XML PATH('SON'), TYPE
)

FROM
DBO.GRANDPARENT G

WHERE EXISTS
(

SELECT
*

5122ch12.qxd 8/23/05 3:22 PM Page 433

CHAPTER 12 ■ XML AND ADO.NET434

FROM
DBO.SON S2

WHERE
S2.GRANDPARENTID = G.GRANDPARENTID

)
ORDER BY

G.GRANDPARENTNAME
FOR XML PATH ('GRANDPARENT'), ROOT ('XML')

Is this query any simpler? Maybe not. After all, it’s just about as long as the FOR XML EXPLICIT
query. Though, when you read through the query it seems easier to understand. The difference
is even more apparent when there are more than two tables involved. So you were able to write
a simple-to-understand query using FOR XML PATH rather than using FOR XML EXPLICIT, but
you produced the same results.

Nevertheless, the previous query can be simplified further, producing almost the same
results:

Select
G.GrandParentID "GrandParent/@GrandParentID",
RTRIM(S.SonName) "GrandParent/Son/@SonName"

FROM
GrandParent G INNER JOIN SON S ON G.GrandParentID = S.GrandParentID

For Xml Path('GrandParent'), Root('XML')

This query is definitely much simpler than the initial FOR XML EXPLICIT query and its exact
replacement FOR XML PATH query. The difference, however, lies in the results. The minor differ-
ence this query will produce is that if a grandparent has more than one son, instead of listing
all sons under one XML node, they will each be listed under their parent grandparent node.
This issue is, however, easily solved in .NET code using an XSL transform or similar mechanism.
For larger blocks of XML this might be slower, but for smaller blocks of XML, the simplicity may
warrant a better solution under certain conditions.

This way, for most FOR XML EXPLICIT cases, you can replace them with FOR XML PATH queries
instead. However, do note that not everything is possible to do using FOR XML PATH, for instance,
the xmltext directive is not easily emulated in a FOR XML PATH query.

For instance, if you had a varchar column that actually contained XML data inside of it, you
could emulate the xmltext directive in FOR XML PATH queries by casting that data to xml data
type first. While that approach would work, you would pay the overhead of the cast involved.

One thing that cannot be done in FOR XML PATH queries is CDATA sections, but for most other
cases, you should try and use FOR XML PATH queries instead of FOR XML EXPLICIT queries. Also,
given the fact that between the various flavors of FOR XML available, you can generate any desired
XML structure based on your underlying data and relationships using one mechanism or other.

Okay, so now you can pretty much generate any kind of XML structure from relational data.
But that is only half the story. The other half is reading these FOR XML queries from ADO.NET.

Using FOR XML Queries with ADO.NET
Now that you have seen the various ways to write FOR XML queries, next let’s look at an example
that tests the use of a FOR XML query with ADO.NET. You can use any of the queries used previ-
ously; for instance, let’s use the query shown here:

5122ch12.qxd 8/23/05 3:22 PM Page 434

CHAPTER 12 ■ XML AND ADO.NET 435

SELECT
Loginid, Title,
Humanresources.Department.Departmentid, Humanresources.Department.Name

FROM
Humanresources.Employee
INNER JOIN Humanresources.Department On
Humanresources.Employee.Departmentid = Humanresources.Department.Departmentid

WHERE Humanresources.Department.Departmentid = 7
FOR XML RAW, XMLDATA

Here the XMLDATA option has been used in order to generate a schema for the XML document.
To execute this query, a SqlCommand instance is created and associated with an instance of

SQL Server containing an AdventureWorks database. At the same time, the query is specified as
command text to the SqlCommand. This is demonstrated in Exercise 12.1 in the associated code
download (see the Downloads section of the Apress website at http://www.apress.com) or can
also be seen in Listings 12-2 and 12-3.

Listing 12-2. Setting Up a FOR XML Query Command in C#

SqlCommand testCommand = testConnection.CreateCommand();
testCommand.CommandText =

"SELECT " +
"LOGINID, TITLE, " +
" HUMANRESOURCES.DEPARTMENT.DEPARTMENTID, HUMANRESOURCES.DEPARTMENT.NAME " +
"FROM " +
" HUMANRESOURCES.EMPLOYEE " +
" INNER JOIN HUMANRESOURCES.DEPARTMENT ON " +

HUMANRESOURCES.EMPLOYEE.DEPARTMENTID = HUMANRESOURCES.DEPARTMENT.DEPARTMENTID " +
"WHERE HUMANRESOURCES.DEPARTMENT.DEPARTMENTID = 7 " +
"FOR XML RAW, XMLDATA";

Listing 12-3. Setting Up a FOR XML Query Command in Visual Basic .NET

Dim testCommand As SqlCommand = testConnection.CreateCommand()
testCommand.CommandText = _

"SELECT " & _
"LOGINID, TITLE, " & _

" HUMANRESOURCES.DEPARTMENT.DEPARTMENTID, HUMANRESOURCES.DEPARTMENT.NAME " & _
"FROM " & _
" HUMANRESOURCES.EMPLOYEE " & _
" INNER JOIN HUMANRESOURCES.DEPARTMENT ON " & _
" HUMANRESOURCES.EMPLOYEE.DEPARTMENTID = " & _
" HUMANRESOURCES.DEPARTMENT.DEPARTMENTID " & _
"WHERE HUMANRESOURCES.DEPARTMENT.DEPARTMENTID = 7 " & _
"FOR XML RAW, XMLDATA"

5122ch12.qxd 8/23/05 3:22 PM Page 435

CHAPTER 12 ■ XML AND ADO.NET436

Once the SqlCommand instance has been created and the connection opened, the SqlCommand
object’s ExecuteXmlReader method can be called. ExecuteXmlReader executes a query contain-
ing a FOR XML clause, and returns an instance of System.Xml.XmlReader type. The XmlReader can
then be read in a fashion very similar to a data reader. This is shown in Listings 12-4 and 12-5.

Listing 12-4. Reading Up an XmlReader in C#

testConnection.Open();
XmlReader xrdr = testCommand.ExecuteXmlReader();
StreamWriter sw = new StreamWriter("Output.xml");
sw.WriteLine("<xml>");

while (xrdr.Read())
{

sw.WriteLine(xrdr.ReadOuterXml());
}

sw.WriteLine("</xml>");
sw.Close();
xrdr.Close();
testConnection.Close();

Listing 12-5. Reading Up an XmlReader in Visual Basic .NET

testConnection.Open()
Dim xrdr As XmlReader = testCommand.ExecuteXmlReader()
Dim sw As StreamWriter = New StreamWriter("Output.xml")

sw.WriteLine("<xml>")
While xrdr.Read()

sw.WriteLine(xrdr.ReadOuterXml())
End While
sw.WriteLine("</xml>")

sw.Close()
xrdr.Close()
testConnection.Close()

If you take a look at Output.xml, you should see something like as shown in Figure 12-3.

5122ch12.qxd 8/23/05 3:22 PM Page 436

CHAPTER 12 ■ XML AND ADO.NET 437

As you might expect, you can simply replace the command text for the SqlCommand in
ADO.NET, and in similar fashion run either RAW, AUTO, PATH, or EXPLICIT queries. Given the size
that such queries can reach, though, it’s worth bearing in mind that using stored procedures
gives you better manageability than storing SQL queries in your code, making the former
technique the preferred way of dealing with FOR XML queries in general.

OPENXML
The OPENXML function of SQL Server’s T-SQL allows an XML document to be viewed as a row set
without the need for any involvement of .NET code. Once opened, this row set can immediately
be manipulated using SQL statements such as SELECT, INSERT, UPDATE, and DELETE.

This tying of SQL Server to an XML document results in certain complexities. For example,
what happens if the XML document inserted into a SQL Server table contains extra elements
or attributes that weren’t taken into account by the OPENXML command? This is referred to as
overflow, and it results in the elements and tags in question being unconsumed. As you will
see, the OPENXML mechanism has the ability to handle unconsumed XML by placing it in
a designated column.

The OPENXML function of T-SQL is defined as follows, where parameters surrounded by
square brackets ([flags byte[in]]) and clauses surrounded by square brackets ([WITH
(SchemaDeclaration | TableName)]) are optional:

OPENXML(idoc int [in], rowpattern nvarchar [in], [flags byte [in]])

Figure 12-3. FOR XML query’s XML output using ADO.NET and XmlReader

5122ch12.qxd 8/23/05 3:22 PM Page 437

CHAPTER 12 ■ XML AND ADO.NET438

The parameters to OPENXML are defined as follows:

• idoc (input parameter of type int): A document handle referring to the parsed XML
document. This document handle is created by calling the sp_xml_preparedocument
stored procedure.

• rowpattern (input parameter of type nvarchar): An XPath pattern specifying the node
of the XML document to be processed as a row set. For example, the following pattern
indicates that the Region node is the level of the XML document to be interpreted:
N'/Top/Region'.

• flags (input parameter of type byte): A flag that indicates how the XML node is to be
interpreted. 1 indicates that attributes in the document become columns in the row set,
while 2 indicates that elements in the document become columns. This flag can also be used
to specify that data not consumed by the row set should be placed in an overflow column.

Two forms of the WITH clause can be specified with OPENXML:

• WITH SchemaDeclaration allows an XML-data schema to be specified.

• WITH TableName indicates that the schema associated with a specified table should be
used to interpret the XML document specified. This is the simpler of the two variants.

In this section, let’s look at how to use OPENXML in an example that requires you to add
a stored procedure called RegionInsert to the Regions table in the test database. The relevant
scripts containing the RegionInsert stored procedure and others can be found in the associated
code download under OpenXMLSP.sql, or is reproduced in Listing 12-6 for your convenience.

Listing 12-6. Script to Create Various Stored Procedures Using OPENXML

CREATE TABLE Region
(
RegionID INT PRIMARY KEY,
RegionDescription VARCHAR(3000)
)
GO

-- XML Document is of the form
-- <Top>
-- <Region> region elements here </Region>
-- <Region> region elements here </Region>
-- ...
-- </Top>
CREATE PROCEDURE RegionInsert @xmlDoc NVARCHAR(4000) AS
DECLARE @docIndex INT
EXECUTE sp_xml_preparedocument @docIndex OUTPUT, @xmlDoc

-- 1 is ATTRIBUTE-centric mapping
INSERT Region
SELECT RegionID, RegionDescription

5122ch12.qxd 8/23/05 3:22 PM Page 438

CHAPTER 12 ■ XML AND ADO.NET 439

EXECUTE sp_xml_removedocument @docIndex

GO

CREATE PROCEDURE RegionUpdate @xmlDoc NVARCHAR(4000) AS

DECLARE @docIndex INT

EXECUTE sp_xml_preparedocument @docIndex OUTPUT, @xmlDoc

UPDATE Region
SET Region.RegionDescription = XMLRegion.RegionDescription

FROM OPENXML(@docIndex, N'/Top/Region',1) WITH Region AS XMLRegion
WHERE Region.RegionID = XMLRegion.RegionID

EXECUTE sp_xml_removedocument @docIndex

GO

CREATE PROCEDURE RegionDelete @xmlDoc NVARCHAR(4000) AS
DECLARE @docIndex INT

EXECUTE sp_xml_preparedocument @docIndex OUTPUT, @xmlDoc

DELETE Region
FROM OPENXML(@docIndex, N'/Top/Region', 1) WITH Region AS XMLRegion
WHERE Region.RegionID=XMLRegion.RegionID

EXECUTE sp_xml_removedocument @docIndex

This stored procedure contains an INSERT statement that uses OPENXML. The steps involved
in the creation of the RegionInsert stored procedure are as follows:

1. Call the system-provided stored procedure, sp_xml_preparedocument, passing the XML doc-
ument to be processed (@xmldoc). This stored procedure parses the XML document and
returns a handle (an integer, @docIndex) that’s used by OPENXML to process the parsed document:

CREATE PROCEDURE RegionInsert @xmlDoc NVARCHAR(4000) AS
DECLARE @docIndex INT
EXECUTE sp_xml_preparedocument @docIndex OUTPUT, @xmlDoc

2. Call OPENXML to create a row set from the XML document. This row set can then be
processed by any applicable SQL command. The following INSERT statement demon-
strates OPENXML creating a row set using the schema associated with the Region table
(WITH Region) and then inserting the data into that table:

-- 1 is ATTRIBUTE-centric mapping
INSERT Region
SELECT RegionID, RegionDescription

5122ch12.qxd 8/23/05 3:22 PM Page 439

CHAPTER 12 ■ XML AND ADO.NET440

3. Call the system-provided stored procedure, sp_xml_removedocument, in order to clean
up the handle to the XML document:

EXECUTE sp_xml_removedocument @docIndex

You can add this stored procedure to the test database by executing the OpenXMLSP.sql
SQL script from the code download. Once that is in place, an example of SQL code (including
the XML document with data to insert) that executes the RegionInsert stored procedure is as
follows (OpenXMLDemo.sql in the associated code download):

DECLARE @newRegions NVARCHAR(2048)

SET @newRegions = N'
<Top>
<Region RegionID="11" RegionDescription="Uptown" />
<Region RegionID="22" RegionDescription="Downtown" />

</Top>'

EXEC RegionInsert @newRegions

This calls RegionInsert to add two rows to the Region table (one with RegionID 11, and one
with RegionID 22). Remember that XML is case sensitive, but SQL Server’s SQL is not. When
OPENXML was specified (OPENXML(@docIndex, N'/Top/Region', 1)) in the RegionInsert stored
procedure, the row pattern was /Top/Region. The XML document’s elements must match these
exactly (<Top> and <Region>). If <TOP> or <top> had been specified as the root element name,
then the insertion would have failed, as there would have been a case mismatch.

OPENXML Stored Procedures: Deletes and Updates
Another of the SQL scripts in OpenXMLSP.sql demonstrates OPENXML being used in conjunction
with a SQL DELETE operation (in a stored procedure called RegionDelete):

CREATE PROCEDURE RegionDelete @xmlDoc NVARCHAR(4000) AS
DECLARE @docIndex INT
EXECUTE sp_xml_preparedocument @docIndex OUTPUT, @xmlDoc

DELETE Region
FROM OPENXML(@docIndex, N'/Top/Region', 1) WITH Region AS XMLRegion
WHERE Region.RegionID = XMLRegion.RegionID

EXECUTE sp_xml_removedocument @docIndex

Here, the FROM clause of the DELETE statement uses the OPENXML function to generate a row
set named XMLRegion:

OPENXML(@docIndex, N'/Top/Region', 1) WITH Region AS XMLRegion

OpenXMLSP.sql also includes a stored procedure called RegionUpdate, which uses an XML
document to provide the data used to update the Region table:

5122ch12.qxd 8/23/05 3:22 PM Page 440

CHAPTER 12 ■ XML AND ADO.NET 441

CREATE PROCEDURE RegionUpdate @xmlDoc NVARCHAR(4000) AS
DECLARE @docIndex INT
EXECUTE sp_xml_preparedocument @docIndex OUTPUT, @xmlDoc

UPDATE Region
SET Region.RegionDescription = XMLRegion.RegionDescription
FROM OPENXML(@docIndex, N'/Top/Region',1) WITH Region AS XMLRegion
WHERE Region.RegionID = XMLRegion.RegionID

EXECUTE sp_xml_removedocument @docIndex

The RegionUpdate stored procedure’s UPDATE statement contains a FROM clause that uses
OPENXML. The OPENXML function uses an XML document to generate a row set containing the
entries in the Region table to be updated. The values in the Region table are matched to the
values specified in the OPENXML-generated row set, XmlRegion, using the UPDATE statement’s
WHERE clause.

Using OPENXML with ADO.NET
So far, we’ve created three stored procedures that use OPENXML: RegionInsert, RegionUpdate,
and RegionDelete. The Exercise 12.2 console application uses ADO.NET to demonstrate each
of these stored procedure calls being executed.

The implementation of Exercise 12.2 contains a method called DemoOpenXML. That method
begins by creating a SqlCommand instance that’s wired to the first stored procedure we want to
execute, RegionInsert:

C#

string strXMLDoc =
"<Top>" + @"<Region RegionID=""11"" RegionDescription=""UpTown""/>" +
@"<Region RegionID=""22"" RegionDescription=""DownTown""/>" + "</Top>";

SqlConnection sqlConn = new SqlConnection(strConnection);
SqlCommand openXMLCommand = new SqlCommand("RegionInsert", sqlConn);
openXMLCommand.CommandType = CommandType.StoredProcedure;

VB.NET

Dim strXMLDoc As String = _
"<Top>" & _

"<Region RegionID=""11"" RegionDescription=""UpTown""/>" & _
"<Region RegionID=""22"" RegionDescription=""DownTown""/>" & _

"</Top>"

Dim sqlConn As SqlConnection = New SqlConnection(strConnection)
Dim openXMLCommand As SqlCommand = New SqlCommand("RegionInsert", sqlConn)
openXMLCommand.CommandType = CommandType.StoredProcedure

5122ch12.qxd 8/23/05 3:22 PM Page 441

CHAPTER 12 ■ XML AND ADO.NET442

Next, the application needs to create a parameter for this command’s Parameters collection,
setting its value to the XML document (strXMLDoc) that will be inserted using the RegionInsert
stored procedure:

C#

SqlParameter xmlDocParm =
openXMLCommand.Parameters.Add("@xmlDoc", SqlDbType.NVarChar, 4000);

xmlDocParm.Value = strXMLDoc;

VB.NET

Dim xmlDocParm As SqlParameter = _
openXMLCommand.Parameters.Add("@xmlDoc", SqlDbType.NVarChar, 4000)

xmlDocParm.Value = strXMLDoc

The ExecuteNonQuery method of the openXMLCommand SqlCommand instance can now be
called to insert the data. (ExecuteNonQuery is a good choice here because RegionInsert only
inserts data and doesn’t return the results of a query.)

C#

sqlConnection.Open();
openXMLCommand.ExecuteNonQuery();

VB.NET

sqlConnection.Open()
openXMLCommand.ExecuteNonQuery()

The next stored procedure to demonstrate is RegionUpdate. To facilitate this, the data asso-
ciated with the parameter (the XML document) is tweaked by changing each instance of the word
“town” to “state” (so “Uptown” becomes “Upstate”, and “Downtown” becomes “Downstate”),
courtesy of the String class’s Replace method. Once the data is tweaked, the command’s text is
set to RegionUpdate and the command is executed using ExecuteNonQuery:

C#

xmlDocParm.Value = strXMLDoc.Replace("Town", "state");
openXMLCommand.CommandText = "RegionUpdate";
openXMLCommand.ExecuteNonQuery();

VB.NET

xmlDocParm.Value = strXMLDoc.Replace("Town", "state")
openXMLCommand.CommandText = "RegionUpdate"

5122ch12.qxd 8/23/05 3:22 PM Page 442

CHAPTER 12 ■ XML AND ADO.NET 443

The remainder of Exercise 12.2 sets the command’s text to the stored procedure that handles
deletion, RegionDelete. Once this is set, ExecuteNonQuery can work its magic again:

C#

openXMLCommand.CommandText = "RegionDelete";
openXMLCommand.ExecuteNonQuery();

sqlConn.Close();

VB.NET

openXMLCommand.CommandText = "RegionDelete"
openXMLCommand.ExecuteNonQuery()

sqlConn.Close()

The elegance of this technique is that .NET is blissfully unaware of how the XML document
it passes to the stored procedure is eventually written to SQL Server. The stored procedure
calls ultimately use OPENXML, but ADO.NET neither knows nor cares what’s going on under the
covers.

The XML Data Type: SQL Server 2005 Only
Of all the techniques you have seen so far that help you work with XML data, the common
theme has been an attempt to bridge the relational table structures with a hierarchical XML
structure. But in all these cases, the XML was either returned or accepted as a string that simply
holds XML. That is probably the reason why, in spite of all the rich XML features in Microsoft
SQL Server 2000 and 2005, a lot of developers choose to store their data directly as XML stored
in varchar data type columns.

That approach has numerous downsides. For one, the data is not validated in any manner.
Potentially someone could store data that does not validate any specified schema, because the
database does not enforce those rules. Another problem is the inability to query against specific
fields in that data. Probably the best you can do is string-like searching using the % characters.
Yet another disadvantage that arises from the same fact that everything is stored as a string is
that finding the right node to update might be difficult. The situation becomes more complex
considering that you might encounter rows that do not follow a set schema so your program
logic has to consider that.

Keeping all that in mind, SQL Server 2005 includes a first-class data type, like int or varchar,
that allows in-place querying, processing, and storage of XML documents. This is the new xml
data type.

Creating such a table can be achieved using the following script.

Create Table MyXmlTable
(

MyXmlTableID INT IDENTITY PRIMARY KEY,
MyXmlData XML

5122ch12.qxd 8/23/05 3:22 PM Page 443

CHAPTER 12 ■ XML AND ADO.NET444

If you wanted the data in the MyXmlData column to be validated against a schema, you
would first have to set up a schema in the database using the CREATE XML SCHEMA statement as
shown here:

CREATE XML SCHEMA COLLECTION MySchemaCollection AS
N'<?xml version="1.0" encoding="UTF-16"?>
<xsd:schema elementFormDefault="unqualified" attributeFormDefault="unqualified"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" >
<xsd:element name="SomeElement">

<xsd:complexType mixed="false">
<xsd:sequence>

<xsd:element name="ChildElement" type="xsd:string"/>
<xsd:element name="SecondChildElement" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>';

And the Create Table syntax can be modified as shown here:.

Create Table MyXmlTable
(

MyXmlTableID INT IDENTITY PRIMARY KEY,
MyXmlData XML (MySchemaCollection)

)

Also, to query and work with the new XML data type, you can use various new methods in
the T-SQL syntax.

You could use the query method to specify specific xpath syntax and query within the
XML document:

Select MyXmlData::query('/SomeElement/ChildElement(=42)') from MyXmlTable

Or you could use the value method to have a SQL Server native data type returned (rather
than the previous query that will always return a varchar data type):

Select MyXmlData::value('/SomeElement/ChildElement(=42)', int) from MyXmlTable

You can also use the exist method to check for the existence of certain data within the
xml column, or you can use the modify method to modify the XML contained within the xml
data type column.

However, for the sake of discussion here, let’s use the HumanResources.JobCandidate table
in the AdventureWorks database, which has the Resume column specified as an XML data type.

Reading XML Columns in ADO.NET
So now that you have the ability to store prevalidated and easily modifiable and workable XML
in the database, let’s look at the other half of the story—working with such data through .NET
applications using ADO.NET.

You can download this code in the associated code download under Exercise 12.3, but the
important excerpts are as shown in this section.

5122ch12.qxd 8/23/05 3:22 PM Page 444

CHAPTER 12 ■ XML AND ADO.NET 445

In order to read the XML data type, you would first need to set up a SqlCommand that works
with an xml column. This is no different than any other command, and is shown here:

C#

SqlCommand testCommand =
new SqlCommand("Select Top 1 Resume from HumanResources.JobCandidate",
testConnection);

testConnection.Open();
SqlDataReader rdr = testCommand.ExecuteReader();

VB.NET

Dim testCommand As SqlCommand = _
New SqlCommand("Select Top 1 Resume from HumanResources.JobCandidate", _
testConnection)

testConnection.Open()
Dim rdr As SqlDataReader = testCommand.ExecuteReader()

Once the command is set up, then you have various choices to read the data. You could
simply use the ExecuteXmlReader method as shown here:

C#

XmlReader xrdr = testCommand.ExecuteXmlReader();
xrdr.Read();
Console.WriteLine(xrdr.ReadOuterXml());

VB.NET

Dim xrdr As XmlReader = testCommand.ExecuteXmlReader()
xrdr.Read()
Console.WriteLine(xrdr.ReadOuterXml())

Or you could simply read out the contents of the column as a string:

C#

Console.WriteLine(rdr.GetString(0));

VB.NET

Console.WriteLine(rdr.GetString(0))

Or you could iterate through the data reader results and work with a SqlXml data type as
shown here:

5122ch12.qxd 8/23/05 3:22 PM Page 445

CHAPTER 12 ■ XML AND ADO.NET446

C#

XmlReader xr = rdr.GetSqlXml(0).CreateReader();
xr.Read();
Console.WriteLine(xr.ReadOuterXml());

VB.NET

Dim xr As XmlReader = rdr.GetSqlXml(0).CreateReader()
xr.Read()
Console.WriteLine(xr.ReadOuterXml())

Or you could use the GetProviderSpecificValue method. Strangely enough though, the
GetProviderSpecificValue method returns a string, rather than an XmlReader or something
similar. That is a good thing since returning provider-specific types prevents type conversion
errors or precision errors.

C#

Object o = rdr.GetProviderSpecificValue(0);
// Strangely enough this prints SqlString
Console.WriteLine(o.GetType().ToString());
Console.WriteLine(o.ToString());

VB.NET

Dim o As Object = rdr.GetProviderSpecificValue(0)
' Strangely enough this prints SqlString
Console.WriteLine(o.GetType().ToString())
Console.WriteLine(o.ToString())

Working with SQL Server XML Features: SQLXML
SQLXML, in short, is a set of components that were created to enable developers to work with
XML rather than ADO.NET when querying SQL Server. You can create queries to select and
update data in the database using pure XML, FOR XML, SQLXML templates, XPath, UpdateGrams
and DiffGrams, and XSLT transformations, all of which I will discuss in the following sections.

As you have seen in this chapter so far, working with ADO.NET with SQL Server presents
you with some powerful XML features that can be used when working in an application. Inter-
estingly enough though, all these SQL Server–specific XML features have been accessible through
a COM library called SqlXml. In fact, .NET 2.0 provides you with a fully managed wrapper around
that functionality under the Microsoft.Data.SqlXml namespace.

In your applications, if you are working with .NET 1.1, you can download SQLXML 3.0 as a part
of MDAC 2.8 at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dnanchor/html/anch_SQLXML.asp. For .NET 2.0, however, all you need to do is add a reference
to Microsoft.Data.SqlXml.

5122ch12.qxd 8/23/05 3:22 PM Page 446

CHAPTER 12 ■ XML AND ADO.NET 447

SQLXML and ADO.NET
Having said all that, what reasons could you have for using SQLXML from .NET code—especially
when ADO.NET has so many XML features? Most of the time, ADO.NET is the way to go, but
you’ll want to consider using SQLXML-managed classes in the following conditions:

• You’re migrating to the .NET Framework from a previous version that used SQLXML in
unmanaged code. In this case, it will be easier simply to migrate the SQLXML code to .NET
code, rather than rewrite everything in ADO.NET.

• You want to do client-side XML formatting, which is currently not available in ADO.NET.

• You want to represent multidimensional table relations, as this cannot be done in
ADO.NET.

Let’s now look at the architecture of various SQLXML classes, and begin to see how you can
use them.

The SQLXML Object Model
The SQLXML-managed classes themselves are implemented in the Microsoft.Data.SqlXml.dll
assembly (typically located in the C:\Program Files\SQLXML 4.0\bin folder). If you’re using
Visual Studio .NET, you’ll need to add a reference to this assembly before you can use the
three classes it contains:

• SqlXmlCommand

• SqlXmlParameter

• SqlXmlAdapter

The SqlXmlCommand Object
A SqlXmlCommand object is similar to an ADO.NET SqlCommand object, but it’s used for working
with SQLXML in SQL server. As you will see, however, the SqlXmlCommand class is slightly more
useful in certain scenarios.

The first is that it can be used to make the SQL client do more work, rather than pushing
the load onto the SQL Server. When you perform a FOR XML query using the SqlCommand class, the
work of transforming the selected row set into XML format is done in the SQL Server process
on the database. When you use a SqlXmlCommand object and FOR XML, you have the option of
saying that you want this process to occur in the data layer, and hence reduce the load on your
database.

Furthermore, the SqlXmlCommand class allows you to write the result to a new or existing
stream instance (a class derived from the System.IO.Stream class), an option that’s not avail-
able in ADO.NET. Table 12-4 looks over a few commonly used SqlXmlCommand properties while
Table 12-5 goes over the various methods available.

5122ch12.qxd 8/23/05 3:22 PM Page 447

CHAPTER 12 ■ XML AND ADO.NET448

Table 12-4. SqlXmlCommand Properties

Property Description

BasePath Contains a directory path or base URL that relative filenames can be
resolved from. So if you specify the XSLPath to be a.xsl, and the BasePath
to be http://localhost/, then the fully resolved path will be
http://localhost/a.xsl.

ClientSideXml When set to True, this indicates that the row set returned from SQL Server
should be converted to XML in the client process. By default, the
conversion is done on the SQL Server.

CommandStream Contains a stream (such as a file) that contains a query to be executed.

CommandText Allows you to set the XML query to be executed.

CommandType One of the SqlXmlCommandType enumeration values, which can be Sql,
XPath, Template, TemplateFile, UpdateGram, or DiffGram.

Namespaces Allows qualified XPath queries to be made. This is needed when the XML
document contains namespaces, and you want to select a node from one
of them.

OutputEncoding Allows you to specify the encoding of the XML that is output and sets the
encoding attribute on the XML declaration (such as encoding="UTF-8").

RootTag Allows you to specify a root XML element that will wrap the XML returned
from the query. This is especially important where the XML that is
returned doesn’t have a root element (a list of row elements, for example).

SchemaPath Similar to the XslPath property, but used for XML schema files.

XslPath Specifies the absolute or relative path to an XSL file. If a relative path is
used, the BasePath is used to get the full path to the file.

Table 12-5. SqlXmlCommand Methods

Method Description

ClearParameters() Clears all parameters that have been bound to the command—useful
when you want to reuse the command instance with new parameters.

CreateParameter() Returns an instance of a new parameter object that can have its name and
value set, and will be passed to the command.

ExecuteNonQuery() Simply executes the query and returns nothing—useful for update and
delete queries.

ExecuteStream() Executes the query and returns the resulting XML as an instance of
a stream object.

ExecuteToStream Similar to ExecuteStream(), except that it will output the resulting XML
(Stream) to the existing stream instance that’s passed as an argument.

ExecuteXmlReader() Executes the query and returns the result in an XmlReader instance.

Now that you know what methods and properties are available, let’s look at how they can
be used. You can find the code for the following example in Exercise 12.4 of the associated code
download.

First, you create a new instance of the SqlXmlCommand object by passing the SQLOLEDB con-
nection string to construct the object as follows (using the SQL Server AdventureWorks database):

5122ch12.qxd 8/23/05 3:22 PM Page 448

CHAPTER 12 ■ XML AND ADO.NET 449

C#

private static string connectionString =
"Provider=SQLOLEDB;Server=(local);database=AdventureWorks;" +
" Integrated Security=SSPI";

static void Main(string[] args)
{

SqlXmlCommand cmd = new SqlXmlCommand(connectionString);

VB.NET

Private connectionString As String = _
"Provider=SQLOLEDB;Server=(local);" & _
"database=AdventureWorks;Integrated Security=SSPI"

Sub Main()
Dim cmd As SqlXmlCommand = New SqlXmlCommand(connectionString)

Interestingly, the connection string specified to the SqlXmlCommand object still uses the
"Provider=SQLOLEDB" key-value pair. This is because SQLXML sits on top of the SqlOleDbProvider.

Next, you can specify the SQLXML query to execute in two ways. The first is to set the
CommandText property to the query string:

C#

cmd.CommandText =
"SELECT FirstName, LastName FROM Person.Contact WHERE LastName=? For XML Auto";

VB.NET

cmd.CommandText = _
"SELECT FirstName, LastName FROM Person.Contact WHERE LastName=? For XML Auto"

Alternatively, you may use the CommandStream property to set a stream instance where the
query to be executed is stored. In the following case, the code uses the file persons.xml to get
the query, which must be a Template, an UpdateGram, or a DiffGram (we’ll see how these work in
the next exercise):

C#

FileStream personFile = new FileStream("persons.xml", FileMode.Open) ;
cmd.CommandStream = personFile ;

VB.NET

Dim personFile As New FileStream("persons.xml", FileMode.Open)
cmd.CommandStream = personFile

5122ch12.qxd 8/23/05 3:22 PM Page 449

CHAPTER 12 ■ XML AND ADO.NET450

If you need to do so, you can add parameters to the query using the following syntax (note
the difference in syntax from a regular SqlParameter being added to a SqlCommand object):

C#

SqlXmlParameter parm;
parm = cmd.CreateParameter();
parm.Value = "Achong";

VB.NET

Dim parm As SqlXmlParameter
parm = cmd.CreateParameter()
parm.Value = "Achong"

Now that your command is set up, the next step is to run it and fetch the results. You can
use any of the Execute methods described in Table 12-5 to fetch the results. For the sake of this
example, let’s use the ExecuteToStream method. This can be seen in the following code snippet:

C#

string strResult;
try
{

Stream strm = cmd.ExecuteStream();
strm.Position = 0;
using (StreamReader sr = new StreamReader(strm))
{

Console.WriteLine(sr.ReadToEnd());
}

}
catch (SqlXmlException e)
{

//in case of an error, this prints error returned.
e.ErrorStream.Position = 0;
strResult = new StreamReader(e.ErrorStream).ReadToEnd();
System.Console.WriteLine(strResult);

}

VB.NET

Try
Dim strm As Stream = cmd.ExecuteStream()
strm.Position = 0
Using sr As StreamReader = New StreamReader(strm)

Console.WriteLine(sr.ReadToEnd())
End Using

5122ch12.qxd 8/23/05 3:22 PM Page 450

CHAPTER 12 ■ XML AND ADO.NET 451

Catch e As SqlXmlException
'in case of an error, this prints error returned.
e.ErrorStream.Position = 0
strResult = New StreamReader(e.ErrorStream).ReadToEnd()
System.Console.WriteLine(strResult)

End Try

When this is run from the SQLXML example in the code download, the following XML will
be returned:

<Person.Contact FirstName="Gustavo" LastName="Achong"/>

The SqlXmlParameter Object
One of the objects you worked with in Exercise 12.4 was the SqlXmlParameter object. Just like
a SqlParameter, the SqlXmlParameter object allows you to specify flexible parameterized commands.

However, an important distinction as you saw from the previous example was the syntax
and usage of a SqlXmlParameter object. While a SqlParameter can be used as follows:

C#

SqlParameter parm = new SqlParameter();
// Set various properties on the parameter
mySqlCommand.Parameters.Add(parm);

VB.NET

Dim parm As SqlParameter = New SqlParameter()
' Set various properties on the parameter
mySqlCommand.Parameters.Add(parm)

in comparison, the SqlXmlParameter object is used as follows:

C#

SqlXmlParameter parm;
parm = cmd.CreateParameter();
parm.Value = "Achong";

VB.NET

Dim parm As SqlXmlParameter
parm = cmd.CreateParameter()
parm.Value = "Achong"

Let’s look at an example of how we can use templates and parameters to improve the
flexibility of our SQLXML queries.

5122ch12.qxd 8/23/05 3:22 PM Page 451

CHAPTER 12 ■ XML AND ADO.NET452

Using Templates and Parameters

The SQL queries you have used so far have been defined inline with the code, and although
parameters give you a bit more flexibility in the query that is sent to SQL Server, it would be
better if you could entirely separate the SQL from the code and host it in a separate file. This
gives you better flexibility in a production application, a sort of hybrid approach between
the convenience of changing SQL after the application has been deployed (a.k.a. Dynamic
SQL) and not having to tinker with the actual database and store your queries there (a.k.a. stored
procedures). This would provide for a more flexible architecture, promote reuse of XML query
formats (which also improves deployment time), and even improve performance. Of course
these XML files that store your queries must be secured appropriately lest any hacker gets access
to them.

SQLXML provides this functionality through the use of templates, which allow you to create
an XML document containing the details of the query that can then be passed to the command
object and processed.

The following template allows us to define a query that selects products with a ProductName
similar to the string that’s passed in as a parameter:

<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
<sql:header>
<sql:param name="LastName" />

</sql:header>
<sql:query>

SELECT FirstName, LastName FROM Person.Contact WHERE LastName=@LastName For XML Auto
</sql:query>

</ROOT>

The parameters must be defined in the <header> section (this is optional if you have no
parameters), with a <param> element with a suitable name representing each one. (In our case,
LastName is the name of the parameter.) The query to be executed is defined in the <query>
element; it’s a normal SQL query with the name of each parameter included in the form
@ParamName.

How does this change our code? The new version is shown in Listings 12-7 and 12-8 or can
be found in the associated code download as Exercise 12.5.

Listing 12-7. Using Templatized Queries in C#

static void Main(string[] args)
{

FileStream xmlQuery = new FileStream("command.xml", FileMode.Open);
SqlXmlCommand cmd = new SqlXmlCommand(connectionString);
cmd.CommandStream = xmlQuery;
cmd.CommandType = SqlXmlCommandType.Template;

SqlXmlParameter parm;
parm = cmd.CreateParameter();
parm.Name = "@LastName";
parm.Value = "Achong";

5122ch12.qxd 8/23/05 3:22 PM Page 452

CHAPTER 12 ■ XML AND ADO.NET 453

cmd.ClientSideXml = true;
cmd.RootTag = "Person";

string strResult;
try
{

Stream strm = cmd.ExecuteStream();
strm.Position = 0;
using (StreamReader sr = new StreamReader(strm))
{

Console.WriteLine(sr.ReadToEnd());
}

}
catch (SqlXmlException e)
{

//in case of an error, this prints error returned.
e.ErrorStream.Position = 0;
strResult = new StreamReader(e.ErrorStream).ReadToEnd();
System.Console.WriteLine(strResult);

}
}

Listing 12-8. Using Templatized Queries in Visual Basic .NET

Sub Main()
Dim xmlQuery As FileStream = New FileStream("command.xml", FileMode.Open)
Dim cmd As SqlXmlCommand = New SqlXmlCommand(connectionString)
cmd.CommandStream = xmlQuery
cmd.CommandType = SqlXmlCommandType.Template

Dim parm As SqlXmlParameter
parm = cmd.CreateParameter()
parm.Name = "@LastName"
parm.Value = "Achong"

cmd.ClientSideXml = True
cmd.RootTag = "Person"

Dim strResult As String
Try

Dim strm As Stream = cmd.ExecuteStream()
strm.Position = 0
Using sr As StreamReader = New StreamReader(strm)

Console.WriteLine(sr.ReadToEnd())
End Using

Catch e As SqlXmlException
'in case of an error, this prints error returned.

5122ch12.qxd 8/23/05 3:22 PM Page 453

CHAPTER 12 ■ XML AND ADO.NET454

strResult = New StreamReader(e.ErrorStream).ReadToEnd()
System.Console.WriteLine(strResult)

End Try
End Sub

As you can see from this code, the method of declaring the command has changed. First,
you have to stream the command in from a stream (this could be any stream). Second, you
have to specify using the CommandType property that this is a templatized query.

Next, you have to arrange to pass the parameter to the query, but unless you give it a name,
it won’t work. In this case, the parameter was called LastName in the template XML file, so that
is what is used here. Again, you need to set the Value property, execute the query just as before,
and write the result to console output. The result when this is run is shown here:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<Person.Contact FirstName="Gustavo" LastName="Achong"/>

</ROOT>

This is almost the same result as the last query, but this time it’s wrapped in a <ROOT>
element that’s added automatically when you’re working with templates. If you wanted to get
back the XML without this element, you’d do better to load the result into an XmlReader instance.
This would require you to modify the reading portion of the previous code and replace it with
the following:

C#

XmlTextReader rdr ;
rdr = cmd.ExecuteXmlReader() ;
rdr.MoveToContent() ;
Console.WriteLine(rdr.ReadInnerXml()) ;
rdr.Close() ;

VB.NET

Dim rdr As XmlTextReader
rdr = cmd.ExecuteXmlReader()
rdr.MoveToContent()
Console.WriteLine(rdr.ReadInnerXml())
rdr.Close()

If you make these changes and run the code, the following will once again be output:

<Person.Contact FirstName="Gustavo" LastName="Achong"/>

Updating with an UpdateGram

At some stage, you’re going to want to update data that has been modified on the client. In SQLXML,
this is typically performed using an UpdateGram when you create the update XML document
yourself, but the way the SqlXmlAdapter object has been implemented means it will use the
DiffGram format, as featured in ADO.NET.

5122ch12.qxd 8/23/05 3:22 PM Page 454

CHAPTER 12 ■ XML AND ADO.NET 455

An UpdateGram is very useful for operating in distributed systems and applications that
can’t use ADO.NET (Java applications, perhaps) because you can use HTTP and a web server
to make updates to the database. An UpdateGram can be created as an XML message and sent
to a .NET application that can then use the SQLXML-managed classes to update SQL Server.

The following XML file is an example of an UpdateGram that could be used to update
a product with an ID of 2:

<ROOT xmlns:updg='urn:schemas-microsoft-com:xml-updategram'>
<updg:sync>
<updg:before>
<Person.Contact FirstName='Gustavo' LastName='Achong' />

</updg:before>
<updg:after>
<Person.Contact FirstName='A New Name' />

</updg:after>
</updg:sync>

</ROOT>

The UpdateGram namespace must be specified in the root of the document, and in this
case it’s associated with the updg prefix. The root element is the <sync> element that says you
want a synchronization to take place with “before” and “after” data definitions, and contains
the specific details of the modifications you want to make.

On this occasion, you wish to update the data in the column where the FirstName is Gustavo
and LastName is Achong, so you need to place that information in the <before> element. The
containing element for this information has the same name as the table you want to select
from (Person.Contact), and the attributes you specify effectively form an AND clause in the SQL
statement. If any of them cause the query to return no rows, a SqlXmlException is thrown.

The new value of the row(s) that you select should be specified in the <after> element,
and again we use a child element with the same name as the table you want to update, and
use attributes to indicate the new values. You want to change the FirstName column, so we
specify that as an attribute.

The code to perform the update that uses this UpdateGram is shown in Listings 12-9 and
12-10 or can be downloaded as Exercise 12.6.

Listing 12-9. Updating Using UpdateGrams in C#

FileStream xmlQuery = new FileStream("updategram.xml", FileMode.Open);
SqlXmlCommand cmd = new SqlXmlCommand(connectionString);
cmd.CommandStream = xmlQuery;
cmd.CommandType = SqlXmlCommandType.UpdateGram;
cmd.ExecuteNonQuery();
xmlQuery.Close();

Listing 12-10. Updating Using UpdateGrams in Visual Basic .NET

Dim xmlQuery As FileStream = New FileStream("updategram.xml", FileMode.Open)
Dim cmd As SqlXmlCommand = New SqlXmlCommand(connectionString)
cmd.CommandStream = xmlQuery

5122ch12.qxd 8/23/05 3:22 PM Page 455

CHAPTER 12 ■ XML AND ADO.NET456

cmd.CommandType = SqlXmlCommandType.UpdateGram
cmd.ExecuteNonQuery()
xmlQuery.Close()

The UpdateGram that’s stored in an XML file called UpdateGram.xml is loaded into a FileStream
instance, and this is set as the value of the CommandStream property. The CommandType property
then has to be set to UpdateGram, and finally the ExecuteNonQuery method of the SqlXmlCommand
object is called. When complete, the FileStream is closed.

The SqlXmlAdapter Object
The SqlXmlAdapter object is similar to ADO.NET’s data adapter classes. It can be used to fill
a DataSet with the results from a query, or to post changes back to the database when the DataSet
is updated. There are three constructors that are used to initialize an instance of this object.
The first takes a SqlXmlCommand instance as an argument, as follows:

SqlXmlAdapter(SqlXmlCommand)

The second constructor takes a string containing the query, the type of command specified
in the first argument, and finally a connection string to connect to the data source:

SqlXmlAdapter(String, SqlXmlCommandType, String)

The final constructor uses a stream containing the command, rather than the string just used:

SqlXmlAdapter(Stream, SqlXmlCommandType, String)

There are no properties and only two methods associated with this class:

• Fill(DataSet) allows you to fill the DataSet passed as an argument with the XML
results retrieved from the query.

• Update(DataSet) is the inverse of the Fill(DataSet) method, and allows you to update
the database with the data specified in the DataSet.

The usage of the Fill and Update methods is exactly the same as the SqlDataAdapter
object’s Fill and Update methods. The only difference is that the command it’s working with is
a SqlXmlCommand. There is one minor difference in the usage of the Update method. The relevant
command specified to the SqlXmlAdapter must also be specified as a schema that maps the
XML UpdateGram with various tables and columns in the database.

Updating with XPath and a Schema

To make updates using the SqlXmlAdapter class, you must use XPath and a schema. In the schema,
you map elements in the XML document that’s returned from our query to equivalent tables
and columns in a SQL Server database. This allows XPath to work on the XML data as elements
and attributes, and the SQL Server client to map back to equivalent tables and columns in the
SQL query that’s passed to that database.

What does an XML schema look like for our tables? The schema that has been created for
this sample (Exercise 12.7 in the associated code download) is shown in Listing 12-11—it’s
called Person.Contact.xsd.

5122ch12.qxd 8/23/05 3:22 PM Page 456

CHAPTER 12 ■ XML AND ADO.NET 457

Listing 12-11. Schema Used to Update the Person.Contact Table

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

<!-- XML output we want to map
<Person.Contact FirstName="Gustavo" LastName="Achong"/>

-->
<xs:element name="Person.Contact" sql:relation="Person.Contact">
<xs:complexType>

<xs:attribute name="FirstName" sql:field="FirstName" type="xs:string" />
<xs:attribute name="LastName" sql:field="LastName" type="xs:string" />

</xs:complexType>
</xs:element>

</xs:schema>

You’ve seen plenty of schemas before. There is also good coverage on creating schemas in
Chapter 6, but because this schema has been annotated with information specific to SQL Server,
an additional namespace is defined on the root element: the namespace urn:
schemas-microsoft-com:mapping-schema is mapped to the prefix sql:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

Next, the element that will represent the elements returned from our queries has been
called <products> and the <sql:relation> attribute maps this to the Products table:

<xs:element name="Person.Contact" sql:relation="Person.Contact">

Next, you want to define the columns that are part of this table, and in this case you can
represent them as attributes on the <products> element. The relationship between the attribute
name and the column name is made by using the name attribute and the sql:field attribute.
With this schema in place, you can use this in your code as shown in Listings 12-12 and 12-13.

Listing 12-12. Using SqlXmlAdapter.Update in C#

SqlXmlCommand cmd = new SqlXmlCommand(connectionString);
cmd.CommandText = "Person.Contact";
cmd.CommandType = SqlXmlCommandType.XPath;
cmd.SchemaPath = "Person.Contact.xsd";
cmd.ClientSideXml = true;
cmd.RootTag = "Person.Contact";

SqlXmlAdapter da = new SqlXmlAdapter(cmd) ;
DataSet ds = new DataSet();
try
{

// Fill the dataset
da.Fill(ds);
// Make some change
ds.Tables[0].Rows[1]["LastName"] = "Unabel";

5122ch12.qxd 8/23/05 3:22 PM Page 457

CHAPTER 12 ■ XML AND ADO.NET458

// Update the data back to the database.
da.Update(ds.GetChanges());

}
catch (Exception ex)
{

Console.WriteLine(ex.ToString());
}

Listing 12-13. Using SqlXmlAdapter.Update in Visual Basic .NET

Dim cmd As SqlXmlCommand = New SqlXmlCommand(connectionString)
cmd.CommandText = "Person.Contact"
cmd.CommandType = SqlXmlCommandType.XPath
cmd.SchemaPath = "Person.Contact.xsd"
cmd.ClientSideXml = True
cmd.RootTag = "Person.Contact"

Dim da As SqlXmlAdapter = New SqlXmlAdapter(cmd)
Dim ds As DataSet = New DataSet()
Try

' Fill the dataset
da.Fill(ds)
' Make some change
ds.Tables(0).Rows(1)("LastName") = "Unabel"
' Update the data back to the database.
da.Update(ds.GetChanges())

Catch ex As Exception
Console.WriteLine(ex.ToString())

End Try

There is one very important point of consideration here. The line of code I am using to
update the database looks like this:

C#

da.Update(ds.GetChanges());

VB.NET

da.Update(ds.GetChanges())

and not like this:

C#

da.Update(ds);

VB.NET

da.Update(ds)

5122ch12.qxd 8/23/05 3:22 PM Page 458

CHAPTER 12 ■ XML AND ADO.NET 459

Interestingly though, I didn’t have to specify ds.GetChanges() to be logically correct. The
final query in either case looks like the following (reformatted for readability purposes):

SET XACT_ABORT ON
BEGIN TRAN
DECLARE @eip INT, @r__ int, @e__ int
SET @eip = 0
UPDATE Person.Contact SET LastName=N'Unabel' WHERE (FirstName=N'Catherine')
AND (LastName=N'Abel') ; SELECT @e__ = @@ERROR, @r__ = @@ROWCOUNT
IF (@e__ != 0 OR @r__ != 1) SET @eip = 1
IF (@r__ > 1) RAISERROR (N'SQLOLEDB Error Description: Ambiguous update, ➥

unique identifier required Transaction aborted ', 16, 1)
ELSE IF (@r__ < 1) RAISERROR (N'SQLOLEDB Error Description: Empty update, ➥

no updatable rows found Transaction aborted ', 16, 1)

IF (@eip != 0) ROLLBACK ELSE COMMIT
SET XACT_ABORT OFF
go

So if the final query in either case looks the same, logically both solutions would
have worked—with ds.GetChanges and without. What is important to realize here is that the
SqlXmlDataAdapter would have to iterate over the entire first DataTable of the DataSet to figure
out the matching rows, and then formulate the previous query, rather than going over a much
smaller set, which is created using GetChanges. As an exercise, you can try to execute the previ-
ous code with and without GetChanges. You’ll notice that without GetChanges, it takes many
hundreds of times longer to execute the same update as it would take if you would have used
GetChanges.

This seemingly minor oversight can obviously have a huge impact on your performance.

Summary
This chapter, in contrast with the rest of the book, takes a SQL Server–specific viewpoint. All
the features discussed here present an interesting method of architecting your applications that
allows you to leverage built-in XML features of Microsoft SQL Server. Some of the discussed fea-
tures such as FOR XML PATH, ROOT, and the new XML data type are specific to SQL Server 2005.

This chapter, in presenting an XML-centric view of ADO.NET, gives you an interesting
viewpoint and methodology to architect your applications. XML is the all-pervasive language
of the computer world, thus it is only logical that ADO.NET and Microsoft SQL Server have rich,
built-in support for it.

In this chapter you read about the various flavors the FOR XML query can be used in, and
how you would leverage that to build flexible ADO.NET applications. You also saw how you can
use the new XML data type and build applications with ADO.NET that work with such columns.

Finally, you looked at SqlXml, which is a rather powerful library of managed code, wrapped
over various COM components that offer rich XML integration and functionality with SQL
Server. You also saw how you can, with relative ease, separate the XML UpdateGrams and flexible
XML templates from the database or embedded SQL queries to maximize programmer time at
the golf course.

5122ch12.qxd 8/23/05 3:22 PM Page 459

CHAPTER 12 ■ XML AND ADO.NET460

When properly used, these XML features can really make a significant difference to your
overall architecture. These are extremely powerful, richly supported, and, at times, much ignored
features of the Microsoft data access architecture.

Continuing the theme of becoming even more Microsoft data access architecture–specific,
the next chapter offers a quick rundown of what is absolutely new in ADO.NET 2.0 and SQL
Server 2005.

Starting with SQL Server 2005, the database has the ability to host the CLR inside of itself.
Earlier in Chapter 5, you saw a little glimpse of this when you authored a UDT and queried it
using a SqlCommand.

The next chapter takes that discussion further and explains the ins and outs, the pros and
cons, the dos and don’ts, and the nitty-gritty about the CLR in SQL Server 2005.

5122ch12.qxd 8/23/05 3:22 PM Page 460

461

C H A P T E R 1 3

■ ■ ■

The CLR in SQL Server

T-SQL is the default language supported by SQL Server. It has well-defined syntax for database
features such as queries, triggers, and stored procedures; those are various tools in your arsenal
that allow you to interact, modify, or manage the data inside SQL Server. While T-SQL is a rather
powerful language, its nature is quite different from a typical modern-day programming language
such as C# or VB.NET. For instance, when using C# or VB.NET, it is common practice to architect
your solution in an object-oriented way using the rich inheritance features of such languages
to express your architecture. T-SQL, on the other hand, does not offer such facilities.

However, everything has a purpose and a reason. T-SQL is the right tool for interacting with
relational data. For instance, writing a join query in C# for every single row in a three table query
is something that T-SQL can do much better than C# or VB.NET can. This is natural to expect
since database engines are able to optimize and cache a query, its plan, and its results in many
stages whereas C# or VB.NET does not have any of that.

But when working in the database, you may frequently run into situations where the
unwieldiness of T-SQL in doing tasks, such as mathematical calculations or recursive operations,
makes it less than a pleasure to deal with.

■Note There is a new feature in SQL Server 2005 called Common Table Expressions (CTE) that does allow
you to write recursive T-SQL queries on tabular data. It has a configurable recursion depth with a default
value of 100 levels deep. The problem arises when you wish to write a T-SQL stored procedure that calls
itself to perform an operation such as calculate factorials. When the T-SQL stored procedure calls itself, the
call depth of one stored procedure calling another cannot exceed 32. In other words, it would not be possible
for a T-SQL stored procedure that calculates factorials using recursion to calculate the factorial of 33. CLR,
on the other hand, would have no problem doing this.

Usually, the common approach in such cases would be to extract the relevant, unprocessed
data from SQL Server as result sets and process upon the data in the data layer or business layer
using a higher level programming language. This, however, pays the penalty of a network
roundtrip and possibly extracting more data than required.

Starting with SQL Server 2005, you have the ability to author .NET code that lives inside
SQL Server. In other words, right inside the database you have the same ability to use the rich
features of languages such as C# or VB.NET for specific tasks that are better suited to them.

5122ch13.qxd 8/23/05 3:24 PM Page 461

CHAPTER 13 ■ THE CLR IN SQL SERVER462

1. Even some recursive operations can be done in T-SQL. See “Common Table Expressions” in SQL Server
Books online.

Thus, usually when you would be forced to write this code in the business layer or data layer
of your application, or simply deal with the unwieldiness of T-SQL, instead you can now write
this code in a .NET language and run it directly inside SQL Server.

But before the water gets any muddier with the mention of business layer, data layer, the
Common Language Runtime (CLR) in SQL Server (or SQLCLR), and T-SQL, let’s get one issue
straight.

Appropriate Use of SQLCLR
It’s quite tempting to think that now that you can write CLR code inside SQL Server, why not just
get rid of the business layer and put all your code inside SQL Server? SQLCLR is not a replace-
ment for the business layer—it cannot get any clearer than that. Thus, just because you can
write C# or VB.NET code inside SQL Server, don’t expect to use SQL Server as the application
server that hosts all your .NET code. The SQLCLR is there for the specific purpose of working
inside the database where T-SQL might not be the right choice. The specific purpose is that
you should use SQLCLR as an alternative for logic that cannot be expressed declaratively in
T-SQL. This point is, in fact, so important that I am going to repeat it.

■Note You should use SQLCLR as an alternative for logic that cannot be expressed declaratively in T-SQL—
not as a replacement for the business layer logic. In other words, try solving your problem using T-SQL first.

Having established that, as a rough rule of thumb you can assume that T-SQL is better for
set-based operations, typical to tabular data, whereas SQLCLR is better for procedural code
and recursive1 operations. However, what truly performs better than the other is dictated by
many other factors. A good comparison of T-SQL versus SQLCLR is presented in the next
chapter, but the three cardinal rules are as follows:

1. Set-based operations work better in T-SQL.

2. Procedural and recursive code works better in SQLCLR.

3. These two rules can be affected by a number of factors involved, such as compiled CLR
code versus interpreted T-SQL code, the overhead of loading CLR in SQL Server, data
access needs within processing, library of helper functions, etc. You can see a deeper
treatise on the various factors involved in the next chapter.

There are various reasons for this, and many of them stem from the fact that CLR inside
the database operates under a different set of restrictions than it does on your Windows machine.
The CLR on your Windows machine is run by the operating system, which works differently
than when that same CLR runs inside SQL Server. The main difference is that SQL Server takes
the responsibility and manages thread scheduling, synchronization, locking, and memory
allocation.

5122ch13.qxd 8/23/05 3:24 PM Page 462

CHAPTER 13 ■ THE CLR IN SQL SERVER 463

As described in the Chapter 5 sidebar titled “The CLR Is Inside Out,” another major difference
between the CLR on a Windows machine and the CLR inside SQL Server is the bootstrap mecha-
nism used to load the CLR. An application that wishes to use the CLR uses ICorRuntimeHost, or
CorBindToRuntimeEx, which then in turn calls MSCOREE.DLL that ends up loading the runtime.

Instead, SQL Server 2005 does not load the CLR unless it needs to. This is because SQL
Server follows the principle of conserving memory and lazy loading any resource that it might
need. By not loading the CLR unless it needs to, it saves a few MB of memory that the CLR would
have otherwise occupied. Thus, if you have one minor piece of your code that uses the CLR, you
are loading the CLR and, in turn, affecting any other operation on that particular computer.
Even when it does load the CLR, it does so using ICLRRuntimeHost, which is a new interface
introduced with .NET 2.0. Next it calls, ICLRRuntimeHost::GetHostManager, which essentially
means that the CLR now delegates operations like resource locking/thread management, etc.
to the SQL Server runtime instead.

Having delegated such responsibilities to the host (SQL Server) instead brings up interest-
ing challenges. Essentially, what this means is that individual operations running inside SQL
Server can now decide to be rogue and potentially be a security threat, or bring down the server.
Therefore, it becomes critical that when taking the freedom of hosting the CLR and its various
operations, the SQL Server application also takes on the responsibility of doing it correctly in
such a manner that individual applications should not inadvertently or surreptitiously harm
the server in any manner.

SQL Server enforces this by giving you a granular level of control on the set of operations
your .NET code can perform inside SQL Server. This mechanism is built on top of Code Access
Security (CAS) that is a part of the CLR. The developers at Microsoft took a long and hard look
at every single class in the .NET Framework, and classified them into three categories that you
must specify your code to fall within. In other words, you need to tell SQL Server that your code
falls into one of three categories based upon the specific operations it intends to do. If your
code tries doing something other than what you had initially specified, SQL Server will block it
from doing so (you will see this as an example later in this chapter).

The three levels of control are as follows:

• SAFE: This is the default level and most restrictive. This means that your code does not
need any external resources and the operation is wholly controlled inside SQL Server.
Safe code can access data from the local SQL Server databases or perform computations
and business logic that does not involve accessing resources outside the local databases.
A good example of this could be factorial calculation. Factorial calculation only needs
an input of type integer, and then it returns another integer. To calculate a factorial, you
do not need to open a file on the disk.

• EXTERNAL_ACCESS: This level signifies that certain external resources such as files, networks,
web services, environmental variables, and the registry are accessible. Thus, if your code
intends to write out some results to a file on the disk, you would need to register that
code inside SQL Server under the EXTERNAL_ACCESS security category.

• UNSAFE: This level, which you should try very hard to avoid, specifies that your code is
allowed to do anything. In other words, you are requesting to be free of any granular-
level control, and thus giving it the same permissions as an extended stored proce-
dure. Even though you get the same rights and permissions as an extended stored
procedure, CLR still gives you certain benefits in comparison, but there could be a hole
in your logic that a hacker could abuse and gain access to crucial parts of your system

code inside SQL Server.

5122ch13.qxd 8/23/05 3:24 PM Page 463

CHAPTER 13 ■ THE CLR IN SQL SERVER464

This brings up another interesting point. When you could write extended stored procedures
inside SQL Server, why introduce the SQLCLR to begin with?

SQLCLR in Comparison with Extended Stored Procedures
Previous versions of SQL Server, such as SQL Server 2000, allowed you to write extended stored
procedures as an alternative to T-SQL and express your code in a language such as C++. There
are, however, certain differences between the SQLCLR and extended stored procedures:

• As is evident from the previous section, extended stored procedures do not give you
the granular security control of specifying your code in one of three buckets (SAFE,
EXTERNAL_ACCESS, and UNSAFE) that the SQLCLR gives you.

• Extended stored procedures cannot be written in a language such as C# or VB.NET,
which are easier to use and, in general, safer than C++.

• SQLCLR code is much more reliable than extended stored procedures, simply because
you can lock down the code to a basic set of permissions by specifying it as SAFE or
EXTERNAL_ACCESS. This allows you to segregate the code that needs EXTERNAL_ACCESS
into a separate entity and monitor that closely—something you cannot do in extended
stored procedures.

• SQLCLR code can use the same database connection while an extended stored procedure
would need to loop back and create a brand new connection to the database.

• SQLCLR has the ability to work with the new data types introduced in SQL Server 2005,
such as the XML data type, or varchar(max) and varbinary(max). Extended stored pro-
cedures would need to leverage on some T-SQL code to take advantage of those new
data types.

• And finally, SQLCLR can be used to write User-Defined Functions (UDFs), UDTs, aggre-
gates, Table-Valued Functions (TVFs), triggers, and stored procedures. Extended stored
procedures are only extended stored procedures.

Given the fact that the SQLCLR enjoys many advantages compared with extended stored
procedures, for data access needs SQLCLR code outperforms extended stored procedures.
However, for non–data access operations comparison purposes, extended stored procedures
written using native code typically run faster than managed code. Also, there is some cost
associated with transitioning from managed code inside a SQLCLR routine to native code
when running inside the SQL Server, because SQL Server needs to do additional tracking on
thread-specific settings when moving out of native code and vice versa. Thus, extended stored
procedures in most cases will outperform SQLCLR code, but that does not mean that you should
start writing your code in extended stored procedures. Given the other benefits, the SQLCLR is
a much more attractive alternative than extended stored procedures. Needless to mention,
given the various managed native code transitions involved and data access in general, managed
code just might have an edge even when it comes to performance.

So without much further delay, let’s try and look at some real code and demonstrative
examples that run CLR code inside SQL Server 2005.

5122ch13.qxd 8/23/05 3:24 PM Page 464

CHAPTER 13 ■ THE CLR IN SQL SERVER 465

2. It is quite possible that other major database vendors, such as Oracle and IBM, could eventually intro-
duce their own CLR integration; chances are their implementations would be different from SQL

Software Requirements to Run the Examples in
This Chapter
As usual, you need two things: a data source and a programming environment, usually Visual
Studio 2005.

Your data source for the examples in this chapter will be a database called Test running
on the local instance of SQL Server 2005. This database can be easily set up by running the
following command:

Create database test

Since the content in this chapter is specific to SQL Server 2005, you cannot run the exam-
ples presented here in an Oracle database2 or SQL Server 2000 database, etc.

Code written for SQLCLR can be authored in Visual Studio 2005 easily using a SQL Server
project template. Unfortunately, this project template is available only in Visual Studio 2005
Professional and Team System Editions. However, it is almost just as easy to author the code
presented in this chapter in any other edition of Visual Studio 2005, such as Standard. Let’s
begin by looking at an example of a SQLCLR UDF that is written without leveraging the Visual
Studio 2005 SQL Server project.

Handwritten UDF
In order for you to run any CLR code inside SQL Server, you will have to compile it as an
assembly and register that assembly inside SQL Server using the CREATE ASSEMBLY statement.
Thus, if you are able to create an assembly similar to what a SQL Server project would produce,
SQL Server would be able to register it within itself.

Therefore, in order to create a SQLCLR UDF without leveraging a SQL Server project, all
you really need to do is create a class library and follow certain basic rules in the class that holds
the logic of the UDF.

As it turns out, these “rules” aren’t that numerous or too complex to follow. You can down-
load the code for this example from the associated code download for this chapter under
HandWrittenUDF (see the Downloads section of the Apress website at http://www.apress.com),
or you could follow the steps mentioned here to create such a project:

1. So the aim of the game is to be able to create a UDF that returns an integer random
number. Begin by creating a class library project, call it HandWrittenUDF.

2. Rename the Class1.cs/Class1.vb file to UserDefinedFunctions.cs/
UserDefinedFunctions.vb. Verify that Visual Studio changed the class name contained
inside the file to UserDefinedFunctions. Also, verify that the scope of this class is public.

3. Wrap the UserDefinedFunctions class inside the HandWrittenUDF namespace and
add a using/Imports statement bringing the relevant namespaces, including
Microsoft.SqlServer.Server, in scope as shown in the following code:

5122ch13.qxd 8/23/05 3:24 PM Page 465

CHAPTER 13 ■ THE CLR IN SQL SERVER466

C#

using System;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;

VB.NET

Imports System
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server

4. Add the code shown in Listings 13-1 and 13-2 to create a UDF called GetRandomNumber.

Listing 13-1. Code for the SQLCLR UDF in C#

public class UserDefinedFunctions
{

[Microsoft.SqlServer.Server.SqlFunction]
public static SqlInt32 GetRandomNumber()
{

Random rnd = new Random();
return rnd.Next();

}
}

Listing 13-2. Code for the SQLCLR UDF in Visual Basic .NET

Public Class UserDefinedFunctions
<Microsoft.SqlServer.Server.SqlFunction()> _
Public Shared Function GetRandomNumber() As SqlInt32

Dim rnd As Random = New Random()
Return rnd.Next()

End Function
End Class

5. Build the project.

6. With the DLL built, next you need to register the assembly and the UDF contained in
the assembly in SQL Server 2005. First, register the UDF inside SQL Server by running
the script shown in Listing 13-3. This script can be run in SQL Server Management Studio.

Listing 13-3. Registering the Assembly Inside SQL Server 2005

Create Assembly HandWrittenUDF
from
'C:\HandWrittenUDF\HandWrittenUDF.dll'
GO

Do note that in my case, the DLL was present at C:\HandWrittenUDF. You might need to
modify this script to point SQL Server to the correct file location on your disk.

5122ch13.qxd 8/23/05 3:24 PM Page 466

CHAPTER 13 ■ THE CLR IN SQL SERVER 467

Figure 13-1. Output of the GetRandomNumber SQLCLR handwritten UDF

7. Next, create a UDF from the assembly registered in step 6. The relevant script for this is
as shown in Listing 13-4.

Listing 13-4. Creating a UDF from a Registered Assembly in SQL Server 2005

Create Function GetRandomNumber ()
Returns Int
As
External Name
HandWrittenUDF.[HandWrittenUDF.UserDefinedFunctions].GetRandomNumber
Go

8. That’s it! Execute the UDF using the following statement:

Select dbo.GetRandomNumber()

You should see output similar to as shown in Figure 13-1.

Obviously, this being a random number, the exact output could differ. Also, it’s quite
possible that your instance of SQL Server has never been configured to work with .NET
code. This, in fact, will be the case if this is the first time you are running SQLCLR code.
In that case, you should get an error message as shown here:

Msg 6263, Level 16, State 1, Line 1
Execution of user code in the .NET Framework is disabled. Use sp_configure
"clr enabled" to enable execution of user code in the .NET Framework.

This problem is rather easy to fix. In order to enable the execution of .NET code inside
SQL Server, just issue the following command:

sp_configure 'clr enabled', 1

This should give you a message as shown here:

Configuration option 'clr enabled' changed from 0 to 1.
Run the RECONFIGURE statement to install.

As prompted by the message, issue the RECONFIGURE command next. Now when you
run the previously created UDF, you should get a random number.

If you observe the previous code, you’ll notice that the only magic you did was the Microsoft.
SqlServer.Server.SqlFunctionAttribute on top of a static/shared method. By doing so, you
are able to create an assembly with a static/shared method that works as a UDF in SQL Server.
But since this is a class library, debugging it is a whole other issue. But before I tell you about
debugging SQLCLR code, let me demonstrate writing the same UDF using a SQL Server project.

5122ch13.qxd 8/23/05 3:24 PM Page 467

Figure 13-2. Creating a new SQL Server project

SQL Server Project UDF
In the last section you saw how to create a UDF without using the built-in SQL Server project
in Visual Studio 2005. Since the project was just a simple class library, the rest of the SQLCLR
examples in this chapter will use a SQL Server project instead.

Because the SQL Server project is available only within Visual Studio’s Professional and
Team System Editions, I will provide you with the relevant SQL scripts if, in case, you decide to
implement the code as class libraries in Visual Studio’s Standard or Express Editions instead. These
SQL scripts are also useful in an enterprise development environment where “right-click deploy”
for the many procedures you will write will probably not be a viable option.

Even then SQL Server projects offer significant advantages, especially when it comes to debug-
ging SQLCLR code. In the next section, I will demonstrate various ways to debug SQLCLR code,
and you can reuse those concepts throughout all the examples presented in this chapter.

But before I can show you the various methods of debugging handwritten SQLCLR code,
or code written with the help of a SQL Server project, let’s quickly walk through creating a UDF
that generates random numbers, using a SQL Server project instead. You can download this
code from the SqlServerUDF project, or you can create it yourself by following these steps:

1. Begin by creating a Visual Studio SQL Server project in the language of your choice.
This can be seen for VB.NET in Figure 13-2. Name the project SqlServerUDF.

CHAPTER 13 ■ THE CLR IN SQL SERVER468

2. If you already have a database reference set up within Visual Studio, Visual Studio will
prompt you to either pick the existing reference or create a new one. This dialog box
can be seen in Figure 13-3.

5122ch13.qxd 8/23/05 3:24 PM Page 468

Figure 13-3. Choosing a connection for your project

CHAPTER 13 ■ THE CLR IN SQL SERVER 469

Alternatively, if you do not have a database reference already set up in your IDE, Visual
Studio will prompt you to create a new database reference. You can fill in the values
and test the connection as shown in Figure 13-4.

Figure 13-4. Creating a new database reference

5122ch13.qxd 8/23/05 3:24 PM Page 469

CHAPTER 13 ■ THE CLR IN SQL SERVER470

When adding a new database reference, you will also be prompted with the dialog box
shown in Figure 13-5.

This warning dialog box is informing you that when you debug the CLR stored procedure,
all managed threads on the server will stop. This means that you probably don’t want
to do this operation on a critical production server. This operation should be done on
a development machine only. Click YES to accept the new database reference. You should
now see a database reference added in your Server Explorer as shown in Figure 13-6.
Do note that “homepc” is the name of the computer I am currently working on.

Figure 13-5. Warning dialog box when adding a new database reference

3. Now in the Solution Explorer, right-click on the SqlServerUDF project and, as shown in
Figure 13-7, choose to add a new UDF to your project. Name the newly added UDF
GetRandomNumber2.cs/GetRandomNumber2.vb. (The “2” is to differentiate it from the
previous example.)

Figure 13-6. The newly added database reference

5122ch13.qxd 8/23/05 3:24 PM Page 470

CHAPTER 13 ■ THE CLR IN SQL SERVER 471

4. Now modify the autogenerated code as per Listings 13-5 and 13-6.

Listing 13-5. Creating a UDF Using a SQL Server Project in C#

public partial class SqlServerUDF
{

[Microsoft.SqlServer.Server.SqlFunction]
public static SqlInt32 GetRandomNumber2()
{

Random rnd = new Random();
return rnd.Next();

}
};

Listing 13-6. Creating a UDF Using a SQL Server Project in Visual Basic .NET

Partial Public Class UserDefinedFunctions
<Microsoft.SqlServer.Server.SqlFunction()> _
Public Shared Function GetRandomNumber2() As SqlInt32

Dim rnd As Random = New Random
Return rnd.Next()

End Function
End Class

This code, as you may note, with the exception of being wrapped in a partial class, is
shockingly similar to the handwritten UDF. The partial class is almost a de facto stan-
dard for all autogenerated code in the .NET Framework now. This is good thinking on

Figure 13-7. Adding a new UDF

5122ch13.qxd 8/23/05 3:24 PM Page 471

CHAPTER 13 ■ THE CLR IN SQL SERVER472

the part of Microsoft, and goes with the philosophy that now you can enhance the
functionality of autogenerated code without either modifying the autogenerated file or
having to inherit from the autogenerated class.

5. Now build and deploy the project. The SQL Server project also allows you to easily
deploy the UDF. This is shown in Figure 13-8. If, instead, you wished to deploy the UDF
using SQL statements, the instructions are exactly the same as the HandWrittenUDF.

6. Now simply run the following SQL command in the Test database to test the newly
added UDF:

Select dbo.GetRandomNumber2()

This will give you results similar to as shown in Figure 13-1.

Thus, as you can see, the SQL Server project not only offers you a convenient method to
author SQLCLR code including UDFs, but also an integrated development environment, com-
plete with a database reference that helps you deploy the procedure right through the IDE.

Actually, it gets better than that. The SQL Server project also allows for easy debugging of
your CLR code, much like debugging a Console application. Let’s look at that next along with
a comparison of debugging a handwritten UDF.

Debugging SQLCLR Code
The SQL Server project makes it easier for you to debug your code. Note in the last project that
you had written, SqlServerUDF, Visual Studio also added a folder called Test Scripts in which
there is a SQL file called Test.sql. This can be seen in Figure 13-9. Go ahead and change the
last uncommented statement in that file from

select 'put your test script here'

to

select dbo.GetRandomNumber2()

Now much as you would set the start page of a website, set this script as your default debug
script. You can easily achieve that by right-clicking on the script and choosing “Set as Default
Debug Script.” This can also be seen in Figure 13-9.

Figure 13-8. Adding a new UDF

5122ch13.qxd 8/23/05 3:24 PM Page 472

CHAPTER 13 ■ THE CLR IN SQL SERVER 473

Also, right-click the SqlServerUDF project and choose “Set as Startup Project.” You are
now ready to debug your UDF. Now set a breakpoint at the first line in your UDF. You can start
debugging at this point by stepping into the code, but to see what is going on behind the scenes,
you need to make the Output window visible. To do this, select Debug ➤ Windows ➤ Output.
Also, in the Output window, make sure that the filter is set to “Show output from: Debug.” This
can be seen in Figure 13-10.

Now you can simply begin to step into the code. You’ll notice that the application starts at
the SQL statement, and then it behaves much like a Console application does, except you are
debugging T-SQL and seamlessly hitting and stepping into SQLCLR code. If you observe the
debug output closely, when the code execution skips from the SQL file to your C# or VB.NET
file, you see the following message appear in the Output window:

Auto-attach to process '[3056] sqlservr.exe' on machine 'homepc' succeeded.

The exact message might be different on your specific machine, but what this message
tells you is that Visual Studio 2005 automatically attached itself to a running process, specifi-
cally the sqlservr.exe process, in order to allow you to debug through the SQLCLR code.

■Note It might be tempting to try this on a common development database server. Do realize that in order
to do so, not only will you have to set the right permissions, but also you might interfere with other develop-
ers’ work working with the same database server.

Figure 13-9. Debugging a SQL Server project–generated UDF

Figure 13-10. Enabling the Output window and setting the proper filter

5122ch13.qxd 8/23/05 3:24 PM Page 473

CHAPTER 13 ■ THE CLR IN SQL SERVER474

If you continue debugging through the UDF, you’ll notice that the Debug Output window
will show you the following output:

'Managed': Loaded 'SqlServerUDF', No symbols loaded.
Column1

1275838787
No rows affected.
(1 row(s) returned)
Finished running sp_executesql.
The thread 'homepc [56]' (0x1614) has exited with code 0 (0x0).
The program '[3056] sqlservr.exe: HOMEPC;
.Net SqlClient Data Provider;4876' has exited with code 259 (0x103).
The program '[3056] [SQL] homepc: homepc' has exited with code 0 (0x0).

Thus, the output of your UDF is shown as a part of the debug output. You can use a similar
mechanism to debug other kinds of SQLCLR objects such as stored procedures, triggers, etc.

While the SQL Server project makes it easier for you to debug your code in a very simple
manner, debugging your HandWrittenUDF isn’t very difficult either.

The basic idea remains the same: you need to attach with the sqlservr.exe process and
then somehow execute the UDF. Since the project will not do this for you automatically, before
running the SQL script you need to do this manually. This can be done by selecting Debug ➤
Attach to Process. In the dialog box that pops up, choose the sqlservr.exe process (you may
need to check the “Show processes from all users” checkbox to see that process). With the
sqlservr.exe process selected, click the Attach button to enter debug mode. This can be seen
in Figure 13-11.

SQL Server project

5122ch13.qxd 8/23/05 3:24 PM Page 474

CHAPTER 13 ■ THE CLR IN SQL SERVER 475

Now set a breakpoint in the code, and execute the following command from any application
including SQL Server Management Studio:

Select dbo.GetRandomNumber()

You’ll notice that the breakpoint gets hit and then you can debug much like the SQL
Server project.

So, truly, whatever you can do using a SQL Server project is achievable through a simple
class library project as well. Therefore, in the rest of the examples that follow in this chapter,
I’ll be taking advantage of the SQL Server project to demonstrate the code. You can, however,
reuse the same principles presented here and the relevant SQL scripts to work with a simple
class library if you wish or need to.

Writing a TVF: Table-Valued Function
A Table-Valued Function (TVF) is a UDF that returns a table instead of a scalar value. The last
example you saw returned a singular scalar value as an integer. Depending on your needs, you
may be presented with a case where your UDFs would need to return a table instead. In other
words, your result contains tabular data with rows and columns. An example could be a TVF
that returns days in a week as seven rows, and two columns, namely DayNumber and DayName.

Thus, if you wish to return the results as a table, or in the form of rows and columns, your
UDF needs to have two facilities:

• It needs to be able to return a number of rows. Returning rows, as it turns out, is easy—
all you have to do is return an instance of a class that implements the IEnumerable
interface, instead of the scalar value, and the infrastructure will understand that you are
trying to send back rows.

• It needs to have the ability to split each row into a fixed number of columns of a prede-
fined format. Sending columns requires you to add another method, which takes the
responsibility of splitting the contents of each enumerated item (row) in the IEnumerable
object into columns. But how will the infrastructure know “which method is responsible
for splitting a row into columns?”

In addition to implementing these two methods, you also need a way to tell the frame-
work that the rows returned by the IEnumerable object will be split into columns by a method
of a specified name. You need to specify this method name using the FillRowMethodName prop-
erty of the Microsoft.SqlServer.Server.SqlFunctionAttribute attribute, which is defined on
the method that works as the entry point for the TVF.

This way, SQL Server knows that it needs to call the static/shared method marked with
the SqlFunctionAttribute, which acts as the stored procedure, and then it needs to split each
returned row into columns using a method specified as the FillRowMethodName property on
the SqlFunctionAttribute instance.

Enough of theory; let’s look at this using an example. Now that you have already seen how
to create either a SQL Server or a class library project, you can follow the next steps using the
same concepts. The code for this example can be found in the associated code download in
the SqlServerTVF project.

5122ch13.qxd 8/23/05 3:24 PM Page 475

CHAPTER 13 ■ THE CLR IN SQL SERVER476

1. Create a new SQL Server project, call it SqlServerTVF.

2. Add a new UDF to it called NameToAscii. Put the generated class in the SqlServerTVF
namespace.

3. The aim of the TVF that you are going to write in this example is for it to accept a string,
and return the results as broken down into characters in one column, along with the
ASCII integer code in another column. So you need something that holds the contents
of one row. You could use an object, or a string, or anything else, but since you will also
need to split this one row into columns afterward, let’s go ahead and implement this as
a class. Instances of this class will be enumerated as individual rows. Note that I am
using public instance variables in the class, which is probably a bad practice on a class,
but since this code is never accessed over multiple threads, and for brevity purposes, it
is acceptable to take this shortcut. This class can be seen as shown here:

C#

public class NameRow
{

public Char CharPart;
public Int32 IntPart;

public NameRow(Char c, Int32 i)
{

CharPart = c;
IntPart = i;

}
}

VB.NET

Public Class NameRow
Public CharPart As Char
Public IntPart As Int32

Public Sub New(ByVal c As Char, ByVal i As Int32)
CharPart = c
IntPart = i

End Sub
End Class

4. So you want the TVF that you are writing to accept a string and return the results as
broken down into characters in one column, along with the ASCII integer code in
another column. To accomplish this, add a new method, which will act as the actual
TVF. This is shown in the following code. Don’t worry about the parameters being
passed to the SqlFunctionAttribute just yet as that will be explained in just a moment:

5122ch13.qxd 8/23/05 3:24 PM Page 476

CHAPTER 13 ■ THE CLR IN SQL SERVER 477

C#

[Microsoft.SqlServer.Server.SqlFunction(FillRowMethodName = "FillRow",
TableDefinition="charpart nchar(1), intpart int")]

public static IEnumerable NameToAscii(string InputName)
{

return new NameSplitter(InputName.ToCharArray());
}

VB.NET

<Microsoft.SqlServer.Server.SqlFunction(FillRowMethodName:="FillRow", _
TableDefinition:="charpart nchar(1), intpart int")> _

Public Shared Function NameToAscii(ByVal InputName As String) As IEnumerable
Return New NameSplitter(InputName.ToCharArray())

End Function

Specifically in C#, you could use the yield keyword to simplify your code. The yield
keyword gives you a convenient alternative to implementing an entire class that
implements IEnumerable. Thus, by using the yield keyword, you no longer have to imple-
ment the NameSplitter class. This is, however, specific to C#. The usage is shown here:

C#

[Microsoft.SqlServer.Server.SqlFunction(FillRowMethodName = "FillRow",
TableDefinition="charpart nchar(1), intpart int")]

public static IEnumerable NameToAscii(string InputName)
{

foreach (char c in InputName)
{

yield return new NameRow(c, (int)c);
}

}

Now, because VB.NET does not have the yield keyword, you’ll need to implement
a class to achieve the same functionality. The NameSplitter class is the class that imple-
ments IEnumerator and IEnumerable. This class can be seen in Listings 13-7 and 13-8.

Listing 13-7. Implementing the NameSplitter Class in C#

public class NameSplitter : IEnumerable, IEnumerator
{

private Int32 idx = - 1;
private Char[] _inputName;

public NameSplitter(Char[] InputName)
{

_inputName = InputName;

5122ch13.qxd 8/23/05 3:24 PM Page 477

CHAPTER 13 ■ THE CLR IN SQL SERVER478

public System.Collections.IEnumerator GetEnumerator()
{

return new NameSplitter(_inputName);
}

public object Current
{

get
{

if((idx > - 1))
{

Char c = _inputName[idx];
return new NameRow(c, Convert.ToInt32(c));

}
else
{

return - 1;
}

}
}
public bool MoveNext()
{

idx = idx + 1;
if((idx < _inputName.Length))
{

return true;
}
else
{

return false;
}

}

public void Reset()
{

idx = - 1;
}

}

Listing 13-8. Implementing the NameSplitter Class in Visual Basic .NET

Public Class NameSplitter
Implements IEnumerable, IEnumerator

Private idx As Int32 = -1
Private _inputName As Char()
Private _current As Char

5122ch13.qxd 8/23/05 3:24 PM Page 478

CHAPTER 13 ■ THE CLR IN SQL SERVER 479

Public Sub New(ByVal InputName As Char())
_inputName = InputName

End Sub

Public Function GetEnumerator() As System.Collections.IEnumerator _
Implements System.Collections.IEnumerable.GetEnumerator
Return New NameSplitter(_inputName)

End Function

Public ReadOnly Property Current() As Object _
Implements System.Collections.IEnumerator.Current
Get

If (idx > -1) Then
Dim c As Char = _inputName(idx)
Return New NameRow(c, Asc(c))

Else
Return -1

End If
End Get

End Property

Public Function MoveNext() As Boolean _
Implements System.Collections.IEnumerator.MoveNext
idx = idx + 1
If (idx < _inputName.Length) Then

Return True
Else

Return False
End If

End Function

Public Sub Reset() Implements System.Collections.IEnumerator.Reset
idx = -1

End Sub
End Class

5. You would note from step 4 that the actual value being enumerated is of NameRow type.
NameRow is nothing but a class I have written to hold the contents of one row. This
allows for easy extraction of columnar data afterward. This class can be seen in step 3.

6. Now turn your attention to the code written in step 4. The method declaration is pre-
ceded with a SqlFunctionAttribute, marking it as a UDF. However, interestingly, there
are two property values being passed as shown here:

C#

[Microsoft.SqlServer.Server.SqlFunction(FillRowMethodName = "FillRow",
TableDefinition="charpart nchar(1), intpart int")]

5122ch13.qxd 8/23/05 3:24 PM Page 479

CHAPTER 13 ■ THE CLR IN SQL SERVER480

VB.NET

<Microsoft.SqlServer.Server.SqlFunction(FillRowMethodName:="FillRow", _
TableDefinition:="charpart nchar(1), intpart int")> _

The first property, FillRowMethodName, identifies a method you need to write that SQL
Server will call in order to split the NameRow class written in step 3 into column contents.
In the previous code, the method name is FillRow. The code for FillRow can be seen in
Listings 13-9 and 13-10.

Listing 13-9. Code to Split the Enumerated Values into Columns in C#

public static void FillRow(object row, out char charpart, out int intpart)
{

// break the row into its columnar parts.
charpart = ((NameRow)row).CharPart;
intpart = ((NameRow)row).IntPart;

}

Listing 13-10. Code to Split the Enumerated Values into Columns in Visual Basic .NET

Public Shared Sub FillRow(ByVal row As Object,
<Out()> ByRef charpart As Char, <Out()> ByRef intpart As Integer)
' break the row into its columnar parts.
charpart = CType(row, NameRow).CharPart
intpart = CType(row, NameRow).IntPart

End Sub

Also, note the usage of the System.Runtime.InteropServices.OutAttribute, in the case
of VB.NET, to clearly identify the output values that will be used by SQL Server as column
values during runtime. The C# equivalent of that is the out keyword.

7. The second property, TableDefinition, identifies the structure of the output table. This
is ignored by SQL Server, but it is valuable for Visual Studio so it knows how to register
the type when deploying directly through Visual Studio. In this case, the table will con-
tain two columns, charpart and intpart, of data types nchar(1) and int, respectively.
Note that these data types are SQL Server data types and not .NET data types.

8. Your final code should look like as shown in Listings 13-11 and 13-12. For brevity, the
yield version is shown for C#. You can find the enumerator version for C# in the associ-
ated code download. Go ahead and build the project:

Listing 13-11. Final Code for the TVF in C#

using System;
using System.Data;
using System.Data.Sql;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;
using System.Collections;

5122ch13.qxd 8/23/05 3:24 PM Page 480

CHAPTER 13 ■ THE CLR IN SQL SERVER 481

namespace SqlServerTVF
{

public partial class UserDefinedFunctions
{

[Microsoft.SqlServer.Server.SqlFunction(FillRowMethodName = "FillRow",
TableDefinition="charpart nchar(1), intpart int")]

public static IEnumerable NameToAscii(string InputName)
{

foreach (char c in InputName)
{

yield return new NameRow(c, (int)c);
}

}

public static void FillRow(object row, out char charpart,
out int intpart)

{
// break the row into its columnar parts.
charpart = ((NameRow)row).CharPart;
intpart = ((NameRow)row).IntPart;

}
};

public class NameRow
{

public Char CharPart;
public Int32 IntPart;

public NameRow(Char c, Int32 i)
{

CharPart = c;
IntPart = i;

}
}

}

Listing 13-12. Final Code for the TVF in Visual Basic .NET

Imports System
Imports System.Data
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server
Imports System.Collections
Imports System.Runtime.InteropServices
Imports System.Threading

5122ch13.qxd 8/23/05 3:24 PM Page 481

CHAPTER 13 ■ THE CLR IN SQL SERVER482

Namespace SqlServerTVF
Partial Public Class UserDefinedFunctions

<Microsoft.SqlServer.Server.SqlFunction(FillRowMethodName:="FillRow", _
TableDefinition:="charpart nchar(1), intpart int")> _

Public Shared Function NameToAscii(ByVal InputName As String) _
As IEnumerable
Return New NameSplitter(InputName.ToCharArray())

End Function

Public Shared Sub FillRow(ByVal row As Object, _
<Out()> ByRef charpart As Char, <Out()> ByRef intpart As Integer)
' break the row into its columnar parts.
charpart = CType(row, NameRow).CharPart
intpart = CType(row, NameRow).IntPart

End Sub
End Class

Public Class NameSplitter
Implements IEnumerable, IEnumerator

Private idx As Int32 = -1
Private _inputName As Char()
Private _current As Char

Public Sub New(ByVal InputName As Char())
_inputName = InputName

End Sub

Public Function GetEnumerator() As System.Collections.IEnumerator _
Implements System.Collections.IEnumerable.GetEnumerator
Return New NameSplitter(_inputName)

End Function

Public ReadOnly Property Current() As Object _
Implements System.Collections.IEnumerator.Current
Get

If (idx > -1) Then
Dim c As Char = _inputName(idx)
Return New NameRow(c, Asc(c))

Else
Return -1

End If
End Get

End Property

Public Function MoveNext() As Boolean _

5122ch13.qxd 8/23/05 3:24 PM Page 482

CHAPTER 13 ■ THE CLR IN SQL SERVER 483

idx = idx + 1
If (idx < _inputName.Length) Then

Return True
Else

Return False
End If

End Function

Public Sub Reset() Implements System.Collections.IEnumerator.Reset
idx = -1

End Sub
End Class

Public Class NameRow
Public CharPart As Char
Public IntPart As Int32

Public Sub New(ByVal c As Char, ByVal i As Int32)
CharPart = c
IntPart = i

End Sub
End Class

End Namespace

9. With the DLL built, go ahead and deploy it to the database. This can be done using
the right-click deploy method for SQL Server projects or using the script shown in
Listing 13-13.

Listing 13-13. Script Used to Deploy the TVF

Create Assembly SqlServerTVF
from
'C:\SqlServerTVF\SqlServerTVF.dll'
GO

Create Function NameToAscii
(

@InputName NVARCHAR(4000)
)
Returns Table
(

charpart nchar,
intpart Int

)
As
External Name
SqlServerTVF.[SqlServerTVF.UserDefinedFunctions].NameToAscii
Go

5122ch13.qxd 8/23/05 3:24 PM Page 483

CHAPTER 13 ■ THE CLR IN SQL SERVER484

10. With the Assembly registered and the TVF deployed, now you can easily execute it from
SQL Server Management Studio using the following SQL command:

Select * from dbo.NameToAscii ('Sahil Malik')

The results produced are as shown in Figure 13-12.

Figure 13-12. Output of a simple TVF

Figure 13-13. Output of a simple TVF using an order by clause in the end

Now just for fun, reword the query like so:

Select * from dbo.NameToAscii ('Sahil Malik') order by intpart

The results produced are shown in Figure 13-13.

5122ch13.qxd 8/23/05 3:24 PM Page 484

CHAPTER 13 ■ THE CLR IN SQL SERVER 485

Thus, as you can see, this TVF that you wrote can be used like any traditional T-SQL TVF.
The ability to write .NET code and expose it as a TVF reveals interesting possibilities.

Obviously, this code executes under the permission structure set up by SQL Server, but never-
theless you could leverage this for interesting uses. Let’s look at a quick sample.

Enumerating Files in a Directory Using a TVF
The ability to expose the results of your .NET code as a table introduces interesting possibili-
ties in your system architecture. For instance, let’s quickly write up a TVF that accepts a direc-
tory path and returns the list of files in that directory.

Following the steps used for SqlServerTVF, you can easily write up another TVF that reads
up the contents of a directory and displays the files contained within. This code can be found
in the associated code download under the SqlTVFExternalAccess project.

The code for this TVF looks like as shown in Listings 13-14 and 13-15.

Listing 13-14. The TVF Used to Display the Files Contained in a Directory in C#

public partial class UserDefinedFunctions
{

[Microsoft.SqlServer.Server.SqlFunction(FillRowMethodName = "FillRow",
TableDefinition="FileName nvarchar(4000), FileSize nvarchar(4000)")]

public static IEnumerable GetDircontents(string dirName)
{

DirectoryInfo startDir = new DirectoryInfo(dirName);
// This implements IEnumerable, so we are done :)
return startDir.GetFiles();

}

public static void FillRow(object row, out string fileName, out string fileSize)
{

FileInfo oneFile = (FileInfo)row;
fileName = oneFile.Name;
fileSize = oneFile.Length.ToString();

}
};

Listing 13-15. The TVF Used to Display the Files Contained in a Directory in Visual Basic .NET

Partial Public Class UserDefinedFunctions
<Microsoft.SqlServer.Server.SqlFunction(FillRowMethodName:="FillRow", _

TableDefinition:="charpart nchar(1), intpart int")> _
Public Shared Function GetDircontents(ByVal dirName As String) As IEnumerable

Dim startDir As DirectoryInfo = New DirectoryInfo(dirName)
' This implements IEnumerable, so we are done :)
Return startDir.GetFiles()

End Function

5122ch13.qxd 8/23/05 3:24 PM Page 485

CHAPTER 13 ■ THE CLR IN SQL SERVER486

Public Shared Sub FillRow(ByVal row As Object, _
<Out()> ByRef fileName As String, <Out()> ByRef fileSize As String)
' break the row into its columnar parts.
Dim oneFile As FileInfo = CType(row, FileInfo)
fileName = oneFile.Name
fileSize = oneFile.Length.ToString()

End Sub
End Class

In order for this TVF to run, it needs EXTERNAL_ACCESS permission. This is because this
TVF attempts to access an external resource, namely the file system, to return a list of files
contained within. There are two ways to do this. For a SQL Server project, you can set the
Permission Level property of the SQL Server project to External. This is as shown in Figure 13-14.

Figure 13-14. Setting the appropriate permission level for SqlTVFExternalAccess

The second way of specifying the EXTERNAL_ACCESS permission level is by using a deploy-
ment script as shown in Listing 13-16.

Listing 13-16. Specifying the Appropriate Permission Level for the TVF Using a SQL Script

Create Assembly SqlTVFExternalAccess
from
'C:\SqlTVFExternalAccess\SqlTVFExternalAccess.dll'
WITH PERMISSION_SET = EXTERNAL_ACCESS
GO

Create Function GetDircontents
(

@DirName NVARCHAR(4000)
)

5122ch13.qxd 8/23/05 3:24 PM Page 486

CHAPTER 13 ■ THE CLR IN SQL SERVER 487

Returns Table
(

FileDirName NVARCHAR(4000),
FileSize NVARCHAR(4000)

)
As
External Name
SqlTVFExternalAccess.[SqlTVFExternalAccess.UserDefinedFunctions].GetDircontents
Go

Now with this procedure deployed, you can make interesting uses of it. For instance, in
the following script, I can get a list of tasks configured on my machine:

Select * from dbo.GetDircontents ('C:\WINDOWS\Tasks')

Obviously, you can enhance the TVF to do all kinds of fancy things. As an exercise, you
could try a stored procedure that has the ability to store the results of a FOR XML query as an
XML file on the disk.

In addition to writing UDFs and TVFs, you also have the ability to author UDTs (User-Defined
Types) in SQL Server 2005 using SQLCLR. You have already seen an example of a UDT in Chapter 5,
so let’s take that discussion one step further and instead create an aggregate function next.

Creating Aggregate Functions
An aggregate function is a function that returns a scalar value after aggregating over a set of
values. An example of an aggregate function is MAX or SUM.

Let’s assume a case where you have a table created using the following script:

Create Table Person
(

PersonID int identity primary key,
PersonName varchar(200),
PersonRole varchar(200)

)
GO

Insert into Person (PersonName, PersonRole) Values ('Sahil Malik', 'Author')
Insert into Person (PersonName, PersonRole) Values ('Erick Sgarbi', 'Reviewer')
Insert into Person (PersonName, PersonRole) Values ('Frans Bouma', 'Reviewer')
Insert into Person (PersonName, PersonRole) Values ('Jon Hassell','Lead Editor')
GO

Say you wanted to get the names of all the people with the “Reviewer” role. This can be
easily accomplished using the following SQL query:

Select PersonName from Person where PersonRole = 'Reviewer'

In fact, this query will return results as shown here:

5122ch13.qxd 8/23/05 3:24 PM Page 487

CHAPTER 13 ■ THE CLR IN SQL SERVER488

PersonName

Erick Sgarbi
Frans Bouma

But what if you instead wanted the names to be concatenated end to end (as shown
here)?

Reviewers

Erick Sgarbi, Frans Bouma

What you need is the ability to execute a query that looks like the one shown next; but
there is no method that comes with T-SQL called Concatenator, so the code shown here won’t
work unless you write the UDF yourself:

Select
dbo.Concatenator(PersonName) as Reviewers

from
Person

where
PersonRole = 'Reviewer'

Group By PersonRole

Now, I am sure it’s possible to get the concatenated results through T-SQL, and even
though you should prefer to use T-SQL over SQLCLR where you can, let’s use the previous use
case to develop a user-defined aggregate called Concatenator that allows you to write a query
as shown previously.

This is simply an exemplary sample of SQLCLR aggregate use, and it can be argued that
T-SQL may have been a better choice to implement this functionality. But the whole idea is
once you have seen this exemplary sample of code, the same principles can then be applied to
writing an aggregate function that helps you calculate the third and a half partial derivative of
semi-complex numbers on a seven-dimensional plane, or any other such reasonably complex
task.

The code for this example can be found in the associated code download under the
SqlServerAggregate project, or you can easily create it using what you have learned so far and
with the following steps.

These steps are intentionally terse because much of the concepts required to create an
aggregate are the same as creating any other SQLCLR project:

1. In order to create a SQLCLR aggregate, you either use a class library or a SQL Server
project. The SQLCLR aggregate is defined in .NET code using a structure, marked with
the SqlUserDefinedAggregateAttribute.

2. The basic skeleton of the SQLCLR aggregate can be created by adding a new item to the
SQL Server project, and selecting a user-defined aggregate in the menu choices presented.
This is shown in Figure 13-15. Name your new SQLCLR aggregate Concatenator. If you
are using a simple class library, you would instead have to add a class and modify the
code accordingly.

5122ch13.qxd 8/23/05 3:24 PM Page 488

CHAPTER 13 ■ THE CLR IN SQL SERVER 489

3. As you will see in the skeleton of the code already created for you, there are four meth-
ods that exist:

Init: This method is where you should perform the initialization.

Accumulate: This method is where you will perform the aggregate functionality, in
this case the actual concatenation.

Merge: This is where you would write code if, in case, the aggregate is used with
another aggregate.

Terminate: This is where you would calculate the final value and send it back.

You can now go ahead and fill out the code for these four methods as per Listings 13-17
and 13-18.

Listing 13-17. The Skeleton Code for the SQLCLR Aggregate in C#

private StringBuilder sb;
public void Init()
{

sb = new StringBuilder();
}

Figure 13-15. Adding a new SQLCLR aggregate to your project

5122ch13.qxd 8/23/05 3:24 PM Page 489

CHAPTER 13 ■ THE CLR IN SQL SERVER490

public void Accumulate(SqlString Value)
{

sb.Append(Value);
sb.Append(",");

}

public void Merge(Concatenator group)
{

Accumulate(group.ToString());
}

public override string ToString()
{

return sb.ToString();
}

public SqlString Terminate()
{

sb.Remove(sb.Length - 1, 1);
return sb.ToString();

}

Listing 13-18. The Skeleton Code for the SQLCLR Aggregate in Visual Basic .NET

Private sb As StringBuilder

Public Sub Init()
sb = New StringBuilder()

End Sub

Public Sub Accumulate(ByVal value As SqlString)
sb.Append(value)
sb.Append(",")

End Sub

Public Sub Merge(ByVal group As Concatenator)
Accumulate(group.ToString())

End Sub

Public Overrides Function ToString() As String
Return sb.ToString()

End Function

Public Function Terminate() As SqlString
sb.Remove(sb.Length - 1, 1)
Return sb.ToString()

End Function

5122ch13.qxd 8/23/05 3:24 PM Page 490

CHAPTER 13 ■ THE CLR IN SQL SERVER 491

4. Now there is still one thing left to do before this becomes a valid, workable, aggregate
method. If you note, the default value of the Format property, of the
SqlUserDefinedAggregateAttribute attribute, is Format.Native. This won’t work. You
can only use Format.Native for data types that SQL Server has the ability to read and
write to a byte stream directly. In other words, for Format.Native, you do not have to
implement the serialization and deserialization process. The data types that can be
used with Format.Native are System.Byte, System.SByte, System.Int16, System.UInt16,
System.Int32, System.UInt32, System.Int64, System.UInt64, System.IntPtr, and
System.UIntPtr.

Our class, however, is returning a string, SqlString to be precise. Now, for you to be able
to use Format.Native, the type has to be a blittable type, that is, no reference-type mem-
bers or other non-value-based content. Thus, you will have to change the format from
Native to UserDefined. In addition to changing the format from Native to UserDefined,
you’ll also have to implement an interface called IBinarySerialize where you’ll be
required to create two methods: Read and Write, to read and write from a BinaryReader
and BinaryWriter, respectively.

After having made these changes, your code should look like as shown in Listings 13-19
and 13-20.

Listing 13-19. The Full Code for the Concatenator Aggregate in C#

[Serializable]
[Microsoft.SqlServer.Server.SqlUserDefinedAggregate(Format.UserDefined,

MaxByteSize=8000)]
public struct Concatenator : IBinarySerialize
{

private StringBuilder sb;
public void Init()
{

sb = new StringBuilder();
}

public void Accumulate(SqlString Value)
{

sb.Append(Value);
sb.Append(",");

}

public void Merge(Concatenator Group)
{

Accumulate(Group.ToString());
}

public override string ToString()
{

return sb.ToString();

5122ch13.qxd 8/23/05 3:24 PM Page 491

CHAPTER 13 ■ THE CLR IN SQL SERVER492

public SqlString Terminate()
{

sb.Remove(sb.Length - 1, 1);
return sb.ToString();

}

#region IBinarySerialize Members

public void Read(System.IO.BinaryReader r)
{

sb = new StringBuilder();
sb.Append(r.ReadString());

}

public void Write(System.IO.BinaryWriter w)
{

if (sb.Length > 0)
w.Write(sb.ToString());

}

#endregion
}

Listing 13-20. The Full Code for the Concatenator Aggregate in Visual Basic .NET

<Serializable()> _
<Microsoft.SqlServer.Server.SqlUserDefinedAggregate(Format.UserDefined, _
MaxByteSize:=8000)> _

Public Structure Concatenator
Implements IBinarySerialize

Private sb As StringBuilder

Public Sub Init()
sb = New StringBuilder

End Sub

Public Sub Accumulate(ByVal value As SqlString)
sb.Append(value)
sb.Append(",")

End Sub

Public Sub Merge(ByVal value As Concatenator)
Accumulate(value.ToString())

End Sub

5122ch13.qxd 8/23/05 3:24 PM Page 492

CHAPTER 13 ■ THE CLR IN SQL SERVER 493

Public Overrides Function ToString() As String
Return sb.ToString()

End Function

Public Function Terminate() As SqlString
sb.Remove(sb.Length - 1, 1)
Return sb.ToString()

End Function

#Region "IBinarySerialize Members"
Public Sub Read(ByVal r As System.IO.BinaryReader) _

Implements IBinarySerialize.Read
sb = New StringBuilder()
sb.Append(r.ReadString())

End Sub

Public Sub Write(ByVal w As System.IO.BinaryWriter) _
Implements IBinarySerialize.Write
If (sb.Length > 0) Then

w.Write(sb.ToString())
End If

End Sub
#End Region
End Structure

5. Now you can build the project and deploy it using the SQL Server project directly or by
using the script here:

Create Assembly SqlServerAggregate
from
'C:\SqlServerUDT\SqlServerAggregate.dll'
GO

CREATE AGGREGATE Concatenator(@instr nvarchar(400))
RETURNS nvarchar(MAX)
EXTERNAL NAME [SqlServerAggregate].[SqlServerAggregate.Concatenator]
GO

6. Now run the following SQL query:

Select
dbo.Concatenator(PersonName) as Reviewers

from
Person

where
PersonRole = 'Reviewer'

Group By PersonRole

7. The results should look like as shown in Figure 13-16.

5122ch13.qxd 8/23/05 3:24 PM Page 493

CHAPTER 13 ■ THE CLR IN SQL SERVER494

Now another point to note in this example is that of all the SQLCLR examples presented
so far in this chapter, this is the first example that actually interacted with a table in the under-
lying database. Even this example, in fact, didn’t quite read from the Persons table in the .NET
code, but from the T-SQL query that wrapped the usage of this aggregate.

You’d think that interacting with the rest of the stored procedures, tables, etc. in the database
might be something you would need to do quite frequently in your SQLCLR code. As it turns
out, interacting with the database from within SQLCLR code is not at all difficult. In fact, let’s
next write up a quick stored procedure that calls the previous aggregate.

Writing a SQLCLR Stored Procedure
Let’s kill two birds with one stone:

1. Let’s look at an example that demonstrates writing stored procedures in SQLCLR code.

2. Let’s use this stored procedure to call the aggregate written in the SqlServerAggregate
project, thus illustrating the ability to work with the database directly from inside of
SQLCLR code.

Lest there be any confusion, before I get too deep in explaining the SQLCLR stored procedure
that queries the underlying database, I must make it clear that this concept of interacting with
the database, from SQLCLR, is not limited to a stored procedure. In fact, you can practically copy
and paste this code and use it in any SQLCLR code snippet to work directly with the database
from SQLCLR code.

But before I can begin telling you about such a stored procedure, let’s take a quick primer
on an important and relevant concept—the context connection.

The Context Connection
Inside the SQLCLR, as usual, the basic ADO.NET principles apply. You’ll need an instance
of SqlConnection in order to connect with the underlying database. But think about it, the
stored procedure that you are going to write is already executing inside the database. So
for the SqlConnection that you create, should you be creating a brand new connection that
connects right back to the database it was called from, effectively creating a “loop back” connec-
tion? That sounds incredibly wasteful. Why should you have to create a loop-back connection
when, in fact, you are already inside a connection?

Figure 13-16. Execution results of the Concatenator SQLCLR aggregate

5122ch13.qxd 8/23/05 3:24 PM Page 494

CHAPTER 13 ■ THE CLR IN SQL SERVER 495

Well, you could certainly create a loop-back connection,3 but if you are connecting from
within the same database then you are already in a connection. Wouldn’t it be nice to be able
to get a hold of the same connection that the stored procedure was called upon, and simply
use that connection to execute the commands?

It’s for this reason that Microsoft created the concept of a context connection. The context
connection can be created using the following connection string:

"context connection = true"

Thus, the following instance of SqlConnection holds the context connection—in other
words, the same connection the stored procedure was called upon:

C#

SqlConnection contextConnection = new SqlConnection("context connection = true");

VB.NET

Dim contextConnection as SqlConnection = _
New SqlConnection("context connection = true")

Using a context connection versus a loop-back connection has several advantages:

• By doing so, you neatly skip over the TDS protocol layer and the TCP/IP or Named
Pipes protocol layer, and directly get a hold of the connection inside the database.

• You do not need to reauthenticate.

• You have the ability to latch on to a currently running transaction easily. Any external
non–context connections created by specifying a full ADO.NET connection string would
automatically try to enlist themselves in the active running transaction and thus be
promoted to MSDTC (the exception to this rule being loop-back connections into the
same SQL Server 2005 database). Such connections cannot enlist themselves in the same
transaction and must use enlist=false in their connection strings to work.

However, there are certain restrictions placed on a context connection as well. These are
listed here:

• Within a running instance of a SQLCLR method (procedure, TVF, UDF, aggregate etc.), you
can have at most only one SqlConnection object with its State = ConnectionState.Open
that was opened within the same execution scope. The execution scope begins when
the code is first called, typically the first line in the method, and ends when the method
completely exits, typically a return statement or the last executable line of the method.
In a case where the SQLCLR method calls T-SQL from within, which in turn calls another
SQLCLR method, that causes a nested execution scope in the called SQLCLR method that
is different from the original execution scope in the calling SQLCLR method. In that scenario,

3. Such a loop-back connection cannot be enlisted in the active transaction in SQL Server 2005. More on

5122ch13.qxd 8/23/05 3:24 PM Page 495

CHAPTER 13 ■ THE CLR IN SQL SERVER496

the nested execution scope and calling execution scope can both have one concurrently
open context connection each.

• MARS does not work with context connections. (MARS is covered in depth in Chapter 11.)

• SqlBulkCopy cannot work with a context connection.

• Update batching does not work with a context connection.

• SqlNotificationRequest cannot be used with commands that execute on a context
connection.

• Canceling commands is not supported. SqlCommand.Cancel will be ignored.

• No other connection string keywords can be specified with context connection = true.

In order to facilitate your working with the context inside SQL Server, ADO.NET provides
an object called SqlContext, which can be found in the Microsoft.SqlServer.Server namespace.

The SqlContext object provides you with a Pipe property of SqlPipe data type, which is your
primary means of communication with the caller application. For instance, you can do the
equivalent of the T-SQL PRINT statement using the SqlContext.Pipe.Send method. If, instead,
this were called from an ADO.NET application, you could intercept that message using the
SqlConnection.InfoMessage event in the client application.

Similarly, in order to execute a set-oriented T-SQL command and send the results back to
a data reader, you could use either the SqlPipe’s ExecuteAndSend method as a one-shot solution,
or you could use SendResultsStart to begin sending results, SendResultsRow to send an individual
row, followed by SendResultsEnd to complete the result set.

Let’s examine what you have learned in a quick example that demonstrates both of these
cases. You can create the example by following the steps here, or you can find it in the associated
code download under the SqlServerStoredProc project:

1. In this example, let’s write up two SQLCLR stored procedures. Both of the stored procedures
get a hold of the context connection. The first stored procedure, GetConcatenatedNames,
executes the SqlServerAggregate aggregate function you have written previously using
the following T-SQL command:

Select
dbo.Concatenator(PersonName) from Person

Where PersonRole = @Role
Group By PersonRole

The second stored procedure will return a result set using the following T-SQL command:

Select PersonName from Person where PersonRole = @Role

2. So go ahead and create a new SQL Server project, call it SqlServerStoredProc, and add
a new stored procedure to it—call that file GetNames.cs/GetNames.vb.

3. Create the first stored procedure, GetConcatenatedNames, as shown in Listings 13-21
and 13-22.

5122ch13.qxd 8/23/05 3:24 PM Page 496

CHAPTER 13 ■ THE CLR IN SQL SERVER 497

Listing 13-21. SQLCLR Stored Procedure GetConcatenatedNames in C#

[Microsoft.SqlServer.Server.SqlProcedure]
public static void GetConcatenatedNames(string role)
{

using (SqlConnection contextConnection =
new SqlConnection("context connection = true"))

{
SqlCommand contextCommand =

new SqlCommand(
"Select dbo.Concatenator(PersonName) from Person " +
"where PersonRole = @Role Group By PersonRole", contextConnection);

contextCommand.Parameters.AddWithValue("@Role", role);
contextConnection.Open();

SqlContext.Pipe.ExecuteAndSend(contextCommand);
}

}

Listing 13-22. SQLCLR Stored Procedure GetConcatenatedNames in Visual Basic .NET

<Microsoft.SqlServer.Server.SqlProcedure()> _
Public Shared Sub GetConcatenatedNames(ByVal role As String)

Using contextConnection As SqlConnection = _
New SqlConnection("context connection = true")

Dim contextCommand As SqlCommand = _
New SqlCommand(_
"Select dbo.Concatenator(PersonName) from Person " & _
"where PersonRole = @Role Group By PersonRole", contextConnection)

contextCommand.Parameters.AddWithValue("@Role", role)
contextConnection.Open()

SqlContext.Pipe.ExecuteAndSend(contextCommand)
End Using

End Sub

4. Add a second stored procedure, GetNames, to the same class. The code for GetNames is
shown as per Listings 13-23 and 13-24.

Listing 13-23. SQLCLR Stored Procedure GetNames in C#

[Microsoft.SqlServer.Server.SqlProcedure]
public static void GetNames(string role)
{

using (SqlConnection contextConnection =
new SqlConnection("context connection = true"))

5122ch13.qxd 8/23/05 3:24 PM Page 497

CHAPTER 13 ■ THE CLR IN SQL SERVER498

{
SqlCommand contextCommand =

new SqlCommand(
"Select PersonName from Person " +
"where PersonRole = @Role", contextConnection);

contextCommand.Parameters.AddWithValue("@Role", role);

contextConnection.Open();

// first, create the record and specify the metadata for the results
SqlDataRecord rec = new SqlDataRecord(

new SqlMetaData("PersonName", SqlDbType.NVarChar, 200)
);

// start a new result set
SqlContext.Pipe.SendResultsStart(rec);

// send rows
SqlDataReader rdr = contextCommand.ExecuteReader();
while (rdr.Read())
{

rec.SetString(0, rdr.GetString(0));
SqlContext.Pipe.SendResultsRow(rec);

}

// complete the result set
SqlContext.Pipe.SendResultsEnd();

}

Listing 13-24. SQLCLR Stored Procedure GetNames in Visual Basic .NET

<Microsoft.SqlServer.Server.SqlProcedure()> _
Public Shared Sub GetNames(ByVal role As String)

Using contextConnection As SqlConnection = _
New SqlConnection("context connection = true")

Dim contextCommand As SqlCommand = _
New SqlCommand("Select PersonName from Person where PersonRole = @Role", _

contextConnection)

contextCommand.Parameters.AddWithValue("@Role", role)

contextConnection.Open()

' first, create the record and specify the metadata for the results
Dim rec As SqlDataRecord = _

5122ch13.qxd 8/23/05 3:24 PM Page 498

CHAPTER 13 ■ THE CLR IN SQL SERVER 499

New SqlDataRecord(New SqlMetaData("PersonName", _
SqlDbType.NVarChar, 200))

' start a new result set
SqlContext.Pipe.SendResultsStart(rec)

' send rows
Dim rdr As SqlDataReader = contextCommand.ExecuteReader()
While rdr.Read()

rec.SetString(0, rdr.GetString(0))
SqlContext.Pipe.SendResultsRow(rec)

End While

' complete the result set
SqlContext.Pipe.SendResultsEnd()

End Using
End Sub

5. Compile, build, and deploy the stored procedures. If you wish to deploy the stored pro-
cedure using a script, you can use the script shown here:

Create Assembly SqlServerStoredProc
from
'C:\SqlServerStoredProc\SqlServerStoredProc.dll'
GO

Create Procedure GetConcatenatedNames
(

@Role NVARCHAR(4000)
)
As
External Name
SqlServerStoredProc.[SqlServerStoredProc.StoredProcedures].➥

GetConcatenatedNames
Go

Create Procedure GetNames
(

@Role NVARCHAR(4000)
)
As
External Name
SqlServerStoredProc.[SqlServerStoredProc.StoredProcedures].GetNames
Go

6. Now if you run the T-SQL here,

exec dbo.GetConcatenatedNames 'Reviewer'

5122ch13.qxd 8/23/05 3:24 PM Page 499

CHAPTER 13 ■ THE CLR IN SQL SERVER500

Erick Sgarbi,Frans Bouma

Similarly, if you run the T-SQL here,

exec dbo.GetNames 'Reviewer'

then you should get the following results:

PersonName

Erick Sgarbi
Frans Bouma

(2 row(s) affected)

Thus, as you can see, by getting a hold of the context connection, you are able to run T-SQL
commands. And with the help of SqlContext and SqlPipe, you are able to send results back to
the calling client.

While it’s exciting that you can execute such queries and send results back, at this point
I am quite intrigued by the many questions and possibilities this brings up:

What if you had a third procedure that inserted a row?

What if the T-SQL that wrapped around that procedure inserted a row on its own, and then
called your SQLCLR stored procedure in the same transaction? In the event of a rollback
through SQLCLR, would the T-SQL–inserted row get rolled back?

What if the T-SQL code issued a rollback instead of the SQLCLR stored procedure? Does
the SQLCLR-inserted row get rolled back?

■Note Another curious question jumping like a frog for attention is “What if the connection string pointed
to a physically separate database, maybe even a physically separate server? What happens then?” Well, hold
your horses, as you are going to find out soon.

The best way to answer such questions is to go ahead and write code and find out. So go
ahead and add a third stored procedure to the SqlServerStoredProc project. The code for this
stored procedure can be seen in Listings 13-25 and 13-26. Do note, however, that in this code
there is a call to System.Transactions.Transaction.Current.Rollback. This facility is thanks to
the fantastic integration between System.Transactions and ADO.NET. As you will see shortly,
this allows the SQLCLR code to roll back the transaction it is called within.

Listing 13-25. SQLCLR Stored Procedure InsertName in C#

[Microsoft.SqlServer.Server.SqlProcedure]
public static void InsertName(string personName, string personRole)
{

using (SqlConnection contextConnection =
new SqlConnection("context connection = true"))

5122ch13.qxd 8/23/05 3:24 PM Page 500

CHAPTER 13 ■ THE CLR IN SQL SERVER 501

{
SqlCommand contextCommand =

new SqlCommand(
"Insert into Person(PersonName, PersonRole) Values (@PersonName, @PersonRole)",

contextConnection);

contextCommand.Parameters.AddWithValue("@PersonName", personName);
contextCommand.Parameters.AddWithValue("@PersonRole", personRole);

contextConnection.Open();
contextCommand.ExecuteScalar();
System.Transactions.Transaction.Current.Rollback();
contextConnection.Close();

}
}

Listing 13-26. SQLCLR Stored Procedure InsertName in Visual Basic .NET

<Microsoft.SqlServer.Server.SqlProcedure()> _
Public Shared Sub InsertName(ByVal personName As String, _

ByVal personRole As String)
Using contextConnection As SqlConnection = _

New SqlConnection("context connection = true")
Dim contextCommand As SqlCommand = _

New SqlCommand(_
"Insert into Person(PersonName, PersonRole) " & _
" Values (@PersonName, @PersonRole)", _
contextConnection)

contextCommand.Parameters.AddWithValue("@PersonName", personName)
contextCommand.Parameters.AddWithValue("@PersonRole", personRole)

contextConnection.Open()
contextCommand.ExecuteScalar()
System.Transactions.Transaction.Current.Rollback();
contextConnection.Close()

End Using
End Sub

Now simply run the stored procedure using the following T-SQL script:

BEGIN TRANSACTION
EXEC dbo.InsertName

@personName = N'Emily',
@personRole = N'Project Manager'

COMMIT

When you run this T-SQL statement, you should get one of the following error messages:

5122ch13.qxd 8/23/05 3:24 PM Page 501

CHAPTER 13 ■ THE CLR IN SQL SERVER502

Msg 1206, Level 18, State 49, Procedure InsertName, Line 0
The transaction manager has cancelled the distributed transaction.

or

Msg 266, Level 16, State 2, Procedure InsertName, Line 0
Transaction count after EXECUTE indicates that a COMMIT or ROLLBACK TRANSACTION
statement is missing. Previous count = 1, current count = 0.
Msg 3902, Level 16, State 1, Line 5
The COMMIT TRANSACTION request has no corresponding BEGIN TRANSACTION.

This makes sense since the transaction manager (in this case, the LTM) behind the scenes
has canceled the transaction before the COMMIT statement could execute. So the second COMMIT
is confused, as it does not have a matching BEGIN TRANSACTION anymore.

Now if you check the contents of the table after this code runs, you’ll notice that there has
been no change to the underlying table.

WHY TWO POSSIBLE ERROR MESSAGES?

Okay, this is a bit unexpected, a computer under the same set of conditions and inputs is always supposed to
behave identically. Thus, given the same set of inputs, you should get the same set of outputs every time,
repeatedly. So how can you get two possible inputs?

Well, I decided to give two inputs because this is something you need to be careful of when debugging
SQLCLR code that involves transactions. It turns out that the fancy little tool tip that pops up in Visual Studio
2005 that allows you to browse the contents of any particular variable in debug mode has a minor issue with
distributed transactions.

As you have already seen in Chapter 11, under certain circumstances, a transaction being managed by
LTM is promoted to MSDTC. Well, it so happens that the tool tip that is incredibly helpful in viewing the values
of various variables in debug mode actually causes the transaction to promote to MSDTC. Thus, when you are
debugging SQLCLR code, or any code for that matter that involves System.Transactions, you should pre-
fer to use the immediate window over that tool tip in order to examine the details of the transactions
involved.

But I went ahead and gave you both of the possible error messages, just so there wouldn’t be any confusion.

Now modify the T-SQL code so it looks like this:

BEGIN TRANSACTION

Insert into Person (PersonName, PersonRole)
Values ('Linda', 'Cover Editor')

EXEC [dbo].[InsertName]
@personName = N'Emily',
@personRole = N'Project Manager'

COMMIT

5122ch13.qxd 8/23/05 3:24 PM Page 502

CHAPTER 13 ■ THE CLR IN SQL SERVER 503

Thus, you are trying to insert one row through T-SQL, and one through SQLCLR code. As
expected, the one transaction that wraps both these inserts is rolled back completely and the
table is entirely untouched.

Now go ahead and comment out the SQLCLR statement that is forcing a rollback of the
transaction. Rebuild and redeploy your stored procedure. This time, run your stored procedure
using the following T-SQL script. Note that this time a ROLLBACK is being issued from T-SQL
instead:

BEGIN TRANSACTION

Insert into Person (PersonName, PersonRole)
Values ('Linda', 'Cover Editor')

EXEC [dbo].[InsertName]
@personName = N'Emily',
@personRole = N'Project Manager'

ROLLBACK

Select * from Person

The results of this script’s execution are shown here:

(1 row(s) affected)
PersonID PersonName PersonRole

1 Sahil Malik Author
2 Erick Sgarbi Reviewer
3 Frans Bouma Reviewer
4 Jon Hassell Lead Editor

(4 row(s) affected)

Thus, as you can see, the first insert succeeded, but the ensuing rollback rolled back both
the SQLCLR and T-SQL changes. You are still left with only four rows inside the table.

Finally, change the ROLLBACK to COMMIT, and run the following T-SQL script:

BEGIN TRANSACTION

Insert into Person (PersonName, PersonRole)
Values ('Linda', 'Cover Editor')

EXEC [dbo].[InsertName]
@personName = N'Emily',
@personRole = N'Project Manager'

COMMIT

Select * from Person

5122ch13.qxd 8/23/05 3:24 PM Page 503

CHAPTER 13 ■ THE CLR IN SQL SERVER504

This, as you would expect, ends up inserting two new rows into the database. The identities
have rolled up from four to a higher number because issuing rollbacks does not cause the
identities to roll back in SQL Server.

(1 row(s) affected)
PersonID PersonName PersonRole

1 Sahil Malik Author
2 Erick Sgarbi Reviewer
3 Frans Bouma Reviewer
4 Jon Hassell Lead Editor
25 Linda Cover Editor
26 Emily Project Manager

(6 row(s) affected)

SqlTransaction in SQLCLR
You might have noticed that I haven’t been talking about SqlTransaction in SQLCLR. Well,
you can still use SqlTransaction just as you would in plain vanilla, non-SQLCLR ADO.NET.
The only issue that presents itself is that you would have to be careful about transaction counts
and the calling code starting any transactions before you did (much like nested transactions
as mentioned in Chapter 11). Thus, using System.Transactions integration in SQLCLR presents
a compelling alternative to SqlTransaction.

There are, however, situations were you should still prefer to use SqlTransaction over
System.Transactions. A perfect example is, say, if you wish to use context connection only,
and your transaction is not concerned with external RMs. In this scenario, you should prefer
to use SqlTransaction over TransactionScope.

This is because, for the SQL Server 2005 release, the TransactionScope object will always
use distributed transactions when running inside SQLCLR. This means that if there wasn’t
a distributed transaction already, the scope will cause the transaction to promote—even if you
technically didn’t need a full-fledged distributed transaction managed by MSDTC. Now because
you are connecting only to the local server, this is unnecessary overhead that can be, and should
be, avoided by using SqlTransaction only.

Therefore, if you are using the context connection only, you should not use TransactionScope
for SQL Server 2005.

But in situations where you need to enlist external RMs in a transaction, there is no
additional overhead since that transaction would have been promoted anyway.

Yet another kind of object you can write in SQLCLR is a trigger. The ability to latch on to
a current running transaction, with the help of System.Transactions, proves invaluable in a trigger
where you might want to validate the data and roll it back if the data is not valid. Writing
a trigger in a SQL Server project is very much like authoring a stored procedure or any other
SQLCLR object. Let’s look at a quick example demonstrating that next.

Using Transactions in SQLCLR Triggers
Again, let’s kill two birds with one stone:

5122ch13.qxd 8/23/05 3:24 PM Page 504

CHAPTER 13 ■ THE CLR IN SQL SERVER 505

• Let’s write a quick sample that demonstrates writing a SQLCLR trigger.

• Let’s look at how you can latch on to the current running transaction using
System.Transactions.Transaction.Current.

The steps for authoring a SQLCLR trigger are very similar to creating any other SQLCLR
project. All you have to do is, when adding a new item to the SQL Server project, select the
trigger object type instead. This can be seen in Figure 13-17.

Figure 13-17. Adding a SQLCLR trigger

Once the trigger is added, modify its code to look like Listings 13-27 and 13-28.

Listing 13-27. SQLCLR Trigger in C#

[Microsoft.SqlServer.Server.SqlTrigger (Name="MonkeyTrigger",
Target="dbo.Person", Event="FOR INSERT")]

public static void MonkeyTrigger()
{

SqlTriggerContext stContext = SqlContext.TriggerContext;

if (stContext.TriggerAction == TriggerAction.Insert)
{

// Check the column
using (SqlConnection contextConn =

new SqlConnection("context connection=true"))
{

SqlCommand cmd = contextConn.CreateCommand();
contextConn.Open();
cmd.CommandText = "Select PersonName from Inserted";

string personName = (string) cmd.ExecuteScalar();

if (personName.ToUpper() == "MONKEY")
{

System.Transactions.Transaction.Current.Rollback();
SqlContext.Pipe.Send(

5122ch13.qxd 8/23/05 3:24 PM Page 505

CHAPTER 13 ■ THE CLR IN SQL SERVER506

"Monkey not allowed in this table, eat banana on tree");
}
contextConn.Close();

}
}

}

Listing 13-28. SQLCLR Trigger in Visual Basic .NET

<Microsoft.SqlServer.Server.SqlTrigger(Name:="MonkeyTrigger", _
Target:="dbo.Person", Event:="FOR INSERT")> _

Public Shared Sub MonkeyTrigger()
Dim stContext As SqlTriggerContext = SqlContext.TriggerContext

If stContext.TriggerAction = TriggerAction.Insert Then
' Check the column
Using contextConn As SqlConnection = _

New SqlConnection("context connection=true")
Dim cmd As SqlCommand = contextConn.CreateCommand()
contextConn.Open()
cmd.CommandText = "Select PersonName from Inserted"

Dim personName As String = CType(cmd.ExecuteScalar(), String)

If personName.ToUpper() = "MONKEY" Then
System.Transactions.Transaction.Current.Rollback()
SqlContext.Pipe.Send(_

"Monkey not allowed in this table, eat banana on tree")
End If
contextConn.Close()

End Using
End If

End Sub

As you can see from the code, a trigger is identified by the following SqlTriggerAttribute
attribute:

C#

[Microsoft.SqlServer.Server.SqlTrigger (Name="MonkeyTrigger",
Target="dbo.Person", Event="FOR INSERT")]

VB.NET

<Microsoft.SqlServer.Server.SqlTrigger(Name:="MonkeyTrigger", _
Target:="dbo.Person", Event:="FOR INSERT")> _

5122ch13.qxd 8/23/05 3:24 PM Page 506

CHAPTER 13 ■ THE CLR IN SQL SERVER 507

This attribute signifies that the MonkeyTrigger works on the target object dbo.Person for
the event "FOR INSERT". As you can also see from the code, the trigger checks if the last inserted
PersonName was “Monkey”. If it was, it rolls back the transaction and sends back the error mes-
sage "Monkey not allowed in this table, eat banana on tree".

Once you compile and build this trigger, it can easily be deployed using the SQL Server
project, or using the script shown here:

Create Assembly SqlServerTrigger
from
'C:\SqlServerTrigger\SqlServerTrigger.dll'
GO

Create Trigger MonkeyTrigger
ON Person
FOR INSERT
As
External Name
SqlServerTrigger.[SqlServerTrigger.Triggers].MonkeyTrigger
Go

Thus, now if you try inserting a monkey using the following script:

Insert into Person
(PersonName, PersonRole)

Values
('Monkey','Banana eater')

you should get an error message as shown in Figure 13-18.

Figure 13-18. Results of attempting to insert Monkey in the Person table

Thus, as you can see, using System.Transactions, you are easily able to roll back the current
running, implicit, or explicit transaction that the insert statement was executing under, straight
from the trigger.

Now a question I had brought up earlier was “What happens when you specify a connection
string, inside SQLCLR, that does not attempt to get a hold of the context connection, but instead
uses a connection string similar to what you would have used in non-SQLCLR ADO.NET?” Well,
stay tuned to find out. . . .

5122ch13.qxd 8/23/05 3:24 PM Page 507

CHAPTER 13 ■ THE CLR IN SQL SERVER508

Using Non-Context Connections Inside SQLCLR
The code shown previously in Listings 13-25 and 13-26 uses the following connection string:

context connection = true

But what would happen if you specified a connection string connecting to an external
database server (win2k3-smalik) as shown here?

Server=win2k3-smalik;Database=Test;Integrated Security=SSPI

Well, the best way to find out is by modifying the code to use this connection string. Go
ahead and modify the connection string for the GetConcatenatedNames stored procedure as
shown here, so the code for GetConcatenatedNames looks like this:

C#

using (SqlConnection contextConnection =
new SqlConnection("Server=win2k3-smalik;Database=Test;Integrated Security=SSPI"))

{
SqlCommand contextCommand =

new SqlCommand(
"Select dbo.Concatenator(PersonName) from Person " +
"where PersonRole = @Role Group By PersonRole", contextConnection);

contextCommand.Parameters.AddWithValue("@Role", role);
contextConnection.Open();

SqlContext.Pipe.ExecuteAndSend(contextCommand);
}

VB.NET

Using contextConnection As SqlConnection = _
New SqlConnection("Server=(local);Database=Test;Integrated Security=SSPI")

Dim contextCommand As SqlCommand = _
New SqlCommand(_
"Select dbo.Concatenator(PersonName) from Person " & _
"where PersonRole = @Role Group By PersonRole", contextConnection)

contextCommand.Parameters.AddWithValue("@Role", role)
contextConnection.Open()

SqlContext.Pipe.ExecuteAndSend(contextCommand)
End Using

Now deploy this procedure and run the T-SQL script, shown here, to execute the procedure:

5122ch13.qxd 8/23/05 3:24 PM Page 508

CHAPTER 13 ■ THE CLR IN SQL SERVER 509

As it turns out, you would get a System.SecurityException as shown in Figure 13-19.

Figure 13-19. Attempting to get a context connection using Windows authentication

While this may appear surprising, it is important to realize that your SQLCLR code is not
executing as you (because the thread that was running SQL Server Management Studio is not
running under the same credentials as yourself). This is because your running code gets the
same access rights as the thread that was running it. And, in this case, your SQLCLR code is not
running as you, but as the system account that is running SQL Server. And that system account
does not have permission to connect to the specified SQL Server database.

There are three ways to solve this issue.
The first way is to run the SQL Server process under a specific user ID that has access to

the database that you are trying to connect with.
The second way is to impersonate the identity you are interested in using. This can easily

be done by calling SqlContext.WindowsIdentity.Impersonate on the Windows identity the code
is currently running under. This also means that your client must be connected using Windows
authentication in the first place, because otherwise there will be no way to get a hold of the Windows
identity. By calling the Impersonate method, you are getting back a WindowsSecurityContext.
By calling Impersonate, you are changing the security token of the thread. Once you are done,
you can then call the WindowsSecurityContext’s Undo method to revert back to the default security
token.

■Note There is a lot more to this topic of delegation than can be mentioned in an ADO.NET book. If you are
interested in further reading, I suggest you check out the following TechNet article: http://www.microsoft.com/
technet/prodtechnol/windowsserver2003/technologies/security/constdel.mspx.

The third and most obvious way is to simply use SQL Server authentication instead.
However, creating a connection using a fully qualified connection string results in creating

either a loop-back connection, if connecting with the same server, or a brand new connection,
when connecting to a separate database.

One obvious downside of this, as mentioned previously, is performance—a non–context
connection would usually not be as fast as getting a hold of the same connection that you were
already executing upon. But in certain instances it might be necessary to create a brand new

5122ch13.qxd 8/23/05 3:24 PM Page 509

CHAPTER 13 ■ THE CLR IN SQL SERVER510

non-context connection. One such instance would be when connecting to a different server,
say a different SQL Server or even Oracle database, from within SQLCLR. The second instance
could be where you do not wish to enlist within the same transaction as the SQLCLR is execut-
ing upon (more on this shortly).

The point of transactions brings up another important question: “If an update is issued
on the newly spawned regular connection object, does it roll back or commit with the transac-
tion that the calling SQLCLR code was already running under?”

The good news is that the framework, with the help of System.Transactions, will be able
to detect this new connection instance as an RM that is enlisting within the same transaction.
The only exceptions are loop-back connections, which, in SQL Server 2005, are unable to enlist
within the active running transaction. Thus, even if you were to open a connection to an Oracle
database from within SQLCLR, due to the seamless integration of System.Transactions, the
commands executing on the new OracleConnection will be enlisted within the same transaction
as the commands on the existing SqlConnection. But since there are two connection object
instances within the same transaction, the transaction will now be a distributed transaction.

There exists, however, a way to prevent this auto-enlist behavior. All you have to do is add
the following to the connection string to prevent auto-enlistment:

enlist = false

■Note There is one nuance to this that you must be careful of: the same does not apply to creating a loop-
back connection to the same database that you were working with in the case of SQL Server 2005. The new
loop-back connection will not be able to enlist itself in the same transaction. In fact, when creating a new
loop-back connection, the connection will fail if there is an active transaction, unless you add enlist = false
to prevent it from trying to enlist in the same transaction.

Here is a cool thing you could not do (easily at least) before SQLCLR. In SQLCLR code,
you can open a non–context connection by specifying a full connection string instead. When
doing so, add enlist = false to the full connection string. This will create a brand new con-
nection that does not enlist in the calling transaction. This way, you will be able to start a brand
new and not-nested transaction from within one transaction and be able to log failures, etc.

Regular non–context connections inside SQLCLR work under a few restrictions.
First and foremost is the fact that unless you specify explicitly that you do not wish your

new connection to be auto-enlisted in the transaction, the new connection will automatically
enlist itself under a distributed transaction. There is no way that you can work under a non-
distributed transaction even if you were looping back to the same database.

In addition to that, features such as asynchronous command execution and the
SqlDependency object and the related infrastructure do not work on regular connections
inside SQLCLR.

In addition to being able to leverage automatic enlistment of your new connection instances
inside an already running transaction, you can use TransactionScope just as you would use it
in the middle tier. The usage of TransactionScope has been explained in depth in Chapter 11.
The one thing to be careful of in SQL Server 2005 is that even if you wrap only the context
connection inside a transaction scope, the transaction scope will cause the transaction to
promote. This will have negative performance implications; thus, if you are using context con-

.

5122ch13.qxd 8/23/05 3:24 PM Page 510

CHAPTER 13 ■ THE CLR IN SQL SERVER 511

■Note Use TransactionScope only if you have to work with more than one RM. Do not wrap context
connections within TransactionScope. This will cause context connections to promote unnecessarily.

Also, since you have the same flexibility or System.Transactions infrastructure available
in SQLCLR as you would in the middle tier, you have the ability of not auto-enlisting inside
a transaction, and programmatically deciding whether or not to enlist the new connection in
the distributed transaction. In fact, you could even decide to implement your own RM and tie
them up with transactions inside SQLCLR.

Summary
This chapter introduced you to a powerful new technology, SQLCLR, that opens many new
doors for the architect in you.

You saw how the CLR running inside the SQL Server behaves differently from the CLR you
see running on any Windows machine. You saw how it puts security requirements on your code,
and how you need to explicitly decide the specific functionality your SQLCLR code will require.
You saw how SQLCLR code can be written either as a SQL Server project or as a simple class
library. You also saw how to write common SQLCLR objects such as UDFs, TVFs, aggregates,
stored procedures, and triggers and how to debug such code.

It’s true that SQLCLR gives you a lot of freedom, but with freedom comes responsibility.
Like anything, it’s very tempting and easy to abuse or misuse SQLCLR for purposes it isn’t well
suited for.

In the next and very last chapter of this book, I will discuss some of the biggest debates that
surround ADO.NET. I will try and address best practices that will help you reason the correct
decision in the specific circumstances.

In addition to other topics, the correct and proper use of SQLCLR will be touched upon.
It’s extremely important to learn the responsibilities from the next chapter along with the
possibilities that you learned in this chapter.

See you in the next and very last chapter, “ADO.NET Best Practices.”

5122ch13.qxd 8/23/05 3:24 PM Page 511

5122ch13.qxd 8/23/05 3:24 PM Page 512

513

C H A P T E R 1 4

■ ■ ■

ADO.NET Best Practices

Welcome to the last chapter of this book. Up till now, you have looked at various important
components of ADO.NET and data access in general. No matter what your role in an organization
may be, no matter where you are in your level of career, there is a piece of application architect
in you and, as an application architect, you need to make various decisions.

In the previous 13 chapters, you looked at various ways to achieve the same end by using
a range of choices and tools available to you. With all of these possibilities and tools, and the
freedom they give you, come responsibilities. As an application architect, you have to weigh
the possibilities and intelligently decide which tool is right for which situation.

Anything that surrounds application architecture, especially data access, is subject to
varying shades of gray. In other words, you can’t just listen and apply any presented concept
verbatim; instead, you must listen, learn, and then apply an inventive combination of solutions
that were presented in this book to the specific situation you are faced with. There are various
shades of gray because, depending on your needs and the underlying table structure, the deci-
sions you need to make could change. Table structures are driven by requested requirements;
hence, a table structure that works well for a reporting application does not work well for an
online transaction–processing application.

Thus, if your decisions are driven by requirements, then it makes sense to start with the
requirements first.

Know Your System Requirements
I can safely assume that you, my reader, are in some manner related to the software industry.
So you will relate very well to what I am about to tell you.

The software industry is weird. We walk into a client’s building knowing very little about
the nature of their business and what they do. In addition, the client knows very little about
software (but in many instances, he thinks he knows a lot). Yet, we are expected to solve their
problems—and most of the time we succeed. Of course, at times, we need to solve problems
that were created by other software developed in the past, primarily because of a phenomenon
commonly referred to as “scope-creep.” Then as the scope of the project creeps even further,
someone else solves the problems we created.

Not many non–computer professionals are able to appreciate that our work involves
imagining a skyscraper with all its intricate details, down to the very last brick and steel har-
ness, and then building every part of it as only imagined, without any physical entity to touch,

5122ch14.qxd 8/23/05 3:28 PM Page 513

CHAPTER 14 ■ ADO.NET BEST PRACTICES514

feel, or see whatsoever. Given that a block diagram or something similar is about as close to
the physical world our ideas will ever reach, it can be quite a challenge to have a non–computer
professional appreciate the nature of our work. This wouldn’t be so bad except that every now
and then the client wants us to build that extra room in the basement after the 120th floor has
been built.

Data access and the data itself is more than just our basement. It is our foundation. And
because the client is always right (isn’t he?), our architecture better be firm yet flexible enough
to begin with.

Another side effect of the non-physical nature of our deliverables is that failure isn’t very
evident to the end client until it’s too late. For instance, when a patient goes to the doctor and
requests a checkup, where the patient would have needed a bypass, the doctor prescribes an
aspirin. Well, once the patient has had a massive heart attack, the doctor’s failure is quite evident.

The problem with software is that the patient (client) comes in and insists that he be given
an aspirin when even you as the doctor (software engineer) clearly know that what he really
needs is a bypass. The bigger problem is that after a heart attack the patient will be dead, but
after a software failure the client lives to complain and lay blame.

A classic example in terms of ADO.NET is maintaining data sanctity after a number of dis-
crete operations. To a techie, this smells like transaction support. Everyone likes transactions,
and between various interactions of the end user with a server-based, data-driven application,
the sanctity of data must be kept safe. The client could request that between the two screens
the end user will work through, the data should be kept integral.

Thus, you could listen to the client verbatim and make the wrong decision, implementing
transactions and involving UI interaction as a part of the transactions. Or you could choose
a better tool instead, implementing multiple transactions with sanity checks between each
UI interaction. While either approach might be acceptable to the client, your system will not
depend on exclusive locks and whims of a particular end user to be of service to other users.
Thus, between two or more different ways of implementing transactions, you should consciously
choose the latter because you know that for this job, you do not want tightly coupled transactions—
you know better than that.

Thus, when you derive your design after your functional research, it all comes down to
picking the right tool for the right job.

Picking the Right Tool for the Right Job
Data access requires you to interact with the underlying data source. ADO.NET also gives you
the ability to maintain an in-memory cache of disconnected data.

So let’s say that in your application you need to work with a SQL Server database, and you
have a country name lookup that doesn’t change over the lifetime of the application, but will
be read in various screens of the application.

While there are numerous ways to approach this problem, assuming that you are writing
a fully managed application, the natural choice would be to pick SqlClient over OleDb. Also, the
country name lookup is a perfect candidate for storing in an in-memory cached object, rather
than retrieving that from the database at every request. Do note that in both of these cases, both
OleDb and hitting the database again and again would technically work and be accurate. But it
wouldn’t be the right solution because OleDb would suffer from a performance hit and would not
give you specialized features that SqlClient would give, and hitting the database again and again
unnecessarily simply would be a drag on the performance of the application.

5122ch14.qxd 8/23/05 3:28 PM Page 514

CHAPTER 14 ■ ADO.NET BEST PRACTICES 515

Given your requirements, you know the job your software needs to get done. And given
the gamut of tools you have to choose from within ADO.NET, you need to match the right tool
with the right job.

Let’s look at a few common tools with various arguments that will help you decide which
alternative to pick over the other.

Data Reader or DataSet/Data Adapter?
The choice of whether to use a data reader or a DataSet should be a fairly straightforward
decision, provided you know enough about the type of data you need to access and the ways
in which you intend to process it. Both of these components have well-defined roles. As long
as you know which roles each of these is designed for, you can choose the most effective solu-
tion for your needs. There are a number of major differences between these two components.

An important thing to keep in mind is that regardless of which solution is faster, it doesn’t
necessarily mean that either component is better. Each is suited for a particular task, and each
will excel at that task. Conversely, each will perform poorly (if at all) when used to perform a task
it isn’t suited for.

Memory Consumption
One of the main differences between the data reader and the DataSet is that the data reader
consumes less memory than a DataSet. Depending on the amount of data and the memory
resources available, the performance advantages associated with using less memory can be
enormous.

A data reader is an object that allows you to access information on only a single row of
data at a given time. What this means is that, regardless of the size of a result set, traversing
this result set with a data reader will only ever have a single record loaded in memory at
a given time.

A DataSet, on the other hand, is designed specifically to be an in-memory cache of large
amounts of data. In this regard, the DataSet will consume more memory than the data reader.

To summarize, if you are tight on memory, then you should consider using a data reader
rather than a DataSet. However, if memory concerns are not at the top of your list of priorities,
then the increased functionality of an entirely disconnected in-memory data cache may suit
your needs better.

Of course, you should consider if your eventual aim for reducing memory consumption is
better performance or not. If you keep a data reader open for unduly long time durations, then
the connected nature of a data reader can actually impact connection-pooling performance
negatively. This would be the case if you were doing time-consuming operations between each
row being read out of the data reader. So for a large result set, you saved memory, but did you
really garner the performance? No you didn’t! Which is why this is a gray shade that you need
to evaluate specifically for your application needs.

Traversal Direction
Whenever you plan on traversing data for a particular task, you need to consider the direction
of the traversal.

If you plan on accessing data to do something simple, such as display all of the records in
a result set in HTML form through an ASP.NET page, then the choice is simple. The data reader

5122ch14.qxd 8/23/05 3:28 PM Page 515

CHAPTER 14 ■ ADO.NET BEST PRACTICES516

provides you with a read-only/forward-only method to access your data, designed specifically
for the task of reading and traversing data in a read-only fashion, rapidly in a forward direction.
So, when looking at what an application is going to need to do with the data, if you don’t need
to be able to write changes to an in-memory cache, or if you don’t need to have indexed access
to any arbitrary row at any given time, and you don’t intend to do too much time-consuming
processing between each row, then the data reader will definitely give you some performance
benefits.

■Note As you can see in Exercises 5.3 and 5.4 in Chapter 5, you can use an ArrayList or another such
object in conjunction with a data reader to get around the requirement of forward-only access—this, of
course, is at the cost of increased memory consumption, because the extra memory will be required for the
ArrayList that will now act as your in-memory disconnected cache.

Multiple Result Sets
Both the data reader and the DataSet support the notion of multiple result sets. The DataSet
supports this through using tables. The data reader enables us to access additional result sets
by providing the NextResult method. Just as with row access with the data reader, accessing
additional result sets in the data reader is a read-only/forward-only operation.

It is important to reiterate here that the data reader will actually only hold one row of
information at any given time. This means that even though ten different result sets may be
available, only one row of any given result set will be available at any given time. Once a row
has been passed in a data reader traversal, that row is disposed of, and there is no way to retrieve
it again without resetting the reader and starting over from the beginning.

For those of you who like using the SHAPE statement in your T-SQL statements to create
hierarchical Recordsets, you can rest assured that you can still use this with the data reader.
Whereas in ADO you would set a Recordset object to the individual field object of a row; instead,
you now set a data reader object to the value of a column in the data reader of the parent row.

Keeping the Connection Open: Connection Pooling
As you have already seen in Chapter 4, good connection pooling is critical to the performance
of your application in a highly concurrent environment. This is because database connections
are expensive resources. The one big difference between a data reader and a DataSet is that
a DataSet is database independent and is completely disconnected from the underlying data
source. In other words, in order to retrieve data out of a DataSet, you do not need to connect
with the underlying data source.

While it may be true that to fill the DataSet originally, and to update its changes back into
the underlying data source, you will still need to reconnect to the data source, the entire upshot
of this disconnected nature of data access is that you are able to keep the connection closed
while you are actually working with the data.

But calling Close on the DbConnection object, such as SqlConnection or OracleConnection,
doesn’t necessarily mean that your physical network or database connection is really closed.
In fact, while you weren’t using it, ADO.NET took the same physical database connection and
possibly served a bunch of other connection requests in the meantime.

5122ch14.qxd 8/23/05 3:28 PM Page 516

CHAPTER 14 ■ ADO.NET BEST PRACTICES 517

This is in contrast with the data reader where, even if your result set had two rows in it, while
you were working on the first row and hadn’t explicitly closed the data reader and the connection,
your connection is still open and cannot be used by anyone else. Thus, in such a situation even
if the data reader is faster in a single-user scenario, in a highly concurrent scenario it will actu-
ally be slower and, hence, not a good choice.

You might raise an eyebrow here and bring up the question that a data adapter internally
uses a data reader, too. But, again, even if the data adapter uses a data reader, it frees up the
data reader as soon as it can. It fills up a DataSet or DataTable and returns the object. The time
that it takes you to actually process upon the data is when a connection will stay closed and,
hence, effectively pooled.

DataSet or Strongly Typed DataSets
DataSets out of the box suffer from one big problem: even though they try to mimic an in-memory
relational data structure, they fall short on representing the actual data types contained within.
Everything is an object. While that is the most portable mechanism, you would typically then
need to implement checks and conditions at each point to ensure that the data contained within
is not corrupted.

The other way out is to create a strongly typed DataSet. Strongly typed DataSets are as
the name suggests—strongly typed, but they, too, suffer from their own set of disadvantages.
The biggest problem with strongly typed DataSets is that their structure needs to be continually
updated to reflect the underlying table structure. This involves code generation and recompilation.

Also, as the data structure underneath changes, the table adapters associated with the
strongly typed DataSet continually get out of date as well. This is probably not an issue in a small
application, but maintaining and deploying such a library of strongly typed DataSets can turn
into a major headache.

Most of all, DataSets and strongly typed DataSets provide you with a ready-to-use, in-memory
disconnected data cache, but at the end of the day, they contain no true knowledge of what
that data truly is. It’s just a dumb bucket of data. Strongly typed DataSets try to come close to
the true representation of your data, but they fall short by far.

It is in these instances where you must resort to the use of a custom business object.

Strongly Typed or Not? DataSet vs. Business Object
Given the fact that for good performance for highly concurrent systems (and in order to make
a distributed, disconnected architecture work) you need some kind of disconnected data cache,
you can use either the disconnected data cache that comes as a part of the .NET Framework
(the DataSet), or you can build your own business objects.

A business object is an object representation of a logical entity in the specific business domain
that the program is being written for. For instance, if you are writing a program for an insurance
company, an example business object could be a policy, premium, payment plan, etc. Business
objects present several advantages as compared with DataSets. Some of the advantages are as
follows:

1. Your customer in an insurance company understands a “policy,” not a DataSet or
a DataTable. This allows you to abstract and communicate what you, as a programmer,
see on your screen and in your program more effectively with the end customer. This is
helpful because the customer doesn’t care about the technical implementation and will

5122ch14.qxd 8/23/05 3:28 PM Page 517

CHAPTER 14 ■ ADO.NET BEST PRACTICES518

not relate to a DataSet. But given a friendly printed view of a “policy” business object
(say, using a Visualizer in Visual Studio 2005), the client will be able to relate with that
immediately. Thus, it establishes common communication ground between the pro-
grammer and the client.

2. Catching, isolating, and debugging rogue data is easier—because the logical informa-
tion for a particular business entity is all segregated as one serializable instance of the
relevant business object. DataSets do not typically restrict your application data into
neatly segregated logical business entities.

3a. You have the ability to encapsulate behavior of the data in the business object that
contains the data itself. This approach allows you to embed logic inside business
objects so it doesn’t have to live in every single tier of your architecture.

3b. For situations where you might not control the end-to-end implementation, or the end-
to-end implementation isn’t in .NET, you can subject your objects to XMLSerialization
and move away from object thinking to schema thinking. This way you can easily
expose your business objects to a non–.NET world. Assuming that you need a semi-
hierarchical structure specific to your business object representation, this is incredibly
difficult to do using DataSets.

■Note In many situations, your architecture will make use of both 3a and 3b. A good design dictates that
you should create validation logic in a pluggable manner, so your object itself can live without the logic, but
can have it if need be. This validation logic can also be seen as rules, which can be categorized into two parts:
rules that apply to a type, and rules that apply to an instance of the type.

4. You can leverage a number of third-party tools, such as LLBLGen Pro, to help you
implement business objects and their translation to and from an underlying relational
database structure.

5. You can implement your business objects to all have a common behavior and imple-
mentation through interfaces and inheritance. This is something that you cannot do in
DataSets. Every object representation in a DataSet is nothing but a DataSet, and the
DataSet is tied to a relational structure.

6. In Visual Studio 2005, you can reuse your UI logic to create Visualizers in debug mode
for fast, speedy development or just have the ability to give the programmer and
customer a common communication methodology.

7. Since your business objects are easy to re-create and they represent the actual program
structure, writing tests in a typical test-driven development becomes much easier.

8. Your data has the ability to notify you of changes or issues—much like a living entity,
something a DataSet has a tough time doing.

9. You have the flexibility of defining business objects as an aggregation of other business
objects. So a policy business object can have an aggregated business object, premium,
available as one of its properties. This is something that cannot be achieved using

5122ch14.qxd 8/23/05 3:28 PM Page 518

CHAPTER 14 ■ ADO.NET BEST PRACTICES 519

DataSets. A DataSet can contain the data, but the data is not delineated in a semistruc-
tured hierarchical manner.

10. Once you have business objects ready, you can implement templates of your data. For
instance, you could create an instance of a business object and use it as a template for
all insurance policies that deal with auto insurance.

Wow, that is a handful of advantages! So business objects must be the right answer in
every situation, right? Turns out, they are the right answer in many situations, and in many
they are not. Here are a few disadvantages of business objects:

1. The biggest problem with business objects is that you have to write them or use some
tool to author them first. Also, you have to write their translation and persistence logic.
You may do a good job writing them, or you may “fall short of time” and not do such
a good job. In contrast, single DataTable DataSets, or just DataTables, are easy to write
persistence logic for. Writing persistence logic by hand for hierarchical DataSets is just
as complex and time consuming as writing it for a business object would be.

2. As the needs of your application grow, you have to continue to author more business
objects and worry about the versioning of previous business objects and their persisted
instances.

3. Business objects either require you to write persistence logic for each object, or come
up with a standardized mechanism to generate SQL queries. The SQL queries generated,
however, are dynamic SQL. Now it may be argued that because dynamic SQL is con-
stantly changing by nature, it suffers from the disadvantage that its query plans are not
cached. But it’s important to realize that for a given finite set of business objects with
defined structures, the set of dynamic queries that you will generate is finite. The finite
set of dynamic queries would still be larger than what you would write for a DataTable
that could be a direct representation of a database table.

4. Business objects require you to write a new object for a new entity. This might not be
fully true as your design might encourage reuse, but you can’t beat the non–strongly
typed DataSet, in which to set up the object you have to write zero code. Of course, if
you pick the DataSet, you loose the advantages a business object gives you.

5. Concurrency is relatively more difficult to manage using business objects. This refers
to both thread concurrency and database concurrency.

6. You have to implement ITypedList and IBindingList in order to enable data binding
of your business objects.

7. You lose any enhancements Microsoft may provide you with in future versions of .NET.
For instance, if you shied away from DataSets in .NET 1.1 because of its serialization
problems, you probably spent a very long time getting your business objects working
only to find out that Microsoft fixed it in .NET 2.0. This can be argued the other way
around, however. If there is a problem in the framework, you are stuck with it until
Microsoft releases a fix for it.

5122ch14.qxd 8/23/05 3:28 PM Page 519

CHAPTER 14 ■ ADO.NET BEST PRACTICES520

T-SQL vs. SQLCLR vs. Extended Stored Procedures (XP)
In Chapter 13, you read a comparison of extended stored procedures versus SQLCLR. In short,
extended stored procedures do offer you better performance in all situations except data access
on the same database they are called from. However, they suffer from other disadvantages, such
as the inability to restrict their access rights into granular restrictions, the inability to use newer
data types, and, in general, loosing all advantages that the .NET Framework can give you. You
can refer back to Chapter 13 for a detailed discourse on a comparison between SQLCLR and
extended stored procedures.

However, when working with operations inside a database, the conventional way of access-
ing and working with data inside a SQL Server database has been with T-SQL. With the intro-
duction of SQL Server 2005, you can now, however, write your various database objects such
as stored procedures, UDFs, aggregates, UDTs, etc. in a .NET language such as VB.NET or C#.
The obvious question that arises is, “Under what situations should you prefer to pick SQLCLR
over T-SQL and vice versa?”

Here are a few important points to consider when making this decision:

1. T-SQL can be used to perform declarative, set-based operations (SELECT, INSERT, UPDATE,
DELETE) or procedural operations (WHILE, assignments, triggers, etc.). While T-SQL is
better for set-based operations, it does not lend the programmer much flexibility in
terms of procedural logic. In that sense, SQLCLR and the languages it will be written in
(C#, VB.NET, etc.) lends the programmer a much richer set of functionality and a better
language in general to express such logic in his code.

2. T-SQL is interpreted whereas SQLCLR is compiled. Interpreted code is slower than
compiled procedural code.

3. T-SQL has a good library of data-centric functions. It is generally better suited to set-based
operations. SQLCLR, on the other hand, is better suited to recursive calls, mathematical
operations, string manipulation operations, regular expressions, XSLT, etc.

4. In situations where the end results do not depend on actual data access (for instance,
returning a table with ten random numbers), SQLCLR gives you the flexibility of having
your data reader start reading the first row before the entire result set has been created.
In other words, SQLCLR can pipeline the results. T-SQL, on the other hand, does not have
this kind of flexibility. T-SQL, however, is optimized at many levels inside SQL Server
itself.

5. In T-SQL, it is very difficult to break away from a current running transaction. It is also
difficult to start another transaction in another database. SQLCLR can achieve both of
these easily by creating a brand new connection from within SQLCLR, and by adding
enlist = false to the connection string.

6. SQLCLR has the ability to execute T-SQL from within itself; however, that SQL is treated
as dynamic SQL and it is neither subject to chained security access (i.e., if a stored pro-
cedure is called from a SQLCLR stored procedure, the access rights from the SQLCLR
stored procedure are not transmitted to the called stored procedure), nor is it subject
to compile-time syntax checking.

5122ch14.qxd 8/23/05 3:28 PM Page 520

CHAPTER 14 ■ ADO.NET BEST PRACTICES 521

7. Executing SQLCLR code will cause the CLR to be loaded by the SQL Server. T-SQL does
not incur any such overhead.

8. All executing T-SQL code shares the same stack frame; however, every SQLCLR code
gets its own stack frame. This results in the possibility of larger memory allocation and
better concurrent performance for SQLCLR in general. There is, however, a transition
overhead from native code to managed code.

Therefore, given these points, it makes sense to segregate your heavily procedural logic
into separate database objects written in SQLCLR. However, for set-based operations, T-SQL is
a better choice. Nevertheless, given the number of factors involved, the best judge of performance
is a comparative test written for both alternatives. But just because you can now write stored
procedures in CLR does not mean that you don’t need to learn and use T-SQL anymore.

Transactions, Transactions Everywhere: Which Transaction to Pick
Data is knowledge, and knowledge is power. The program you are writing is not because you
wanted to write a program, but because somebody needs some data to be better managed,
updated, and retrieved. Thus, to protect the sanctity of the data, you need transactions. Trans-
actions tie up a number of operations, data-related or otherwise, into one atomic unit, which
either fails or succeeds as a whole.

There are many flavors of transactions to choose from. Between these various flavors, each
locks certain resources and has a certain amount of management overhead. The underlying
theme remains that the more there is to manage, the lower the performance will be. If you were
to look at various transactions in an increasing order of management overhead and decreasing
order of performance, the list would be like this:

1. Implicit transactions are automatically associated with any single SQL statement.
These ensure the sanctity of the data during that statement’s execution time period.

2. Another option is to wrap up a number of commands between a BEGIN TRANSACTION
and COMMIT/ROLLBACK statements, thus forming a block of commands that enlist in the
same transaction. This kind of transaction, simply because it needs a higher management
overhead and locks more resources, is a bit more expensive. Depending on the under-
lying database, you also have the possibility of nested transactions. Usually, because
you control the entry point and exit point of your procedural logic, it is easier to manage
the transaction counts and nested transactions in this scenario.

3. The third option is to wrap up a number of DbCommand objects with the help of
a DbTransaction object. The exact implementation depends on the .NET data provider,
but in most common .NET data providers this translates to issuing a BEGIN TRANSACTION
and COMMIT/ROLLBACK to the underlying data source. In this scenario, you have to be a bit
more careful of nested transactions and transaction counts.

4. Yet another option is to automatically enlist in a single database scenario using System.
Transactions. This implementation will be just as good as the wrapping .NET RM. For
instance, SqlConnection supports promotable enlistment. This means that your trans-
action wrapped using System.Transactionswill not be much more expensive than a simple
SqlTransaction code block. However, if you were to do the same for Oracle, your trans-
action will be managed by MSDTC and will be expensive. Even in SqlConnection, the

5122ch14.qxd 8/23/05 3:28 PM Page 521

CHAPTER 14 ■ ADO.NET BEST PRACTICES522

transaction ends up promoting to MSDTC if a second RM comes into the picture. This,
of course, can be controlled programmatically by not using a TransactionScope block,
but instead manually enlisting within such a transaction (this has been covered in
Chapter 11).

5. There may be a situation where you might wish to enlist in a transaction from either
within SQLCLR on a separate database, or from any ADO.NET code that tries to enlist
an RM that deals with a durable resource, which has nothing to do with databases in
general. In this scenario, your transaction will be managed by MSDTC by default and,
hence, will be rather expensive to manage.

6. The final flavor of transactions is where you need transactional sanctity over a distributed
or loosely coupled system, such as a web service or message queuing architecture. In
this scenario, you cannot lock the resources until the outcome of the transaction is
definite. Here you need to build an architecture that loosely wraps functionality similar to
a two-phase commit—except you cannot use MSDTC, TransactionScope, SqlTransaction,
or anything in that family to directly wrap your entire loosely coupled transaction. Instead,
what you need to do is create rollback/fail mechanisms yourself. For instance, you could
implement such a transaction by storing a snapshot of previous data, which acts as
your “recovery contract” and a flag on the “in doubt” rows. In the event of success, you
can clear out the recovery contract and the in doubt flag and, in event of failure, you can
roll back using the recovery contract and then clear out the “in doubt” on the various
entities involved. The in doubt flag serves the purpose of informing other parts of the
system to desist from using that data since its state is “in doubt.”

So which of these six options should you pick? The lowest one you can get away with. In
other words, you should prefer to stay away from transaction architectures designed for more
than what you need. True, you can kill a mosquito with a sledgehammer, but do you really
want to pay the extra price of picking up that heavy hammer and risking your friend’s hand
that the mosquito was sitting on?

There are, however, two choices that seem juxtaposed with each other. These are wrapping
transactions in SQL or wrapping them in DbTransaction objects. The cardinal rule here is prefer
to wrap them in API (i.e., DbTransaction objects). If a stored procedure or SQL in general needs
a transaction, then it’s okay to embed a transaction in there, though then you need to be careful
of nested scopes. An example of where that might be a better choice would be where you need
to ferry large amounts of data back to the client in order to process the next command. In that
circumstance, it makes sense to keep your logic close to the data itself—in the database. The
situation you want to avoid is where SQL commits or rolls back transactions started in the API
or vice versa. In other words, don’t mix and match.

Picking the Right Tools: The Clearly Darker
Shades of Gray
Depending on the exact situation, it’s not just an array of choices you need to pick from. There
are situations where it isn’t a matter of choice, but discipline. In spite of the many shades of
gray, there are a few portions that are clearly black and should be watched out for. Thus, doing
certain things is clearly good and not doing them is clearly bad. Let’s look at some of these car-

5122ch14.qxd 8/23/05 3:28 PM Page 522

CHAPTER 14 ■ ADO.NET BEST PRACTICES 523

Implementing a Data Layer
In most scenarios, implementing a data layer is a good idea. A data layer is simply a set of
classes, a web service, an application server, or just any piece of code that all your data access
is done through. Implementing a data layer is a good idea because of the following reasons:

1. You isolate yourself from any changes in the framework. If something changes in the
framework, you only need to change your data access layer to ensure that your entire
architecture doesn’t change.

2. You ensure that best practices are followed by everyone. This is because in a team it
might get difficult to enforce rules on everyone. If all data access is done out of one
data layer, you ensure that the best practices are enforced in the data layer, and every-
one automatically garners the benefit.

3. You ensure that everyone uses the same connection string defined in the configuration
file, or otherwise. This helps in connection pooling all the connection requests.

4. A data layer ensures that you have one convenient place to put performance-measuring
metrics and if there is a problem with your data access architecture, then you have one
place to look, and one place to fix.

Closing Connections
This is one of those insidious and serious issues that tends to creep into your application
architecture with the least of warning. It only raises its ugly head when the application is in
production, working (or failing) under a heavy load. The reason this is a difficult problem to
track is because not only will the effect not be apparent in development, where you are testing
logic, not scalability, but also because generally for situations such as transactions, your data
layer will either need to expose an open connection or accept an array of DbCommands with
parameters in place. While the first approach relies on the end user of your data layer to make
sure that any open connections are eventually closed, the second approach results in an unwieldy
class structure.

Before .NET was around, programmers had to worry about memory leaks. The garbage
collector makes it a lot easier by routinely performing the clean-up job for them. While you
still have to be somewhat careful, the rules are much easier to live by now. If you forget to call
the Dispose method on a particular object, while that isn’t a very ideal situation, the object will
eventually be picked up by the garbage collector, which will call the Finalize method instead.
For objects that occupy a large amount of memory, the garbage collector will sense the mem-
ory pressure and be invoked more frequently as need be. However, DbConnection objects in
themselves do not occupy large amounts of memory. What they do occupy is a valuable net-
work connection resource, which the garbage collector will blissfully ignore. This results in the
garbage collector firing less frequently and independent of your open connections, thus leav-
ing the state of DbConnections open for longer than it should be.

Let’s consider the situation where the garbage collector did fire between every 4 to 8
minutes and did the clean-up job that you should have done in the first place. Where you would
have required the connection to be open for only a few milliseconds (typical query execution
time), now your connection state remains open for a much longer time. First, when the garbage
collector bumps up your unused, out of scope, but open connection objects to the second

5122ch14.qxd 8/23/05 3:28 PM Page 523

CHAPTER 14 ■ ADO.NET BEST PRACTICES524

, but this is a rough guesstimate.

minutes1 before it finally cleans up objects that were bumped to the second generation. Thus,
where you could have closed a connection in 100 milliseconds, your connection may now
remain open for 8 to 16 minutes. Four to eight minutes for each iteration of garbage collector,
I might add, is a rather conservative guesstimate on 16GB RAM application servers.

Now, the garbage collector will eventually call Finalize, which eventually changes the
state of the connection to “closed.” But the DbConnection connection state is not the actual
state of the underlying physical database connection. Even after the DbConnection is closed,
the underlying network connection will still remain open for a little bit longer to serve any
other immediate requests using the same connection string.

While instead of keeping a connection open for 100 milliseconds, you ended up keeping it
open for 8 minutes (these are more or less the best-case scenario numbers), ADO.NET was
piled up with requests to create more and more open connections, simply because the con-
nection you should have released was still unavailable.

So what happens, essentially, is that because there is a fewer number of open available
connections, more requests stand in queue; and where you needed to serve a time period of
100 milliseconds, you are now serving 8 minutes’ worth of connection open requests, not to
mention the backlog that might create. So the whole thing comes tumbling down like a deck
of cards.

So, as a conservative guess, if your connection state remains open for 8 minutes instead of
100 milliseconds, your pool would now need to handle 4,000 times more connections than it
should have. And if you had ten servers connecting to the same database, each with the same
problem, you can safely assume that your database is now handling 40,000 more connections
than it needs to. It is amazing that the whole application still works! It probably works because
the default setting for the maximum connection pool size is 100 connections, which means
starting at the 101st connection request all the way to the 4,000th connection request (possibly
much more than 4,000) will have to wait in line for an available connection.

Now if you think this sounds bad, sit back in your seat, hold on to something firm and
consider this—this awful scenario is based on the conservative assumption of a single leaky
connection and the garbage collector firing every 4 minutes. You should consider yourself
lucky if you were to get away with so little.

So thank the maximum connection pool setting that the database server didn’t catch fire,
commit suicide, or file for divorce, because not closing connections is truly a terrible thing to
do. The short-term solution, of course, is to increase the connection pool size, but the true
solution is to find the source of that leaky open connection and plug it.

And of course, let me reiterate the golden rule one last time in this book—open a connection
as late as possible, and close it as early as you can.

Network Latency
One of the most important things to remember about large applications is that latency is your
enemy. Latency, in our context, is the delay and lock of resources incurred while obtaining and
opening a connection, executing commands, and getting the results back over a network. You
want to perform this activity as infrequently as possible throughout an application. If you keep
this in mind, performance tuning an application may be easier than expected.

In small applications or desktop applications, when accessing local data stores such as an
Access database or an Excel spreadsheet, the overhead of opening and closing connections

5122ch14.qxd 8/23/05 3:28 PM Page 524

CHAPTER 14 ■ ADO.NET BEST PRACTICES 525

may not be noticeable. However, when the component opening and closing the connection is
on a different machine in a network (or worse, across the Internet) from the actual database
server, the cost of opening a connection is very high.

For example, let’s suppose a user of an application clicks a button to retrieve a list of orders.
This opens a connection, obtains the orders, and closes the connection. Then, the user double-
clicks on an order item and obtains a list of order details. This also opens the connection,
obtains the result set, and then closes the connection again. Assuming the user continues with
this browsing behavior for 10 minutes, the user could be consuming an enormous amount of
time and resources needlessly going over the network again and again.

One way to prevent situations like this is to anticipate the intended use of data. You should
weigh the memory cost of obtaining the information on the initial database connection against
the cost of waiting until the information is needed. And then you should weigh the complexity
of working with stale data and resolving the issues that may create.

DataSets are designed to be in-memory data caches. They are also designed to hold on to
more than one table of information. They are an ideal candidate for storing data in anticipation
of disconnected browsing behavior.

■Note Retrieving a large volume of data within the context of a single connection will always be faster
than retrieving small portions and opening and closing the connection each time, because large-block
retrieval causes less network roundtrips and incurs less latency.

Complicated Hierarchical DataSets
So you should fetch more data, possibly a related set of tables, with a number of rows. This
begs the question, “Why not fetch the entire database in the DataSet, so you never have to
worry about a network roundtrip ever again?”

Don’t do it!!
There are a number of reasons for this:

1. You should try to work with simpler DataSets because the larger a DataSet gets, the
more memory it uses.

2. As you saw in Chapter 10, saving hierarchical data is not a trivial task. You have to be
careful about data relations in updates and inserts, both of which go in the reverse
direction of deletes due to foreign key constraints in the database. This can cause dead-
locks unless you explicitly request a pessimistic lock to begin with, which leverages
deadlock resolution features in the underlying database, but is not a very efficient
manner of saving data back into the database.

3. The time required to run GetChanges and Merge increases exponentially with the num-
ber of rows, tables, and relationships in a DataSet in .NET 1.1. The internal algorithm
to perform these operations is vastly improved in .NET 2.0, but it still requires consid-
erable processing. Do note here that if you have a large strongly typed DataSet with,
say, 40 tables (God forbid if you ever had that many!), even if the tables are empty you
still pay a significant cost.

5122ch14.qxd 8/23/05 3:28 PM Page 525

CHAPTER 14 ■ ADO.NET BEST PRACTICES526

■Note Having a large, complex, strongly typed DataSet with a large number of tables of which only two or
three are filled at a given time is still a bad solution. Instead, you should have a number of strongly typed
DataSets.

4. Cyclical references are bad. This is because, depending on your data, the GetChanges,
Merge, and XmlSerialization logic can get really inefficient if your DataSet has cyclical
references.

So what is a good size for a DataSet? This question is just as difficult as “How much butter
on toast is enough?” While seemingly simple, the exact boundaries cannot be clearly defined.

As a rough yardstick, you can say that a large single table (why not just use a DataTable?),
two medium-sized tables, or three small tables should be a good guideline in most situations.
Though, it’s perfectly acceptable to bend these rules, if you know what you’re doing. Do remem-
ber, however, the structural complexity of the DataSet hurts performance more than the sheer
size of it.

Caching Data
Every application has the possibility of benefiting from caching data. For instance, an ASP.NET
application might show a banner on all of its pages, or it may need to constantly show a menu
based upon a particular user’s permissions. You can save a number of hits to the database by
caching the data using the HttpContext.Cache object. It is not just about hits—typically, access-
ing data out of a cache based in RAM is tens of thousands to many millions of times faster than
accessing it over the network, or even the Internet.

By doing so, you will significantly reduce the number of times your database will get hit
for the same information. The issue is often referred to as the problem of stale data. Data that
has been cached, say, on a web server, could have been subsequently modified in the database.
You can also use objects such as SqlDependency to invalidate the cache if, in case, the underly-
ing data changes or you can simply set an expiration policy.

Windows applications and services, on the other hand, do not have a built-in mechanism
like ASP.NET to facilitate caching. But the good thing about .NET is that you can leverage under-
lying Win32 functions to build a caching API much like that exposed by ASP.NET.

Summary
Writing this book has been a lot of work. I just couldn’t finish without one chapter that put all
the essence and juice together. So this chapter presented a mixture of opinions and facts.

Data access is an extremely critical part of your application. It has to be done right. Lucky
for you and me, it’s also the easiest part to get wrong! There are certain rules to follow and cer-
tain facts to keep in mind. Certain decisions depend on the situation, and certain decisions are
clearly no-brainers. This chapter demystified and shed light upon what might fall into either
category. It gave pros and cons of choices between which you’ll need to make a fair decision,
and it clearly elucidated the potholes you need to avoid.

5122ch14.qxd 8/23/05 3:28 PM Page 526

CHAPTER 14 ■ ADO.NET BEST PRACTICES 527

I’ve had a good time writing this book about a topic that I am so incredibly passionate
about. In writing this book, at every given instant, I kept reminding myself repeatedly that my
reader, who has spent his hard-earned money and many hours reading this text cover to cover,
must get the worth out of it.

I’d like to thank you, my reader, for staying with me through the course of this book, and
I hope you will put what you learned to good use. Sayonara!

5122ch14.qxd 8/23/05 3:28 PM Page 527

5122ch14.qxd 8/23/05 3:28 PM Page 528

■Numbers and Symbols
! (exclamation mark), indicating an error in a

DataRow, 333–334
& (ampersand) character, entity encoding

representation for, 426
<, as the entity encoded form of the less-

than character, 426
? (question mark) character, representing a

configurable parameter with, 332
< (less-than) character, used to start each

element within an XML document,
426

<sync> element, for designating
synchronization should take place,
455

> (greater-than) character, entity encoding
representation for, 426

’ (apostrophe) character, entity encoding
representation for, 426

” (quotation mark) character, entity encoding
representation for, 426

■A
AcceptChangesDuringUpdate property,

setting on DataAdapter object,
391–392

ACID properties, guidelines followed by
transactions, 356–357

Action property, for
DataRowChangeEventArgs object, 121

ActiveX Data Objects (ADO), 3–4
vs. ADO.NET, 7

Add Connection dialog box, choosing the
right database in, 182

Add Database Reference dialog box,
choosing a connection for your
project in, 469

Add(DataColumn(), DataColumn()) method,
function of, 126

Add(String, DataColumn(), DataColumn())
method, function of, 126

Add(String, DataColumn(), DataColumn(),
Boolean) method, function of, 126

Add(“ColumnName”) method, for adding a
DataColumn with a specified name
to a table, 113

Add() method, for adding a new DataColumn
to the DataColumnCollection, 113

Add(myDataColumn) method, for adding a
specified preexisting DataColumn
object to the DataColumnCollection,
114

Add() method, creating a new DataColumn
by invoking, 113

Add(String, DataColumn, DataColumn)
method, as DataRelation: function
of, 126

Add(DataRelation) method, function of, 126
Add(String, DataColumn, DataColumn,

Boolean) method, function of, 126
Add(DataColumn, DataColumn) method,

function of, 126
Add(DataColumn[], DataColumn[]) method,

function of, 126
Add(String, DataColumn[], DataColumn[])

method, function of, 126
Add(String, DataColumn[], DataColumn[],

Boolean) method, function of, 126
Add() method, list of seven overloaded, 126
Add(default option) setting, for

MissingSchemaAction property of
the data adapter, 211

Add(“SubTotal”,
Type.GetType(“System.Single”),
“Sum(Price)”) method, for adding a
DataColumn with a specified name,
data type, and Expression property,
114

AddWithKey setting, for
MissingSchemaAction property of
the data adapter, 211

ADO.NET
10,000-ft. bird’s-eye view of, 16
ability to connect to a data source

provided by, 53–66
vs. ADO, 7
best practices, 513–527
connected objects, disconnected objects,

and the DataAdapter, 6
creating parameterized commands:

DbParameter, 20–21
database transaction support in, 359–362
a drag-and-drop operation in for creating

a data-driven application, 16
establishing a connection: DbConnection,

17–19

Index

529

5122chIDX.qxd 8/23/05 4:41 PM Page 529

ADO.NET (continued)
exception handling in, 26–30
executing a command: DbCommand and

DbTransaction, 19–21
extracting DataSet changes as an XML

diffgram, 299–300
holding disconnected data: DataSet, 22–24
implementing batching at the TDS

protocol level in, 274
implementing savepoints in, 386–389
important objects in, 4–7
an introduction to, 1–14
main objects in the connected part of, 4–5
mapping mechanism, 206–211
objects and facilities provided by for sorting,

searching, and filtering, 213–245
picking the right tool for the right job,

514–522
possible isolation levels in, 371–372
reading XML columns in, 444–446
some cardinal rules of working with,

522–526
and SQLXML, 447
structure of SqlDataAdapter and

OracleDataAdapter in, 178
using FOR XML queries with, 434–437
using OPENXML with, 441–443
using TableMappings in, 207
ways of writing provider agnostic code in

1.1 and 2.0, 9
what it is, 2–3
what sets it apart from previous data

access technologies, 3
and XML, 413–459

ADO.NET 1.1
common behavior enforced by the

IDbConnection interface, 65
dealing with corrupt connection pools in, 74

ADO.NET 2.0
advanced single database techniques,

385–392
asynchronous execution introduced in, 92
dealing with corrupt connection pools in, 74
implementing distributed transactions in,

397–401
new ConflictOption property in, 263
new WriteXML method in, 117

ADO.NET 2.0 Framework, common data
providers that come with, 8–9

ADO.NET exceptions, four major categories,
28–30

ADO.NET Hello World!, 31–52
code to fill and write from the data source,

45–46
hybrid approach for creating code, 45–48
steps for writing a fully hand-written

ADO.NET mapping method vs. SQL aliasing
method, 206

ADO.NET object model, reference chapter,
15–30

ADO.NET transactions, pros and cons of
using, 409

Advanced .NET Remoting, Second Edition
(Apress, 2005), by Ingo Rammer and
Mario Szpuszta, 135

Advanced Options dialog box
accessing from the TableAdapter

Configuration dialog box, 251
options in, 252

aggregate calculations. See also
calculations

filtering to include only a subset of rows
based on a condition, 225–226

performing, 224–226
aggregate functions

creating, 487–494
defined, 487

<all> element, in <complexType> XSD
element group, 148

ampersand (&) character, entity encoding
representation for, 426

AnimalID property
in the Animals table, 129
in the Pets table, 129
using instead of animal name in

optimistic concurrency, 326–327
AnimalName property, in the Animal table,

129
Animals table

properties in, 129
script for creating in Test database, 248
setting up the insertAnimalCommand in,

339
stored procedure for inserting an animal

into, 340
Animals.AnimalID, set up as primary key in

Exercise 10.1, 335
animalsBindingNavigator control, checking

that Save button enabled property is
set to true, 249

AnimalsCopy table, inserting data read from
data reader into, 277

animalsTable
contents of after Erick calls

DataAdapter.Update, 283
Erick’s view of, 283

AnimalsTableAdapter, various methods in,
254–255

AnimalsTableAdapter TableAdapter,
configuring, 250–254

AnimalsTableAdapter.Fill method, 255
AnimalsTableAdapter.InitCommandCollection

method, 256

■INDEX530

5122chIDX.qxd 8/23/05 4:41 PM Page 530

<annotation> element
for annotating XML schemas, 150
using <appinfo> element within, 151

apostrophe (‘) character, entity encoding
representation for, 426

App.Config file, code for the connection
string in the Windows Forms
application, 43

<appinfo> element, using with XML schema
file, 151

Applications, picking the right tool for
writing, 514–522

appSetting element, specifying connection
strings as in .NET Framework 1.x, 62

ArrayList object, binding with myDataGrid,
90

AS keyword, using in Exercise 7.5, 204–206
ASP.NET 2.0, creating a new website in, 33–39
Atomic transactions, defined, 356
Attach to Process dialog box, debugging

SQLCLR code without the aid of the
SQL Server project, 474–475

<attribute> element, important attributes of
in XSD, 144

AttributeOrElementName, function of in
FOR XML EXPLICIT query, 424

AUTO mode, function of in FOR XML clause,
415

■B
BasePath property, for SqlXmlCommand

object, 448
batched SQL command, in Microsoft SQL

Server, 97
BCP (Bulk Copy), moving large amount of

data between databases with, 276
Begin method

code illustrating usage of, 389
use of in transactions, 358

BeginEdit/EndEdit methods, of DataRow
object for modifying existing rows in
a DataTable, 280

BeginExecuteDataReader, code for callback
implementation for, 93

BeginExecuteReader
code for calling, 92–93

BeginTransaction method
for beginning a transaction on a database,

66
specification of the IsolationLevel by, 66

best practices in ADO.NET, 513–527
BINARY BASE64 argument, for retrieving

binary data for various FOR XML
queries, 419

BinaryFormatter
DataSet serialized as true binary using,

DataSet serialized as XML using, 139
using to Serialize and Deserialize a

DataSet, 137–138
BindingSource class, function of under the

System.Windows.Forms namespace,
16

BookDataSet class, definition of the Books
property, 165

BookDataSet.xsd file
definition of relationship between Books

table and BookReviews table, 165
new for Example 6.6, 155–156
opening in Notepad and viewing

BookReviews table defining element,
164

opening in Notepad and viewing Books
table element representation, 164

BookReviews table
rows defined by a <BookReviews>

element, 158–159
updated Books.xml file containing

information for, 158
BooksRow class, looking at the Title property

of and VB.NET, 166–167
Books.xml document, creating for your

sample application to read, 153
Books.xml file, updated that contains

information for BookReviews table,
158

btnClose event handler, adding code to
ensure the form is closed when Exit
button is clicked, 297

btnGetChanges OnClick event handler,
adding code to for performing a
GetChanges and rebinding DataSet
to UI, 297–298

btnSumPrices button, for computing
aggregate sum function on the Price
column, 224–225

business layer vs. SQLCLR, 462
business objects

vs. DataSets, 134
vs. DataSets, strongly typed or not, 517–519
defined, 22
disadvantages of, 519

■C
C#

adding code in the Form1_Load event
handler in, 227–228

adding the UpdateBatchSize property in,
274

AnimalsTableAdapter.Fill method in, 255
AnimalsTableAdapter.InitCommandColle

ction method in, 256
binding the DataGridView with the right

table in Exercise 7.3, 195

■INDEX 531

5122chIDX.qxd 8/23/05 4:41 PM Page 531

C# (continued)
BookDataSet class definition of the Books

property in, 165
changing the CommndText and

dataAdapter.Fill statements in, 195
checking row state of new row in, 271
checking the final row states of the

updated DataTable in Exercise 9.3,
274

command text for querying for a result set,
85

constructing a DataRelation object using
an array of DataColumns in, 127–128

constructing the DataRelation object and
adding to the Relation collection, 127

constructor of DataViews allowing you to
specify information in one code line,
233

constructor that directly ties the DataView
to a DataTable, 232

correct way to order exception-handling
blocks in, 27–28

creating a calculated column in, 222
creating a data adapter to retrieve records

from a database in, 205
creating a DataView without specifying

any information, 232
creating an event handler for DataBind

button click event, 187
creating a new XmlDataDocument

instance called xdd in, 242
creating a ready-to-use SqlConnection

object, 55
creating connection objects in, 54
data loaded, sorted, and databound to a

DataGridView control in, 235
defining a connection object in Exercise

7.5 in, 205
DeleteCommand in, 257–258
displaying the contents of a DataSet in,

200
displaying the contents of one row in, 218
enumerating through available providers

in, 10–11
filling a DataSet in for Exercise 7.4, 198
filling a DataSet programmatically in, 190
filling a DataSet schema in Exercise 7.4,

199
filling a DataSet with the UserTable in, 194
filling a DataTable and displaying the row

states in, 269
filling the productsTable in, 118
finding child rows for a given selected row

in, 228–229
finding parent rows for various rows in, 230
function of Add(DataColumn[],

function of Add(String, DataColumn[],
DataColumn[], Boolean) method in,
126

function of Add(String, DataColumn[],
DataColumn[]) method in, 126

going through rows one by one and
printing values to Console, 206

incorrect way of ordering exception-
handling blocks in, 27

indexing through BooksRow objects in
strongly typed Books.Rows
collection, 163

InitAdapter in, 258–260
invocation of GetChildRows() through the

GetBookReviewsRows() method in,
166

looking at the Title property of BooksRow
class in, 166

making changes to the DataTable in, 270
modifying code to include only a subset of

rows based on a condition in, 226
proving DataSet relationship has same

name as <keyref> element in XSD file
in, 157

putting the ProviderBase model to work
in, 11–12

refreshing the contents of XmlViewer, 243
retrieving UDT data in a connected

fashion from a database, 105
selecting a number of rows in a DataTable

in, 219
serialization and deserialization of a

DataSet in, 137
setting up the DataSet in, 215
setting up the productsTable in, 117
setting various commands with

SqlCommandBuilder in, 272
sorting data on FirstName column in

ascending order, 235
specifying DataType property on a basic

DataColumn in, 223
specifying parameters of

OracleType.Cursor type to
SelectCommand on the
OracleDataAdapter, 192

specifying parameters using the
ConnectionString property, 54

vs. T-SQL, 461–462
update command in CommandBuilder

object, 264
using DoDataMappings method to add

table mapping to the data adapter, 209
using DoDataMappings method to create

the usersMapping object, 208
using Find method to identify one

DataRow using a basic DataTable in,
217–218

■INDEX532

5122chIDX.qxd 8/23/05 4:41 PM Page 532

using GetString method to retrieve textual
representation of the UDT, 106

using Select method to find multiple rows
matching a criterion in, 220

using Select method to find rows and
specify a sort in, 220–221

using SqlDataReader object to query for a
result set in, 85

using TableMappings in ADO.NET using,
207

using the Compute method in, 225
using the DoDataMappings method for

declaring DataColumnMapping
objects, 208

using the Fill method to fill the DataTable,
189

various methods in AnimalsTableAdapter
in, 254

working with a connection object in,
55–56

working with a strongly typed DataSet in,
162–163

writing a batch file to build a strongly
typed DataSet in, 167

caching data, using the HttpContext.Cache
object for improved performance, 526

calculated column
creating in C#, 222
creating in VB.NET, 223
using FillStrongDataSet method to create,

223
calculations. See also aggregate calculations

performing aggregate, 224–226
callback execution, importance of closing the

connection after it has occurred,
95–96

CancelEdit method, for canceling an edit to a
DataTable, 280

Cascade value, System.Data.Rule
enumerator, 116

cascading action, 115
ChangeDatabase function, for changing

databases within the same server,
66

Chaos value, possible in ADO.NET
IsolationLevel enumeration, 371

check-in/check-out logic, as alternative to
concurrency mechanism, 331–334

child rows, example showing filtered out
rows identified as child rows of
Tarzan, 231

<choice> element, in <complexType> XSD
element group, 148–149

ClearErrors method, for clearing all errors on
a DataRow, DataTable, or DataSet, 334

ClearParameters() method, for

ClientSideXml property, for
SqlXmlCommand object, 448

Close method, for closing an open
connection to the database, 67

CloseConnection command behavior, for
ExecuteReader method, 86

CLR (Common Language Runtime)
how it works on Windows machine vs.

inside SQL Server, 462–464
inside out, 100
inside SQL Server 2005, 94
in SQL Server, 461–511

Code Access Security (CAS), as part of the
CLR, 463

code example
for accessing a customer first name in a

DataSet, 140–141
for accessing a given column in the

IDataRecord, 84
accessing data in a more programmer-

and reader-friendly fashion, 141
for accessing multiple parallel data

readers in Oracle, 378
for adding a new DataRow into a

DataTable using LoadDataRow
method, 279

adding a record to DB.MDB database,
311–314

adding a totalPrice column, setting an
expression on it, and adding to
DataTable, 224

adding code to the btnClose handler to
ensure form is closed, 297

for adding new DataRow objects to
DataTable.Rows collection, 114–115

for adding new rows to a DataTable,
278–279

for adding the UpdateBatchSize property,
274

of ADO.NET commands for accessing a
database, 78

AnimalsTableAdapter.Delete(int
Original_AnimalID, string
Original_AnimalName) method,
256–257

AnimalsTableAdapter.Fill method, 255
AnimalsTableAdapter.InitCommandColle

ction method, 256
AnimalsTableAdapter.Update(testDataSet

dataSet) method, 262
attempting to run two data readers on an

open connection concurrently,
379–381

for autogenerated code in the Windows
Forms application, 44

binding the DataGridView with the right
table, 195

■INDEX 533

5122chIDX.qxd 8/23/05 4:41 PM Page 533

code example (continued)
C# command text for querying for a result

set, 85
for calling a Transaction clone, 404
calling the BeginTransaction method of

the connection object, 367
for checkbox that sets the nested property

on the relation, 131–132
for checking row state of new row, 271
code to split the enumerated values into

columns, 480
committing or rolling back database

application changes, 368
for configuration file with encrypted

section in .NET Framework 2.0, 63
the connection string defined for you in

the Web.Config file, 38
for connection string for connecting to an

Access database, 61
the connection string in the App.Config

file, 43
for constructing a DataRelation object

using an array of DataColumns,
127–128

for constructing the DataRelation object
and adding to the Relation
collection, 127

contents of batch file to build a strongly
typed DataSet, 167

contents of the DataSet with Nested
property set to false, 132–133

contents of the DataSet with Nested
property set to true, 133–134

correct way to order exception-handling
blocks, 27–28

creating a Books.xml document for
sample application to read, 153

for creating a command object, 78
for creating a data adapter for Exercise 7.2,

189
creating a data adapter to retrieve records

from a database, 205
for creating a disconnected cache of

DbDataRecords, 89–90
for creating and setting up SqlConnection

object in Main procedure, 79–80
for creating an event handler for DataBind

button click event, 187
for creating a new DataTable object, 114
for creating a new instance of the

SqlXmlCommand object, 449
for creating a parameter for the

Parameters collection, 442
for creating a relationship in a DataSet

using overloaded methods, 126
for creating a restriction within a

creating a SqlCommand for the MS SQL
Server 2005 database, 188–189

for creating a table that uses the previous
UDT, 104

for creating a UDF from a register
assembly in SQL Server 2005, 467

for creating a UDF using a SQL Server
project, 471

for creating ConsoleApp2 application,
48–51

for creating Demo table in Test database,
31–32

for creating GetConcatenatedNames
SQLCLR stored procedure, 496–497

for creating GetNames SQLCLR stored
procedure, 497–499

for creating InsertName SQLCLR stored
procedure, 500–501

creating NameRow class for SqlServerTVF
project, 476

for creating Test database on local
instance of SQL Server 2005, 179

for creating two tables of identical
structure, 276–278

for data binding the DataTable to the
DataGridView to display results, 224

declaring a complex type with a
<complexType> XSD element, 147

declaring DataColumnMapping objects, 208
for defining relationships in the

customerProducts DataSet, 228
DeleteCommand, 257–258
for deleting a row in a DataTable, 125
demonstrating connection pooling, 70
demonstrating use of RegionUpdate

stored procedure, 442
for deploying SqlServerStoredProc, 499
for deploying the MonkeyTrigger after

compiling and building, 507
displaying the contents of a DataSet, 200
for displaying the row states, 268
for enabling isolation level, 377
ensuring that table rows will insert and

commit or not insert and be rolled
back, 339–340

for enumerating through available
providers, 10–11

for executing a simple command, 82
for executing the modified

GetConcatenatedNames stored
procedure, 508

for explicitly disabling connection
pooling, 71

filling a DataSet for Exercise 7.4, 198
filling a DataSet for Exercise 7.4, 198
filling a DataSet programmatically, 190
for filling a DataSet schema, 199

■INDEX534

5122chIDX.qxd 8/23/05 4:41 PM Page 534

for filling a DataSet with the UserTable,
194

for filling a DataTable and displaying the
row states, 269

filling the DataSet and data binding it to
the right DataGridViews, 336–337

for filling the DataSet and VB.NET in
Exercise 7.5, 205–206

for filling userTable programmatically,
186–187

of final code for the TVF, 480–483
for finding a particular row in a database

table, 217
for finding child rows for a given selected

row, 229
for finding parent rows for various rows,

230
of form that per-column encoding takes,

424
for GiveMeFakeData(), 135–137
the GridView control defined on the

Default.aspx page, 38
grouping attributes for reuse throughout a

schema, 150
hierarchical FOR XML EXPLICIT query

with various directives, 429–431
for implementations of event handlers,

122–123
for implementing distributed transactions

in .NET 1.1, 393–397
for implementing distributed transactions

in .NET 2.0, 398–399
for implementing savepoints in ADO.NET,

386–389
for implementing the NameSplitter class

in C#, 477–478
for implementing the NameSplitter class

in VB.NET, 478–479
of incorrect way of ordering exception-

handling blocks, 27
InitAdapter in C#, 258–260
InitAdapter in VB.NET, 260–261
Insert, Update, and Delete code for a

hierarchical DataSet, 348–350
for inserting data into the UDT column,

105
for inserting data read from data reader

into AnimalsCopy table, 277–278
for iterating through DataSet rows and

printing Title column value,
157–158

of key/keyref syntax for defining a parent-
child relationship, 171

loading and data binding the CustProd
DataSet in the constructor, 296–297

loading DataSet data and schema from

loading schema and data for a relational
DataSet, 156–157

for loading the DataTable in the event
handler for btnLoad’s click event,
287–288

for looking at the history of DataRows
while changes are being made, 282

for making changes to the DataTable, 270
for manually enlisting a SqlConnection

instance into a running transaction,
404–405

for Merge Case 1: same table structures,
no primary key, 302–303

for Merge Case 2: same table structures,
with primary key, 303–305

for Merge Case 3: common column, no
primary key, 305–306

for Merge Case 4: common column, with
primary key, 306–308

for Merge Case 5: absolutely different
table structures, 308–310

for Merge method and VB.NET, 302
of modified script for running the

InsertName stored procedure, 502–504
for modifying column Name from first row

in DataTable, 124
for modifying existing rows in a DataTable,

279–281
for modifying the connection string in

GetConcatenatedNames stored
procedure, 508

MS SQL Server stored procedure returning
multiple results, 191

of myfile.udl file content, 61–62
of new BookDataSet.xsd file for Example

6.6, 155–156
of the OPENXML function used to

generate a row set, 440
Oracle package and stored procedure

returning multiple results, 191–192
of output produced from deleting a row in

a DataTable, 125
for passing a cloned transaction to a

thread’s entry point, 404
for passing property values to

FillRowMethodName, 479–480
persisting inserts back into the database,

344–345
primary key specified in the DataSet

schema in Exercise 7.4, 203
for producing a working

DataSet(BookDataSet.xsd), 152–153
for proving DataSet relationship has same

name as <keyref> element in XSD
file, 157

for putting the ProviderBase model to
work, 11–12

■INDEX 535

5122chIDX.qxd 8/23/05 4:41 PM Page 535

code example (continued)
for querying calculated columns in

database tables, 217
for querying two tables from the

TestDemo database, 97
for reading multiple result sets out of a

data reader, 98
for reading out the contents of the Xml

column as a string, 445
reading up an XmlReader, 436
for registering the assembly in the SQL

Server, 104
for registering the HandWrittenUDF

assembly inside SQL Server 2005,
466

for registering the UDT as a type from the
previous registered assembly, 104

for retrieving a connection string, 65
for retrieving number of rows in the

TestDemo table, 81
for retrieving UDT data in a connected

fashion from a database, 105
for returning multiple result sets in a

stored procedure in Oracle, 97–98
for running the InsertName stored

procedure T-SQL script, 501
running various queries using

SqlCommand object, 367–368
for saving encrypted data to a

configuration file, 63
schema used to update the

Person.Contact table, 457
of script for creating Person table, 487
of script to create various stored

procedures using OPENXML,
438–439

for selecting a number of rows by
specifying a query, 217

of sequence of commands for optimistic
concurrency, 326–327

of sequence of queries from Erick and
Frans, 328

for serialization and deserialization of a
DataSet, 137–138

for setting a DataTable’s primary key to an
array of DataColumns, 116

for setting a particular column to null in
non-strongly typed DataSets, 332

for setting a particular column to null in
strongly typed DataSets, 332

for setting the CommandText property to
the query string, 449

for setting the ConflictOption property
value in, 264–265

setting the DataAdapter as a
CommandBuilder object property,

for setting the openXMLCommand’s text
to RegionDelete, 443

setting up a FOR XML query command in
ADO.NET, 435

for setting up a Schema for petsData, 130
for setting up a SqlCommand that works

with an Xml Column, 445
for setting up the DataSet, 215
setting up the empty table’s schema,

286–287
for setting up the Exercise 7.2 connection,

188
setting up the insertAnimalCommand in

Animal table, 339
setting up the insertPetCommand and

insertPetBelongingCommand,
340–343

for setting up the productsTable, 117
setting up two transactions with

ReadCommitted and
ReadUncommitted isolation levels,
373–374

for setting up various event handlers on a
DataTable, 122

setting various commands with
SqlCommandBuilder, 272

shortened DoDataMappings method
using TableMappings in ADO.NET,
210–211

showing <MyElement> element with
MyEnum and MyString attributes,
145

showing inefficient SQL query code for
UpdateCommand.CommandText,
263

showing output from modifying column
Name in DataTable, 124

showing use of FOR XML AUTO queries,
416–417

showing use of FOR XML EXPLICIT
queries, 417–418

showing use of FOR XML PATH queries, 418
showing use of FOR XML RAW queries,

415–416
showing use of FOR XML RAW query with

BINARY BASE64 argument, 420
of simple SQL command for querying a

UDT column, 105
for sorting data on FirstName column in

ascending order, 235
for sorting the results of a query, 217
of specifying a hidden column, 428
for specifying DataType property on a

basic DataColumn, 224
specifying parameters of

OracleType.Cursor type to
SelectCommand, 192

■INDEX536

5122chIDX.qxd 8/23/05 4:41 PM Page 536

for specifying the Timestamp column
during table creation, 330

for specifying the .udl file as your
connection string, 61

of SqlConnection holding the context
connection, 495

for a SqlConnection instance to enlist
itself in a transaction, 403–404

the SqlDataSource control defined on the
Default.aspx page, 37–38

stored procedure for inserting an Animal
into the database, 340

stored procedure for inserting a Pet and a
PetBelonging into the database,
343–344

of syntax for declaring an attribute in XSD,
144

of template for defining a query that
selects products, 452

three possible ways of instantiating the
command object, 80

transactional command execution and
VB.NET, 365–367

for turning off connection pooling for
SqlClient, 69

of TVF used to display the files contained
in a directory, 485–486

of a typical DbProviderFactories section in
the Machine.Config file, 10

for UP_ANIMALINSERT stored procedure,
291

update command in CommandBuilder
object, 264

updating a record using
ColumnMappings, 315–317

for updating only the Dog’s weight, 328
using a key constraint, 154
using <all> element in <complexType>

XSD element group, 148
using BeginEdit/EndEdit methods, 280
using <choice> element in

<complexType> XSD element group,
148–149

using CommandStream property to set a
stream instance, 449

using Commit and Rollback methods,
361–362

using <complexType> XSD element mixed
attribute, 147

using <documentation> element, 151
using DoDataMappings method to add

table mapping to the data adapter,
209

using ExecuteToStream() method to run
query and fetch results, 450–451

using ExecuteXmlReader method to read

using FindByCustomerID method by
using a strongly typed DataTable, 219

using Find method to identify one
DataRow using a basic DataTable,
217–218

using FOR XML optional arguments,
419

using FOR XML queries with ADO.NET,
435

using GetXml to show DataSet contents as
XML, 131

using <group> element in <complexType>
XSD element group, 149–150

using Merge method to integrate changes
with an existing DataSet, 300

using OPENXML in conjunction with a
SQL DELETE operation, 440

using Select method to find multiple rows
matching a criterion, 220

using Select method to find rows and
specify a sort, 220–221

using <sequence> element in
<complexType> XSD element group,
149

for using SqlConnectionStringBuilder class, 58
using SqlParameter, 451
using SqlXmlParameter object, 451
using templatized queries in Exercise 12.5,

452–454
using the CancelEdit method, 280
using the element directive in a SQL

query, 427
using the Fill method to fill the DataTable,

189
using the new FOR XML PATH syntax,

433–434
using the ORDER BY clause, 428
using the RegionUpdate stored procedure

UPDATE statement, 441
using the xml directive in a SQL query,

427
using the xmltext directive in a SQL query,

428
using UpdateGrams to update date in

Exercise 12.6, 455–456
VB.NET command text for querying for a

result set, 85
working with a connection object,

55–56
working with a strongly typed DataSet,

162–163
working with two commands in two

transactions on different isolation
levels, 374–376

for wrapping UserDefinedFunctions class
inside the HandWrittenUDF
namespace, 465–466

■INDEX 537

5122chIDX.qxd 8/23/05 4:41 PM Page 537

code example (continued)
of FOR XML AUTO query that accesses

ProductProduct Photo and
ProductPhoto, 421

of FOR XML AUTO query that specifies the
ELEMENTS option, 421–422

XML document with two-level hierarchy, 147
of an XML file of an UpdateGram used to

update a product, 455
of an XSD file, 143–144
XSD for visually designed BookDataSet

strongly typed DataSet, 161–162
for the XYCoOrdinate UDT, 101–104

codegen namespace, attributes that affect
code generation of a DataSet,
169–170

column ordinal, using to access a column
value, 84

Column property, for
DataColumnChangeEventArgs
object, 120

ColumnChanged event, function of, 120
ColumnChanging event

behavior of vs. RowChanging event, 125
function of, 120

ColumnMappings, using to update a record,
315–317

Columns, calculating on the fly, 222–224
Columns collection, in DataTable class, 113
Command Builder object, using, 262–266
Command object

function of in ADO.NET, 5
minimum requirements for it to execute

successfully, 78–79
specifying the CommandType property

on, 81
using to query your database, 78–83

CommandBuilder object
experimenting with in Exercise 9.2,

263–266
leveraging to generate queries for you,

265–266
setting the DataAdapter as a property, 264

commands
executing to retrieve results, 82–83
three major categories of, 22

CommandStream property
for SqlXmlCommand object, 448
using to set a stream instance where query

to be executed is stored, 449
CommandText property

setting to the query string for the SQLXML
query, 449

for SqlXmlCommand object, 448
CommandType property

specifying on a command object, 81

Commit method, use of in transactions, 358
Common Language Runtime (CLR). See CLR

(Common Language Runtime)
Common Table Expressions (CTE), new

feature in SQL Server 2005, 461
complex types, function of in XML schemas,

147–150
<complexType> XSD element, 144

attribute groups, 150
for declaring a complex type, 147
element groups, 148

Compute method
example of aggregate values using, 226
for performing aggregate calculations on

an entire DataTable, 224
using and VB.NET, 225

Concatenator aggregate
building the project and deploying it, 493
execution results of query, 494
full code for in C#, 491–492
full code for in VB.NET, 492–493
running a SQL query on, 493

concurrency, implementing: practical
concerns, 331–334

concurrency management scheme
cardinal rules when deciding on, 330–331
deciding which to use, 247, 330–331

concurrency model. See concurrency
management scheme

configuration file
adding a protectedData element to,

63–66
code with encrypted section and

encrypted data, 64–65
conflict detection and concurrency

resolution, 322–331
ConflictOption property

new in ADO.NET 2.0, 263
setting the value for, 264–265

conflicts
handling, 323–331
preventing, 322–323

connected mode, typical sequence of
operations in a transaction,
359–360

Connection Lifetime parameter, function of
in SqlClient connection pooling, 69

Connection object
defining in the Sub Main or static void

main in Exercise 7.5, 205
function of in ADO.NET, 4
viewing in the Visual Studio .NET

component tray, 18–19
connection objects

creating, 54–57
differences between calling Close and

Dispose methods or none at all, 75

■INDEX538

5122chIDX.qxd 8/23/05 4:41 PM Page 538

connection pooling, 22
closing connection: good application

design, 74–75
code for explicitly disabling, 71
dealing with corrupt connection pools,

73–74
deciding on the right pool size for your

application, 72–73
effects of in data readers vs. DataSets,

516–517
how it works, 71–72
parameters that can be set using the

connection string, 69–70
what it is and how it is used, 68–74

connection pools, dealing with corrupt,
73–74

Connection Reset parameter, function of in
SqlClient connection pooling, 69

connection strings
adding code to allow use of asynchronous

commands, 94
code for connecting to an Access

database, 61
code for retrieving, 65
code for specifying the .udl file as yours, 61
the easy way to any, 60–62
generating provider-specific, 57–60
reasons not to hard code, 62
securing, 62–66
for specifying settings to connect to a data

source, 54
connections

importance of closing, 523–524
importance of closing after use, 50
opening on a database called “Test”,

55–57
ConnectionString property

function of, 67
using to specify parameters, 54–55

ConnectionTimeout property, function of, 67
Consistent transactions, defined, 356
ConsoleApp application, downloading from

Apress Source Code section, 45
ConsoleApp2 application

creating, 48–51
downloading from Apress Source Code

section, 48
ConsoleApplication, creating and naming

Exercise 7.5, 205
constraining facets, list of that can be applied

to a simple type, 146
Constraint object, function of in

ADO.NET, 6
ConstraintName attribute, of msdata

namespace, 170
ConstraintOnly attribute, of msdata

constraints
enforcement of data integrity in relational

databases with, 115–116
use of on contents of a DataSet, 154–159

Constraints collection, in DataTable class, 113
ContainedElementName, function of in FOR

XML EXPLICIT query, 424
context connection, 494–504

advantages of using vs. a loop-back
connection, 495

restrictions on using, 495–496
ContinueUpdateOnError property, setting

for a DataAdapter, 333–334
control levels, designating for your SQL

Server code, 463–464
cowboy-style application, defined, 72
CREATE XML SCHEMA statement, for setting

up a MySchemaCollection database,
444

CreateCommand method, for creating a
Command object, 67

CreateDataSet class library project,
downloading from Apress website, 214

CreateParameter() method, for
SqlXmlCommand object, 448

Current constant, for DataRowVersion
enumeration, 282

CustomerID, using to find out what products
were ordered by customer, 227–232

customerProducts DataSet
code for defining relationships in, 228
code for loading in C# and VB.NET, 227–228

CustomerProducts table, many-to-many
mapping between customers and
products in, 214

Customers table, populating sample rows for,
364

Customers/Products scenario, data structure
for, 214

CustomersView DataView
data loaded in and databound to a

DataGridView control, 235
data loaded, sorted, and databound to a

DataGridView control in, 235
filtering out rows where last name ends in

OfJungle, 235–236
finding rows based on a sort key in, 237–238

CustProd strongly typed DataSet
loading and data binding in the

constructor, 296–297
structure of, 295

■D
data

advanced scenarios for updating, 321–353
fetching with DataReader and

DataAdapter objects, 24–25

■INDEX 539

5122chIDX.qxd 8/23/05 4:41 PM Page 539

data (continued)
questions to ask before creating the

updating part of your application,
247

refreshing in a real-world application,
203–204

retrieving in a connected fashion, 77–107
updating back into the data source,

247–319
using mapping when retrieving, 207–211

data access layer
advantages of implementing, 74
for interacting with a database, 74–75

data adapter, adding the DataTableMapping
object to TableMappings property of,
208–209

data connection, choosing in the Data
Source Configuration Wizard,
40–41

Data Definition Language (DDL),used to
define structure of the database, 22

data layer
deciding what kind of data sanctity or

integrity you require, 247
deciding which concurrency management

scheme to use, 247
determining what you are designing it for,

247
reasons for implementing, 523

Data Link Properties dialog box, creating
connection strings to connect to an
Access database in, 60–62

Data Manipulation Language (DML), used to
run queries, 22

data providers, advantages of using data-
source specific over generic, 9

Data Query Language (DQL)
interleaving rules regarding, 382–383
used to query data out of the database, 22

data readers
attempting to run two on the same open

connection concurrently, 379–381
vs. DataSet when writing applications,

515–517
effects of connection pooling in, 516–517
memory consumption of vs. that of

DataSets, 515
support for multiple result sets, 516

Data Source Configuration Wizard
choosing the appropriate data source in,

181
choosing the data connection in, 41
choosing the Demo table to be part of

your data source, 42
choosing to save the connection string in, 41
choosing your database objects in,

data sources
connecting to, 53–75
creating for the Hello World application,

31–32
creating table structure for, 179–180
operations involved in communicating

with, 77–78
setting up, 34–35, 179–180
a typical program and its, 2

Data Sources window
choosing display mode for UserTable in,

183–184
enabling, 180
in Visual Studio 2005, 39–40

Data Source type, choosing in the Data
Source Configuration Wizard, 40

data transfer objects, DataSets as, 134–140
data types, valid in XSD schema, 143
DataAdapter

setting as a CommandBuilder object
property, 264

using transactions with, 389–392
DataAdapter class, function of, 13
DataAdapter object

downside of using, 275
fetching data, 24–25, 177–212
function of in ADO.NET, 5
structure of, 178–179

DataAdapter.RowUpdated event
adding and updating a new row in the

database with, 292–293
using vs. UP_ANIMALINSERT stored

procedure for adding a new row,
292–293

DataAdapters, putting to use, 179–204
database

code for persisting inserts back into, 344–345
drawbacks of locking other users out of,

323–325
querying for multiple result sets, 96–99
retrieving UDT data in a connected

fashion from, 105–106
storing objects in, 100–105
what can happen between querying and

saving, 322
database commands, for manipulating

database data, 78
database connections, opening on a

database called “Test”, 55–57
Database Explorer/Server Explorer window

adding a connection to set up the data
source, 34–35

opening, 34
Database Manipulation Language (DML),

commands for manipulating
database data, 78

atabase property, function of, 67

■INDEX540

5122chIDX.qxd 8/23/05 4:41 PM Page 540

database schema, querying, 196–204
database table, 217
database transactions

in business applications, 357–358
commands frequently used in, 358–359

DataBind button, creating an event handler
for its click event, 187

DataColumn, function of in a DataTable,
113–114

DataColumn object, function of in ADO.NET, 6
DataColumnChangeEventArgs object

properties, 120
received by handlers for column-related

events, 120
DataColumnCollection data type

Columns property of, 113
overloaded versions of Columns property

available on, 113–114
data-driven application

creating using the drag-and-drop
approach, 32–45

the “write code yourself” approach,
48–51

DataGridView
adding to Exercise 7.2 form, 185
a DbDataRecords ArrayList databound

with, 90
DataGridView control (dgView)

adding to the Exercise 8.8 form, 234
adding to the XmlDataDocument, 241

DataGridView controls, adding to CustProd
strongly typed DataSet, 295–296

DataReader object
as bridge between connected and

disconnected worlds, 22
fetching data with, 24–25
function of in ADO.NET, 5

DataRelation object
constructing explicitly and adding to the

Relation collection, 127
constructing using an array of

DataColumns, 127–128
function of in ADO.NET, 6
as simile of a foreign-key constraint, 23
working with, 226–232

DataRelationCollection class,
DataSet.Relations property as
instance of, 125–128

DataRelations, finding parent rows for all
identified rows to get product details,
231

DataRow, state management and its use in
updating data, 266–274

DataRow objects
adding to the DataTable.Rows collection,

114–115

DataRowChangeEventArgs properties, 121
DataRowCollection object, finding a row

with, 217–219
DataRow.HasErrors property, for verifying

if a row has errors in it or not,
333–334

DataRows
adding new to a DataTable, 278–279
deleting existing, 281–283
filling the DataTable object with, 117–118
looking at the history of while changes are

being made, 282
modifying by loading an object array into

the ItemArray property of, 280
modifying existing, 279–281

DataRowState enumeration, table of various
values in, 266–267

DataRowVersion enumeration, constants
table, 282

DataRowViews, ways to search through those
contained inside a DataView object,
233

DataSet(BookDataSet.xsd), code for
producing a working file, 152–153

DataSet class, overloaded Merge() methods,
310

DataSet object, InferXmlSchema method on,
240

DataSet object model, main constituents of,
111–112

DataSet objects
as closest parallel to an RDBMS database,

23
contents of, 23
creating a relationship between two tables

in, 126
function of in ADO.NET, 5
holding disconnected data, 22–24
how XSDs apply to, 151–159
using for working with a disconnected

model, 111
DataSet object structure, overview of major

data provider–independent
disconnect objects, 23

DataSet schema
code for filling in C# and VB.NET, 199
and data example without the schema

loaded in Exercise 7.4, 202
and data example with the schema loaded

in Exercise 7.4, 201
DataSet type, adding to Exercise 7.3, 193
DataSet.Relations property, of the

DataRelationCollection class,
125–128

DataSet.Relations.Add() method, invoking to
create a relationship between two
tables in a DataSet, 126

■INDEX 541

5122chIDX.qxd 8/23/05 4:41 PM Page 541

DataSets, 109–175
accessing in a more programmer- and

reader-friendly fashion, 141
advantages of business objects as

compared to, 517–519
annotated typed example, 171–174
building strongly typed, 159–168
building strongly typed manually, 167–168
vs. business objects, 134
vs. business objects, strongly typed or not,

517–519
code for loading data and schema from

XML and XSD, 153–154
contents of with Nested property set to

false, 132–133
contents of with Nested property set to

true, 133–134
vs. data readers when writing

applications, 515–517
as data transfer objects, 134–140
displaying contents of as XML in the

xmlBrowser control, 200
effects of complicated hierarchical on

performance, 525–526
effects of connection pooling in, 516–517
filling more than one table, 190–196
filling programmatically, 190–191
how relations and constraints work

within, 128–134
an introduction to strongly typed, 140–174
keeping in sync with the XmlDocument,

244
memory consumption vs. that of data

readers, 515
merging, 310
passing over Remoting or web-service

boundaries, 135
performance of strongly typed, 168
problems due to not being strongly typed,

140
pros and cons of specifying schemas on,

240
setting up in C# and VB.NET, 215
vs. strongly typed DataSets, 517
support for multiple result sets, 516
taking changes and persisting them to the

database, 262
use of constraints on contents of, 154–159
using BinaryFormatter to Serialize and

Deserialize, 137–138
using Merge method to integrate changes

with an existing, 300
using transactions with, 389–392

DataTable
checking the final row states of the

updated in Exercise 9.3, 273–274

creating a new row and not adding to the
animalsTable DataTable, 271

extracting a DataTable with fewer
columns than the original from,
239–240

finding distinct result sets in, 239
loading in the event handler for btnLoad’s

click event, 287–288
row states for a freshly filled, 269
row states for a modified, 271
selecting a number of rows from,

219–222
using Merge method to integrate changes

with an existing, 300
working in, 216–226

DataTable class
function of, 112–113
various collections in, 113

DataTable events
main categories of, 121
practical usage of, 121–125
table of System.Data.DataTable events,

120
DataTable object

constraints, 23
contents of, 23
dynamically constructing, 116–120
filling with DataRows, 117–118
function of in ADO.NET, 6
setting up various event handlers on,

122
as simile to a table, 23
using Math.IEEERemainder() method to

populate, 117–118
DataTableClearTableEventHandler

properties, 121
DataTableMapping Object, creating to use

ADO.NET mappings, 207
DataTable.Rows collection, adding new

DataRow objects to,
114–115

DataTable.Rows object, finding a row with,
217–219

DataTables
other ways of merging, 309–310
relationships set up between in Exercise

10.1, 335
DataType property, specifying on a basic

DataColumn before it’s filled with
data, 223

DataView
converting to a DataTable, 239–240
creating, 232–240

DataView object
creating a new DataTable based on rows

available in, 239
function of in ADO.NET, 6

■INDEX542

5122chIDX.qxd 8/23/05 4:41 PM Page 542

properties to convey necessary
information, 233

working with, 232–240
DbCommand class, function of, 13
DbCommand object, for executing a

command, 19–21
DbCommandBuilder class, function of, 13
DbCommand.ExecuteReader method, for

getting a collection of IDataRecord
objects, 85

DbConnection class
establishing a connection, 17–19
function of, 13
hierarchy showing SqlConnection and

OracleConnection classes, 17
introduced in ADO.NET 2.0, 68

DbConnectionOptions class, function of, 13
DbConnectionStringBuilder class

function of, 13
for generating provider-specific

connection strings, 57
DbDataAdapter class

the bridge between connected and
disconnected worlds, 25–26

function of, 13
SqlDataAdapter and OracleDataAdapter

inherit from, 26
DbDataAdapter.Update(DataTable)

constant, function of, 346
DbDataAdapter.Update(DataSet) constant,

function of, 346
DbDataAdapter.Update(DataRow[])

constant, function of, 346
DbDataAdapter.Update(DataSet, String)

constant, function of, 346
DbDataAdapter.Update(DataRow[].DataTabl

eMapping) constant, function of, 346
DbDataAdapter.Update overloads, table of, 346
DbDataReader class

the connected way to fetch data, 24–25
function of, 13

DbDataRecord class, function of, 13
DbDataRecords, code for creating a

disconnected cache of, 89
DbDataRecords Arraylist, databound with a

DataGridView, 90
DbException class, function of, 13
DB.MDB database (Microsoft Access),

adding a record to, 311–314
DbParameter class

creating parameterized commands, 20–21
function of, 14

DbProviderConfigurationHandler class,
function of, 14

DbProviderFactories section, typical code in
the Machine.Config file, 10

dbRecordsHolder, code for adding to
DbDataRecords file, 90

DbTransaction class
function of, 14
that implements IDbTransaction, 19

DbTransaction object, for grouping together
various commands, 392

DDL. See Data Definition Language (DDL)
deadlock detection mechanisms, resolving

database contention issues with, 352
deadlocks, within one MARS transaction, 385
Debug Output window, making visible and

setting the proper filter, 473
debugging

making the Output window visible and
setting the proper filter, 473

SQLCLR code, 472–475
Default constant, for DataRowVersion

enumeration, 282
default result sets, 379
Default.aspx page, opening, 33
DELETE command, using to manipulate

database data, 78
DELETE method, calling to delete existing

rows from a DataTable, 281–282
DeleteCommand, 257–258
DeleteRule attribute, of msdata namespace,

170
deleting

hierarchical data, 347
a record identified by AnimalID and

AnimalName, 260–261
Demo table

configuring the data source’s, 42
creating, 31–32

DemoID column, creating in Demo table, 32
DemoOpenXML method, using to created a

SqlCommand instance for executing
RegionInsert, 441

DemoValue column, creating in Demo table, 32
Design mode, Exercise 7.2 form in, 185
Design view

application form created using drag and
drop in, 249

many-to-many relationship mapping
example form in, 227

dgView (DataGridView)
databinding to a DataView called

CustomersView, 234–235
dialog boxes

Example 5.4 final databound UI with a
large number of results, 95

Example 5.4 notification of the callback’s
execution, 95

Diary column, <Chapter> elements retrieved
from, 428–429

am. See XML diffgram

■INDEX 543

5122chIDX.qxd 8/23/05 4:41 PM Page 543

Directive, function of in FOR XML EXPLICIT
query, 424

Directives, table of for the FOR XML
EXPLICIT clause, 427

dirty read
in reference to isolation levels, 370
as a result of the first part of a distributed

transaction, 400
disconnect objects, overview of major data

provider–independent involved in
DataSet object structure, 23

disconnected data
adding new rows or existing rows to a

DataTable, 278–279
editing, 278–283
implementation of, 22
leveraging XML to work with, 240–244
a real-world example of editing, 283–294
setting up the data source, 214–216

disconnected data caches, various
exceptions thrown by, 28

disconnected mode, typical sequence of
operations in a transaction, 360–361

disconnected model
the case for, 109–111
desirable characteristics for, 110

disconnected objects, in ADO.NET, 5–7
Dispose method, on a connection object

defined by IDisposable interface, 66
Distributed Transaction Coordinator (DTC),

transactional coordination for
distributed applications provided by,
392–393

distributed transaction model, function of, 357
distributed transactions, 392–408

example for dealing with distributed
transactions in .NET 1.1, 397

example of a dirty read as a result of the
first part of, 400

implementing the .NET 1.1 way, 393–397
implementing the .NET 2.0 way, 397–401
important players in, 392–393
ODP.NET component with ability to enlist

itself in using enterprise services,
394–396

typical flow of, 393
DML. See Data Manipulation Language

(DML)
<documentation> element, using with XML

schema file, 151
DoDataMappings method

creating the usersMapping object,
208–209

declaring DataColumnMapping objects,
208

shortened version using TableMappings in

DQL. See Data Query Language (DQL)
drag-and-drop approach

in ASP.NET 2.0, 33–39
creating a data-driven application with,

32–45
creating a data-driven Windows Forms

application with, 39–45
DragDropWebsite

downloading from Apress Source Code
section, 33

ds.GetChanges(), using to update the
database, 458–459

DTC. See Distributed Transaction
Coordinator (DTC)

DTS (Data Transformation Services), moving
large amount of data between
databases with, 276

dummy IDs
generating for the AnimalID column when

disconnected from the database,
286–287

setting up the empty table’s schema in
C#, 286

setting up the empty table’s schema in
VB.NET, 286–287

durable enlistment, function of, 402
Durable transactions, defined, 357

■E
EditData application, creating the loaded

XML file with, 215–216
Editing disconnected data, 278–283
element directive, using in a SQL query,

427
element groups, <complexType> XSD

element, 148
<element> element, in XSD file, 144
ELEMENTS, use of in FOR XML AUTO

queries, 419–420
encrypted data, code for saving to a

configuration file, 63
Enlist parameter, function of in SqlClient

connection pooling, 70
entity encoding

for including XML special characters in
data, 426

table of various representations for use in
XML documents, 426

enumeration constraining facet, function of,
146

enumerations, function of in XML
documents, 144–145

error messages
results of attempting to insert Monkey

into the Person table, 507
from running the InsertName stored

procedure T-SQL script, 502

■INDEX544

5122chIDX.qxd 8/23/05 4:41 PM Page 544

Error setting
for MissingMappingAction property of the

data adapter, 211
for MissingSchemaAction property of the

data adapter, 211
error-handling blocks, incorrect way of

ordering, 27
event handlers

code for implementations of, 122–123
code for setting up various on a

DataTable, 122
Example 5.1 project, importing disconnected

and connected namespaces for, 79–81
Example 9.5, for examining the behavior of

GetChanges and Merge methods,
295–311

exception handling, in ADO.NET, 26–30
exceptions

disconnected stack inheriting from
System.Data.DataException, 28–29

other ADO.NET inheriting directly from
System.Exception, 30

provider stack-specific inheriting from
System.Data.Common.DbException,
29

SqlTypes-specific inheriting from System.
Data.SqlTypes.SqlTypeException,
29–30

various others thrown by classes in
ADO.NET, 29

various thrown by disconnected data
caches, 28

exclusive lock, in ADO.NET IsolationLevel
enumeration, 371

ExecuteNonQuery method
calling to insert data into an XML

document, 442
problems with using with triggers, 333

ExecuteNonQuery() method, for
SqlXmlCommand object, 448

ExecuteNonQuery method, using on
DbCommand object for catching
conflicts, 327

ExecuteReader method
function of in retrieving a result set, 83
results of using to iterate through a result

set, 87
using to execute the SELECT * FROM

TESTDEMO query, 85
various command behaviors available for, 86

ExecuteScalar method, calling, 82
ExecuteStream() method, for

SqlXmlCommand object, 448
ExecuteToStream(Stream) method, for

SqlXmlCommand object, 448
ExecuteToStream() method, using to run

ExecuteXmlReader() method, for
SqlXmlCommand object, 448

ExecuteXmlReader method
using to execute queries containing a FOR

XML clause, 414
using to read Xml data type, 445

Exercise 7.1
final form in Design mode and final

running application, 184
objects added automatically in the

component tray, 184
Exercise 7.2

adding and instantiating DataTable in the
constructor and VB.NET, 186

adding buttons to, 185
code for setting up the connection,

188
creating a data adapter in, 189
creating a SqlCommand for the MS SQL

Server 2005 database, 188
example of final running application after

compiling, 188
using the Fill method to fill the DataTable,

189
writing code for querying one table,

185–190
Exercise 7.3

adding controls and buttons to form,
192–193

changing the CommndText and
dataAdapter.Fill statements in,
195

DataSet UI fill example with tables filled,
196

for filling a DataSet using two different
DbCommands, 192–196

filling a DataSet with the UserTable, 194
Exercise 7.4

the “Cannot load schema with incorrect
data” exception, 202

DataSet schema and data example
without the schema loaded, 202

DataSet schema and data example with
the schema loaded, 201

DataSet schema and data fill form in
Design mode, 197

filling a DataSet, 198
filling a DataSet schema, 199
querying the database schema,

196–204
Exercise 7.5

creating a data adapter to retrieve records
from a database, 205

filling the DataSet, 205–206
going through rows one by one and

printing values to Console, 206
using the SQL AS keyword, 204–206

■INDEX 545

5122chIDX.qxd 8/23/05 4:41 PM Page 545

Exercise 7.6, using the DoDataMappings
method for declaring
DataColumnMapping objects, 208

Exercise 8.2, selecting a number of rows in a
DataTable in, 219–220

Exercise 8.5, creating an application for
calculating columns on the fly,
222–224

Exercise 8.7, many-to-many relationship
mapping example form in Design
view, 227

Exercise 8.8, creating a DataView object,
233–240

Exercise 8.9
creating a Window Forms application in, 241
examining how XmlDataDocument

works, 241–244
keeping the XmlDocument and the

DataSet in sync, 244
XmlDataDocument and DataTable being

displayed concurrently, 243
Exercise 9.1

adding a new data source for Test
database, 248

current data in the database for testing
row states, 267

a few rows added and saved to the
database, 249–250

main application form created using drag
and drop in Design view, 249

objects added by Visual Studio, 249
resolving concurrency problems in,

252–254
Exercise 9.2, console application using

ConflictOption property, 263
Exercise 9.3

trace results from compiling and running
application, 273

writing application for testing row states,
268–274

Exercise 9.4
adding a new row in the DataTable, 288
loading the DataTable in the event

handler for btnLoad’s click event,
287–288

main form of the application in Design
view, 285

new row added and latest keys fetched
from the database, 292

original data in the DataTable, 285
saving the added DataRows to the data

source, 288–290
setting up the InsertCommand and

saving, 289–290
SQL statements for generating next key

and selecting last generated value, 294

Exercise 9.5, form in Design view, 296
Exercise 9.6

containing a strongly typed DataSet that
defines four tables, 300–311

main form in Design view, 301
various DataTables for, 301

Exercise 10.1
application allowing the user to edit data

at runtime, 337
downloading code from the Apress

website, 334
example of added data after clicking the

Save button, 346
filling the DataSet and data binding it to

the right DataGridViews in, 336–337
Insert, Update, and Delete code for a

hierarchical DataSet in, 348–350
primary keys set up in, 335
resolving issue of code not working for

hierarchical updates, 351–352
the user interface in Design view, 336

Exercise 11.1, downloading from Apress
Source Code section, 365

Exercise 11.2, application that changes
default isolation level of a SQL Server
database, 373–378

Exercise 11.4, application involving two
databases, 398–401

Exercise 11.5, for manually enlisting and
multithreaded environments,
403–408

Exercise 12.1, demonstrating a method to use
the various styles of FOR XML query,
414

Exercise 12.2
demonstrates using OPENXML, 414
using ADO.NET to demonstrate execution

of stored procedures, 441
Exercise 12.3, reading XML columns in

ADO.NET, 444–446
Exercise 12.4

downloading from Apress Source Code
section, 448

using SqlXmlCommand object methods
and properties, 448–451

Exercise 12.5, code using templatized
queries, 452–454

Exercise 12.6, for updating data using
UpdateGrams, 455–456

Exercise 12.7, for updating SqlXmlAdapter
class with XPath and a schema,
456–459

Expert C# Business Objects (Apress, 2004), by
Rockford Lhotka, 22

Expert One-on-One Visual Basic .NET
Business Objects (Apress, 2003), by
Rockford Lhotka, 22

■INDEX546

5122chIDX.qxd 8/23/05 4:41 PM Page 546

EXPLICIT mode, function of in FOR XML
clause, 415

Expression property, example of calculated
columns using, 223

Expressions, calculating columns on the fly,
222–224

extended stored procedures, in comparison
with SQLCLR, 464

extended stored procedures vs. T-SQL vs.
SQLCLR, important points to consider
when making this decision, 520–521

ExtendedProperties property, in DataSet
object model, 112

EXTERNAL_ACCESS control level,
designating for your SQL Server
code, 463–464

EXTERNAL_ACCESS permission level,
specifying appropriate for the TVF,
486–487

■F
Facets, for defining a legal set of values for a

simple type, 146
FamilyDB database

hierarchy description for our query, 424
schema for and relationships in, 423

fetching data, using DataReader and
DataAdapter objects, 24–25

Fill Data button, creating an event handler
for its click event, 186

Fill(DataSet) method, for filling a DataSet
with XML results retrieved from a
query, 456

Fill method, using to fill the DataTable in
Exercise 7.2, 189–190

FillSchema method, preserving data sanctity
by filling a schema right from the
database, 203

FillStrongDataSet method, using to create a
calculated column, 223

Find method
for DataView object, 233
for finding a row in a database table,

217–219
using to identify one DataRow using a

basic DataTable, 217–218
FindByCustomerID method, using by using a

strongly typed DataTable, 219
FindRows method

for DataView object, 233
exception thrown when attempting to

execute without a sort specified,
238

firehose cursors, 379
flags parameter, to OPENXML, 438
FOR XML AUTO queries, example showing

FOR XML clause
code defining, 415
function of in SELECT queries, 414
permissible modes for generating SQL,

415
in SQL Server 2005, 414

FOR XML EXPLICIT directives, 426–429
table of, 427

FOR XML EXPLICIT hierarchy, creating using
UNION ALL to combine results of
multiple queries, 425–426

FOR XML EXPLICIT queries
example showing use of, 417–418
flexibility provided by for generation of

XML documents, 422–432
a three-level example, 429–432
two-level example, 425–429
using with FamilyDB database to generate

an XML document, 423
FOR XML PATH and SQL Server 2005, 433–434
FOR XML PATH queries, example showing

use of, 418
FOR XML PATH syntax, introduced in SQL

Server 2005, 432
FOR XML queries

optional arguments that can be used in
conjunction with, 419–420

a quick review, 415–418
using with ADO.NET, 434–437
XML output using ADO.NET and

XmlReader, 437
FOR XML RAW queries

example showing use of, 415–416
example showing use of with BINARY

BASE64 argument, 420
foreach construct, using GetEnumerator

method in, 88–89
foreign keys (keyrefs), and relationships,

155–159
ForeignKeyConstraint, for enforcing

referential integrity, 115–116
form attribute, in <attribute> element in

XSD, 144
Format.Native, data types that can be used

with, 491
fractionDigits constraining facet, function of,

146

■G
Get[DataType] methods, implemented by the

IDataRecord interface, 84
GetChanges button, DataSet resulting from a

GetChanges operation, 298
GetChanges method

Don’t Dos for, 298
filtering out a DataTable or DataSet with, 295
optimizing your application with, 294–311

■INDEX 547

5122chIDX.qxd 8/23/05 4:41 PM Page 547

GetChildRows() method, invocation of
through the GetBookReviewsRows()
method, 166

GetConcatenatedNames stored procedure
creating, 496–497
modifying the connection string in, 508

GetName method, implemented by the
IDataRecord interface, 84

GetNames stored procedure, creating,
497–499

GetNames.cs/GetNames.vb stored
procedure, creating and naming, 496

GetOrdinal method, implemented by the
IDataRecord interface, 84

GetProviderSpecificValue method, for
returning a string rather than an
XmlReader, 446

GetRandomNumber UDF
creating, 466
output of SQLCLR handwritten, 467
testing, 472

GetString method, using to retrieve textual
representation of the UDT, 106

GetUpdateCommand method, using, 264
GetXml

using to show DataSet contents as XML, 131
GiveMeFakeData()

code for in C#, 135–136
code for in VB.NET, 136–137

greater-than (>) character, entity encoding
representation for, 426

GridView control
adding to the .aspx page, formatting, and

setting properties on, 36
defined on the Default.aspx page, 38–39

<group> element, in <complexType> XSD
element group, 149–150

GUIDs, using as primary keys, 294

■H
HandWrittenUDF class library project,

creating, 465–467
HasErrors property, for DataSet and

DataTable for identifying errors at a
global level, 333–334

Hello World application. See also ADO.NET
Hello World!

compiling and running in ASP.NET, 36–37
setting up the data source, 31–32

hide directive, example using, 428
hierarchical data

deleting, 347
inserting into Exercise 10.1 application,

338–346
order for saving, 348
a sample database, 334

updating, 347
working with, 334–352

high-demand applications, writing ADO.NET
code for, 68–69

history of changes, importance of for working
with disconnected model, 110

hybrid approach
for creating code for ADO.NET Hello

World application, 45–48
results of compiling and running the

application, 46
steps involved in producing code, 46–48

■I
IDataReader interface, implementation of

IDataRecord and IDisposable
interfaces by, 83

IDataRecord interface
a few important methods implemented

by, 83–84
reasons to use SqlDataReader object

instead of, 85–86
IDbConnection interface

common behavior enforced by, 66–67
methods it requires the .NET data

provider writer to implement, 66–67
properties it requires you to implement, 67

IdbTransaction, implemented by the
DbTransaction class, 19

IDisposable interface, importance of
implementation of by connection
object, 66

IDisposable.Dispose method, used for
cleanup jobs for any object, 74–75

idoc parameter, to OPENXML, 438
Ignore setting

for MissingMappingAction property of the
data adapter, 211

for MissingSchemaAction property of the
data adapter, 211

implicit casting, a basic DataSet back from a
strongly typed DataSet, 224

inbuilt scalar types, defined, 99
InferXmlSchema method, on DataSet object,

240
InitAdapter

code for in C#, 258–260
code for in VB.NET, 260–261

injection attacks, parameterized queries
resistant to, 20

INSERT command, using to manipulate
database data, 78

InsertCommand, setting up and saving in
Exercise 9.4, 288–290

Inserting, hierarchical data, 338–346
InsertName stored procedure, creating,

500–501

■INDEX548

5122chIDX.qxd 8/23/05 4:41 PM Page 548

insertPetBelongingCommand, setting up
with insertPetCommand, 340–343

insertPetCommand, setting up with
insertPetBelongingCommand,
340–343

Int32 indexer, using in a loop instead of the
string indexer, 85

interleaved command execution, with MARS,
381

interleaving rules, in a MARS-enabled world,
382–383

interop, used to access COM objects, 3
IsDbNull method, implemented by the

IDataRecord interface, 84
IsNull, Null methods, function of in SQL

queries, 104
Isolated transactions, defined, 357
isolation levels

changing, 373–378
defined, 370
examining the effect of, 370–378
reading current value of, 372
setting up two transactions with

ReadCommitted and
ReadUncommitted, 373–374

understanding related terms used when
discussing, 370–371

working with two commands on the same
table in two transactions on
different, 374–376

IsolationLevel, specification of by the
BeginTransaction method, 66

IsolationLevel enumeration, values
accessible via, 371–372

ItemArray property, modifying a DataRow by
loading an object array into, 280

■K
key constraints

creating, 154
vs. unique constraints, 154–155

KeyInfo command behavior, for
ExecuteReader method, 86

key/keyref syntax, for defining a parent-child
relationship, 171

<keyref> elements, within an XML schema,
155–159

■L
last-in wins, in optimistic concurrency

scheme, 325–326
lblSumPrice label, that holds results of

aggregate calculations, 224–225
length constraining facet, function of, 146
less-than (<) character, used to start each

element within an XML document,

Lhotka, Rockford
Expert C# Business Objects (Apress, 2004)

by, 22
Expert One-on-One Visual Basic .NET

Business Objects (Apress, 2003) by, 22
Lightweight Transaction Manager (LTM),

introduction of in .NET 2.0, 401
lingua franca, defined, 413
LoadDataRow method, for adding a new

DataRow into a DataTable, 279
local transaction model, function of, 357
loop-back connection vs. advantages of

using context connection, 495
LTM. See Lightweight Transaction Manager

(LTM)

■M
Machine.Config file, code showing a typical

DbProviderFactories section in, 10
Main procedure, creating and setting up the

SqlConnection object in, 79–80
mapped names, using to update records,

311–318
mapping

column names with built-in SQL feature,
204–206

provided by ADO.NET, 206–211
using when retrieving data, 207–211

MARS (Multiple Active Resultsets), 73
code for accessing multiple parallel data

readers in Oracle, 378
deadlocks within one transaction, 385
interleaved command execution with,

381
a little practical word of advice, 384–385
new feature supported in SQL Server 2005

and above, 378–382
and transaction savepoints, 383
and transactions, 382–385
when not using SqlClient, 381–382

Math.IEEERemainder() method, using to
populate the DataTable object,
117–118

Max Pool Size parameter, function of in
SqlClient connection pooling, 70

maxExclusive constraining facet, function of,
146

maxInclusive constraining facet, function of,
146

maxLength constraining facet, function of,
146

Merge Case 1, same table structures, no
primary key, 302–303

Merge Case 2, same table structures, with
primary key, 303–305

Merge Case 3, common column, no primary
key, 305–306

■INDEX 549

5122chIDX.qxd 8/23/05 4:41 PM Page 549

Merge Case 4, common column, with
primary key, 306–308

Merge Case 5, absolutely different table
structures, 308–310

Merge methods
code for, 302
for merging a specified DataSet,

DataTable, or array of DataRow
objects, 295

merging two DataSets/DataTables with
different schemas, 310–311

optimizing your application with, 294–311
overloaded DataSet class, 310
using to integrate changes with an existing

DataSet, 300
Microsoft ADO.NET. See ADO.NET
Microsoft Data Access Application Block,

website address for downloading,
74

Microsoft Distributed Transaction
Coordinator (MSDTC). See also
Distributed Transaction Coordinator
(DTC)

used by large applications where more
than one database is involved, 357

Microsoft .NET Framework, ADO.NET as a
part of, 2–3

Microsoft SQL Server 2005, strong support
for transactions provided by, 357

Microsoft Transaction Server (MTS), and
COM+ as popular middlewares,
357

Microsoft universal data link (.udl) file, as
alternative method for creating
complex connection strings, 60–62

Min Pool Size parameter, function of in
SqlClient connection pooling, 70

minExclusive constraining facet, function of,
146

minInclusive constraining facet, function of,
146

minLength constraining facet, function of,
146

MissingMappingAction property, settings,
211

MissingSchemaAction argument, function
of, 310

MissingSchemaAction enumeration, values
table, 311

MissingSchemaAction property, value
settings, 211

mixed attribute, using with <complexType>
XSD element, 147–148

MonkeyTrigger, deploying after compiling
and building, 507

msdata namespace, attributes to control the

MSDTC (Microsoft Distributed Transaction
Coordinator). See also Distributed
Transaction Coordinator (DTC)

events that cause transaction escalation
to, 402–403

used by large applications where more
than one database is involved, 357

MSDTC transactions, pros and cons of using,
409

Multiple Active Resultsets (MARS). See MARS
(Multiple Active Resultsets)

multiple result sets, support for by data
readers and DataSets, 516

myfile.udl file, code example of content,
61–62

■N
NameRow class, code for creating for

SqlServerTVF project, 476
Namespaces property, for SqlXmlCommand

object, 448
NameSplitter class

creating for SqlServerTVF project, 477
implementing, 478–479

Nested property
contents of DataSet with it set to false,

132–133
contents of DataSet with it set to true,

133–134
nested transactions, initiating, 389
.NET code, enabling execution of inside SQL

Server, 467
.NET data providers

specific implementations for a specific
database referred to as, 7

third party, 12–14
and where they fit into the bigger picture, 7

.NET Framework
kinds of serialization in, 135
SqlBulkCopy class introduced in, 275
System.XML namespace built into it,

413
.NET Framework 1.x, specifying connection

string as appSetting element in,
62

.NET Framework 2.0
code for configuration file with encrypted

section, 63
connection string security enhancements

in, 62–63
network latency, negative effect of on large

applications, 524–525
new database reference

creating in the New Database Reference
dialog box, 469

warning dialog box when adding a new,
470

■INDEX550

5122chIDX.qxd 8/23/05 4:41 PM Page 550

New Database Reference dialog box, creating
a new database reference in, 469

Newton, Sir Isaac, 15
NOCOUNT setting, using inside triggers, 333
non-context connections

opening by specifying a full connection
string, 510

resolving problems with, 509–510
using inside SQLCLR, 508–511

None value, System.Data.Rule enumerator, 116
non-repeatable read, in reference to isolation

levels, 370
null values, working with nullable columns

in the database, 331–332
nullValue attribute, of codegen namespace,

169–170

■O
object-oriented representation vs. relational

representation, 99–107
Open method, for opening a connection to

the database, 67
OPENXML, using with ADO.NET, 441–443
OPENXML function

defined showing optional parameters, 437
parameters to, 438
script to create various stored procedures

using, 438–439
in SQL Server 2005, 414
of SQL Server’s T-SQL, 437–443
using in conjunction with a SQL DELETE

operation, 440
utilization of in the consumption of XML,

414
OPENXML stored procedures, Deletes and

Updates, 440–443
openXMLCommand, creating a parameter

for the Parameters collection, 442
OpenXMLSP.sql script, downloaded from

Apress Source Code section, 438
optimistic concurrency

check all columns before an update,
326–327

checking only modified columns and
primary key before an update,
327–328

last-in wins, 325–326
various options in, 325–330

Oracle
code for returning multiple result sets in a

stored procedure, 97–98
writing Exercise 9.4 in, 293–294

Oracle 9i, strong support for transactions
provided by, 357

Oracle sequence
creating, 293

OracleCommand object
specifying parameters to, 21
Transaction and Connection properties, 20

OracleConnection class, establishing a
connection, 17–19

OracleConnectionStringBuilder class, for
generating provider-specific
connection strings, 57

OracleDataAdapter, structure of in ADO.NET,
178–179

OracleDataReader, inheriting from
DbDataReader, 25

OracleType.Cursor type, specifying
parameters of to SelectCommand on
the OracleDataAdapter, 192

ORDER BY clause, example using, 428
Original constant, for DataRowVersion

enumeration, 282
OutputEncoding property, for

SqlXmlCommand object, 448
Overflow, defined, 437

■P
Parameter object, function of in

ADO.NET, 5
parameterized queries, advantages of,

20–21
parameters

specifying to a command, 19–21
specifying to the SqlCommand and

OracleCommand objects, 21
specifying using the ConnectionString

property of SqlConnection object,
54–55

syntax for adding to the SqlXmlCommand
object query, 450

parent rows, finding for all identified rows to
get product details, 231

Parse method, used to perform a translation
between a scalar type and the UDT,
104

Passthrough setting, for
MissingMappingAction property of
the data adapter, 211

PATH mode, function of in FOR XML clause,
415

pattern constraining facet, function of, 146
per-column encoding, subcomponents that

make up the explicit declaration of a
column, 424

performance, effect of transactions on, 409
Performance Monitor, verifying number of

connections being established to the
database in, 72

Permission Level property, setting the
appropriate for SqlTVFExternalAccess,
486

■INDEX 551

5122chIDX.qxd 8/23/05 4:41 PM Page 551

Person table, SQL query for getting names of
all people with the “Reviewer” role,
487

Person.Contact table, schema used to update
in Exercise 12.7, 457

pessimistic concurrency, drawbacks of
locking other users out of database,
323–325

pessimistic locking. See also exclusive lock
in ADO.NET IsolationLevel enumeration,

371
PetBelonging.PetBelongingID, set up as

primary key in Exercise 10.1, 335
PetID= property, in the Pets table, 129
PetName property, in the Pets table, 129
Pets table, properties in, 129
petsData

code for data binding, 131
code for setting up a Schema for, 130

Pets.PetID, set up as primary key in Exercise
10.1, 335

phantom read, in reference to isolation
levels, 371

Pipe property, of SqlPipe data type provided
by the SqlContext object, 496

Pooling parameter, for enabling or disabling
pooling in SqlClient connection
pooling, 70

primary key
setting a DataTable’s to an array of

DataColumns, 116
specified in the DataSet schema in

Exercise 7.4, 203
primary-key conflicts, avoiding by using

GUIDs, 322–323
PrimaryKey property, setting a DataTable’s to

an array of DataColumns, 116
primitive data types, providing enumerations

for, 144–145
Products table, populating sample rows for, 364
productsTable

code examples for filling, 117
code for in XML, 119–120

promotable enlistment
function of, 402
a quick primer, 401–403

Proposed constant, for DataRowVersion
enumeration, 282

ProposedValue property, for
DataColumnChangeEventArgs
object, 120

provider model, supported by ADO.NET, 7–8
ProviderBase model

putting to work, 11–12
using, 9–12

provider-specific connection strings,

■Q
quotation mark (“) character, entity encoding

representation for, 426

■R
Rammer, Ingo and Mario Szpuszta, Advanced

.NET Remoting, Second Edition
(Apress, 2005) by, 135

RAW mode, function of in FOR XML clause,
415

RDBMS transactions, pros and cons of using,
409

ReadCommitted value, possible in
ADO.NET IsolationLevel
enumeration, 371

ReadUncommitted isolation level, dirty read
demonstration using, 376

ReadUncommitted value, possible in
ADO.NET IsolationLevel
enumeration, 371

real-world example
of editing disconnected data, 283–294
using stored procedures, 285

REF CURSORS, code for creating a stored
procedure that returns multiple
output, 97–98

reference chapter, for the ADO.NET object
model, 15–30

RegionDelete stored procedure
setting the openXMLCommand’s text to,

443
using OPENXML in conjunction with,

440
RegionInsert stored procedure

adding to the test database, 440
steps involved in creation of, 439–440

RegionUpdate stored procedure
demonstrating use of, 442
included in OpenXMLSP.sql, 440
using an XML document for data used to

update Region table, 440–441
relational data, 125–128
relational representation vs. object-oriented

representation, 99–107
Relations property, in DataSet object model,

112
Relationship element, function of in msdata

namespace, 170–171
Remoting, book for good discussion on, 135
RemotingFormat property, backward

compatibility with ADO.NET 1.1,
138

Remove/RemoveAT methods, deleting
existing DataRows from a DataTable
with, 281–282

RepeatableRead value, possible in ADO.NET
IsolationLevel enumeration, 372

■INDEX552

5122chIDX.qxd 8/23/05 4:41 PM Page 552

resource managers (RMs), as important
players in distributed transactions,
392–393

<restriction> tag, creating with a base
attribute within a <simpleType>
element, 145

result sets
fetching an entire, 85
querying for storage, 88–91
querying large ones asynchronously,

91–96
querying the database for multiple, 96–99
reading, 22
results of iterating through, 99
results of using ExecuteReader method to

iterate through, 87
retrieving, 83–88

RMs. See resource managers (RMs)
Rollback method

use of in transactions, 359
used with the savepoint name as a

parameter, 386–389
ROOT keyword, used for wrapping entire

output in one node named XML,
431–432

RootTag property, for SqlXmlCommand
object, 448

Row property
for DataColumnChangeEventArgs object,

120
for DataRowChangeEventArgs object,

121
for TableNewRow object, 121

row states
changes after they are examined in

Exercise 9.1, 267
checking for new row added to a

DataTable, 271
final after a successful update in Exercise

9.3, 274
for a modified DataTable, 271
writing a Console application for testing,

268–274
RowChanged event, function of, 120
RowChanging event

behavior of vs. ColumnChanging event, 125
function of, 120

RowDeleted event, function of, 120
RowDeleting event, function of, 120
RowFilter property, function of on the

DataView object, 233
rowpattern parameter, to OPENXML, 438
rows

adding new to a DataTable, 278–279
building a check-in/check-out

functionality of in an application,

deleting existing, 281–283
modifying existing, 279–281
removing all from the DataTable’s Rows

collection, 281
working with multiple being updated,

333–334
Rows collection, in DataTable class, 113
RowStateFilter property, function of on the

DataView object, 233

■S
SAFE control level, designating for your SQL

Server code, 463–464
Save method

for implementing savepoints in ADO.NET,
386–389

use of in transactions, 359
savepoints

defined, 386
implementing in ADO.NET, 386–389
and MARS, 383

saving, hierarchical data, 347–350
scalar value, retrieving from your database,

78–83
SchemaOnly command behavior, for

ExecuteReader method, 86
SchemaPath property, for SqlXmlCommand

object, 448
Schemas, annotating, 150–151
SCOPE_IDENTITY(), working as a

nonblocking sequence number
generated in SQL Server, 292

Security, categories of access for managed
code inside SQL Server, 100–101

SELECT * FROM TESTDEMO query, using
ExecuteReader method to execute, 85

SELECT @@ROWCOUNT, executing to find
exact number of rows modified, 333

SELECT command
for querying your database, 78
using to query SQL Server, 379

Select method
selecting a number of rows from a

DataTable with, 219–222
using to find multiple rows matching a

criterion, 220
using to find rows and specify a sort,

220–221
SELECT queries, function of FOR XML

clauses in, 414
<sequence> element, in <complexType> XSD

element group, 149
SequentialAccess command behavior, for

ExecuteReader method, 86
serializable object, defined, 110
Serializable value, possible in ADO.NET

IsolationLevel enumeration, 372

■INDEX 553

5122chIDX.qxd 8/23/05 4:41 PM Page 553

Serialization, kinds of in .NET Framework, 135
SerializationFormat.XML, as only choice in

ADO.NET 1.1, 140
Server Explorer dialog box, new database

reference listed in, 470
server-side cursor, creating a scrollable and

updatable, 324
ServiceConfig class, example for dealing with

distributed transactions in .NET 1.1,
397

SetAbort, function of, 394
SetComplete, function of, 394
SetDefault value, System.Data.Rule

enumerator, 116
SetNull value, System.Data.Rule enumerator,

116
shared locks, in ADO.NET IsolationLevel

enumeration, 371
Show All Files button, in Visual Studio IDE, 250
<simpleType> element

creating a <restriction> tag with a base
attribute within, 145

using in XSD to create an enumeration,
145

SingleResult command behavior, for
ExecuteReader method, 86

SingleRow command behavior, for
ExecuteReader method, 86

Snapshot value
possible in ADO.NET IsolationLevel

enumeration, 372
running example with IsolationLevel set

to, 377
Solution Explorer, adding a new UDF to your

project in, 470–472
Sort property, function of on the DataView

object, 233
sorting, searching, and filtering, various

objects and facilities ADO.NET
provides for, 213–245

sp_addtype stored procedures vs. User-
Defined Types (UDTs), 100

SQL (Structured Query Language)
traditional mapping methods provided by,

204–206
use of for communication with a data

source, 77–78
using to query for UDT data, 105

SQL aliasing method vs. ADO.NET mapping
method, 206

SQL DELETE operation, using OPENXML in
conjunction with, 440

SQL query
for getting names of all people with the

“Reviewer” role, 487
results of getting names of all people with

SQL Server
categories of access security for managed

code inside, 100–101
the CLR in, 461–511
designating level of control for your code

in, 463–464
how CLR works on vs. on a Windows

machine, 462–464
native XML support, 413
requirements for running CLR code

inside, 465
setting up a trace on to capture all queries

being sent to the database, 273
working with XML features SqlXml, 446–459

SQL Server 2005
Common Table Expressions (CTE) feature

in, 461
key XML features in, 414
registering the HandWrittenUDF

assembly inside, 466
and FOR XML PATH, 433–434

SQL Server CLR. See also SQLCLR
different from your operating system in

two major respects, 100
SQL Server database, changing isolation level

from ReadCommitted to
ReadUncommitted, 373–378

SQL Server Management Studio, possible
error message from SQL query, 105

SQL Server project
steps for creating in Visual Studio 2005,

468–472
using to author code written for SQLCLR

in Visual Studio 2005, 465
SQL Server Project wizard, for creating a

UDT in Visual Studio 2005, 101–105
SqlBulkCopy application

creating the datareader for, 276–277
steps for creating, 276–278

SqlBulkCopy class
introduced in .NET Framework, 275
moving large amount of data between

databases with, 276–278
SqlClient

connection pooling key-value pairs, 69–70
interleaved command execution with

MARS, 381
MARS when not using, 381–382
turning off connection pooling, 69

SQLCLR
appropriate use of, 462–464
vs. business layer, 462
in comparison with extended stored

procedures, 464
reliability of code vs. extended stored

procedures, 464
rules for using vs. T-SQL, 462

■INDEX554

5122chIDX.qxd 8/23/05 4:41 PM Page 554

SqlTransaction in, 504
using non-context connection inside,

508–511
writing stored procedures in, 94

SQLCLR aggregate
adding a new to your project, 489
creating, 488–490
methods that exist for Concatenator, 489
skeleton code for in C#, 489–490
skeleton code for in VB.NET, 490

SQLCLR code
debugging, 472–475
debugging without the aid of the SQL

Server project, 474–475
SQLCLR stored procedures

vs. extended stored procedures, 464
steps for writing, 496–504
using to call the aggregate written in the

SqlServerAggregate project, 494
writing, 494–504

SQLCLR triggers
adding and modifying the code, 505–506
using transactions in, 504–507

SQLCLR UDF
code for creating GetRandomNumber, 466
creating without leveraging a SQL Server

project, 465–467
SQLCLR vs. T-SQL vs. extended stored

procedures, important points to
consider when making this decision,
520–521

SqlCommand object
creating a new and specifying the

connection information, 80
running various queries using, 367–368
specifying parameters to, 21
three possible ways of instantiating, 80

SqlCommand objects, Transaction and
Connection properties, 20

SqlCommandBuilder object
command used to retrieve metadata from

the database directly, 263
setting various commands with, 272
using, 262–266

SqlConnection class
establishing a connection, 17–19
using one of the constructors for a ready-

to-use SqlConnection object, 55
SqlConnection object

creating and setting up in the Main
procedure, 79–80

holding the context connection, 495
using to take advantage of LTM, 402

SqlConnectionStringBuilder class
for generating provider-specific

connection strings, 57–60

SqlContext object, provided by ADO.NET for
working with context inside SQL
Server, 496

SqlContext.Pipe.ExecuteAndSend command,
for sending results in one shot, 94

SqlContext.Pipe.Send method, using as
equivalent of the T-SQL PRINT
statement, 496

SqlDataAdapter
constructor overloads supported by, 189
structure of in ADO.NET, 178–179

SqlDataReader, inheriting from
DbDataReader, 25

SqlDataReader class, using GetEnumerator
method in, 88–89

SqlDataReader object
code for reading the results from, 86–87
code using to query for a result set, 85
reasons to use instead of a collection of

IDataRecords, 85–86
SqlDataSource control, adding to the .aspx

page, 36
SqlFunctionAttribute, preceding the method

declaration with for marking it as a
UDF, 479

SQLOLEDB
connection string needed in order to run,

382
MARS-like behavior of, 381–382

SqlServerAggregate project
code in for developing a user-defined

aggregate called Concatenator, 488–490
using the SQLCLR stored procedure to call

aggregate written in, 494
SqlServerStoredProc project

adding a third stored procedure to,
500–501

downloading from Apress Source Code
section, 496

SqlServerTVF project
creating, 476
downloading code from Apress Source

Code section, 475
SqlServerUDF project

choosing a connection for in the Add
Database Reference dialog box, 469

downloading from Apress Source Code
section, 468

SqlTransaction, in SQLCLR, 504
SqlTriggerAttribute attribute, for identifying

the SQLCLR trigger, 506–507
SqlTVFExternalAccess, setting the

appropriate permission level for, 486
SqlUserDefinedAggregateAttribute attribute,

default value of the Format property
of, 491

.NET, 447

■INDEX 555

5122chIDX.qxd 8/23/05 4:41 PM Page 555

SqlXml 3.0, website address for downloading,
446

SqlXml COM library, working with, 446–459
SqlXml data provider, included as part of the

.NET Framework 2.0, 413
SqlXml data type, working with for reading

out the contents of the Xml column,
445–446

SQLXML object model
classes it contains, 447
using, 447–459

SQLXML queries, using templates and
parameters to improve flexibility of,
451–456

SqlXmlAdapter class, updating with XPath
and a schema, 456–459

SqlXmlAdapter object
constructors used to initialize an instance

of, 456
using to fill a DataSet with the results from

a query, 456–459
SqlXmlAdapter.Update, using to define the

columns that are part of the
Person.Contact table, 457–458

SqlXmlCommand object
properties, 448
for SqlXmlCommand object, 448
syntax for adding parameters to the query,

450
using ExecuteToStream() method to run

query and fetch results, 450–451
for working with SQLXML in SQL Server,

447–451
SQLXML-managed classes, conditions under

which to consider using, 447
SqlXmlParameter object, for specifying flexible

parameterized commands, 451
state management, in a DataRow and its use

in updating data, 266–274
State property, function of, 67
stored procedures. See also extended stored

procedures; SQLCLR stored procedures
extended vs. SQLCLR, 464
writing in SQLCLR code, 494–504

strongly typed DataSets
annotated binding example, 171–174
annotated example, 171–174
annotating, 168–174
building, 159–168
building manually, 167–168
creating CustProd, 295
vs. DataSets, 517
generating using the command line, 168
performance of, 168
steps for building in Visual Studio .NET,

160–161

for working with hierarchical data,
334–352

working with in C#, 162–163
working with in VB.NET, 163

strongly typed DataTable, using
FindByCustomerID method by
using, 219

system requirements, importance of knowing
before starting a project, 513–514

System.Data namespace, all ADO.NET-related
functionality grouped under, 4

System.Data.Common classes, list of main,
13–14

System.Data.Common.DbException,
provider stack-specific exceptions
inheriting from, 29

System.Data.DataException, disconnected
stack exceptions inheriting from,
28–29

System.Data.DataTable events, table of, 120
System.Data.Design namespace, classes

contained in for creating typed
DataSet classes, 14

System.Data.Rule enumerators, table of, 116
System.Data.SqlTypes.SqlTypeException,

SqlTypes-specific exceptions
inheriting from, 29–30

System.EnterpriseServices namespace,
implementing distributed
transactions in .NET 1.1 with,
394–397

System.Exception, other ADO.NET exceptions
inheriting directly from, 30

System.SecurityException, thrown while
attempting to get a context
connection, 509

System.Transactions
manually enlisting and multithreaded

environments, 403–408
situations in which you would prefer to

use SqlTransaction, 504
System.Transactions namespace,

implementing distributed
transactions in .NET 2.0 with,
397–401

System.Transactions.Transaction
accessing using Transaction.Current, 403
thread-safe and manual enlistment in,

405–408
using in a multithreaded environment,

403–408
System.XML namespace, built into .NET

Framework, 413
Szpuszta, Mario and Ingo Rammer, Advanced

.NET Remoting, Second Edition
(Apress, 2005) by, 135

■INDEX556

5122chIDX.qxd 8/23/05 5:03 PM Page 556

■T
Table property, for

DataTableClearTableEventHandler, 121
TableAdapter Configuration dialog box

Advanced Options, 251
for configuring AnimalsTableAdapter

TableAdapter, 251
configuring the SELECT query being used

to fill the testDataSet, 251
TableCleared event, function of, 120
TableClearing event, function of, 120
TableDefinition property, for identifying the

structure of the output table, 480
TableMappings

using in ADO.NET, 207
TableName property, for

DataTableClearTableEventHandler,
121

TableNamespace property, for
DataTableClearTableEventHandler, 121

TableNewRow event
function of, 120
good practical use for, 125

TableNewRow object,
DataTableNewRowEventHandler
received by, 121

tables
creating a relationship between two in a

DataSet, 126
how drag and drop updating works,

254–262
using drag-and-drop approach for

updating, 248–262
Tables property, in DataSet object model,

112
Table-Valued Functions (TVFs). See TVFs

(Table-Valued Functions)
tag values, function of in FOR XML EXPLICIT

query, 424
TDS (Tabular Data Stream) protocol level

implementing batching in ADO.NET at, 274
why batching is implemented in and not

in SQL, 275
Test Connection, for testing your new

connection, 34–35
Test database

creating table structure for, 179–180
Demo table created in, 31–32
executing against, 79–81

TestDataSet data source, adding to your
Windows Forms application, 42

TestDemo table, for Chapter 5 examples, 79
ThreadEntryPoint method, function of, 404
Timestamp column

specifying during table creation, 330
using in Microsoft SQL Server database,

timestamps, checking for in optimistic
concurrency, 328–330

tools, picking the right ones for the job,
522–526

ToString() method
used when you use the UDT in a SQL

query, 104
using to retrieve UDT data in a connected

fashion, 105
totalDigits constraining facet, function of, 146
trace, setting up on the local SQL Server to

capture queries sent to the database,
273

transaction classes
Commit and Rollback methods of,

361–362
implementation of, 361–362

Transaction object, function of in ADO.NET, 4
Transaction property, of DbCommand

object, 19
transaction savepoints, Multiple Active

Resultsets (MARS) and, 383
transactional database applications

committing or rolling back changes, 368
implementing transactions in, 364–365
most common sequence of steps

performed while developing, 363
sample database for, 364
transactional vs. non-transactional code

updates, 369
writing, 363–385

Transaction.Clone, calling, 404
Transaction.Current, using to access

System.Transactions.Transaction,
403

Transaction.EnlistDurable method, use of by
RMs to use durable enlistment, 402

Transaction.EnlistPromotable SinglePhase
method, function of, 402

Transaction.EnlistVolatile method, use of by
RMs to use volatile enlistment, 402

TransactionOption enumeration, values
associated with, 394

transactions, 355–411
in a connected mode, 359–360
database support for, 357–358
deciding which to pick, 521–522
default behavior for, 410
defined, 356–359
in a disconnected mode, 360–361
and effect of on performance, 409
effect of using simultaneous ADO.NET

and RDBMS, 410
ideal characteristics of, 356–357
implementing, 363–369
initiating nested, 389
judicious use of, 408–410

■INDEX 557

5122chIDX.qxd 8/23/05 5:47 PM Page 557

local and distributed categories of,
357–358

and MARS (Multiple Active Resultsets),
382–385

performance hit when using distributed
involving MSDTC, 408–409

practices to follow to achieve acceptable
results, 409

support for in ADO.NET, 359–362
and user confirmation, 410
using in SQLCLR triggers, 504–507
using with a DataSet and DataAdapter,

389–392
vocabulary, 358–359

TransactionScope instance
negative performance implications from

wrapping context connections in,
510–511

use of in implementing distributed
transactions in .NET 2.0, 398–399

traversal direction, considerations for a
particular task, 515–516

triggers and number of rows affected,
332–333

try...catch...finally constructs, using to ensure
your connections are disposed of
properly, 75

T-SQL
vs. C# and VB.NET, 461–462
default language supported by SQL Server,

461–462
rules for using vs. SQLCLR, 462

T-SQL vs. SQLCLR vs. extended stored
procedures, important points to
consider when making this decision,
520–521

TVFs (Table-Valued Functions), 464
defined, 475
output of a simple, 484
output of a simple using an order by

clause in the end, 484
script used to deploy, 483
used to display the files contained in a

directory, 485–486
using to enumerate files in a directory,

485–487
writing, 475–487

two-phase commits, in distributed
transactions, 393

type attribute, in <attribute> element in XSD,
144

typed DataSets. See DataSets; strongly typed
DataSets

typedChild attribute, of codegen namespace,
169

typedName attribute, of codegen

typedParent attribute, of codegen
namespace, 169

typedPlural attribute, of codegen
namespace, 169

■U
UDFs (User-Defined Functions), 464

creating from a registered assembly in
SQL Server 2005, 467

creating new called GetRandomNumber, 466
handwritten, 465–467

UDTs. See User-Defined Types (UDTs)
Unconsumed elements and tags, 437
UNION ALL

combining the results of multiple queries
with, 425–426

using in hierarchical FOR XML EXPLICIT
query with various directives, 429–431

unique constraints
creating, 154–155
vs. key constraints, 154–155

UniqueConstraint, for enforcing that the
values in a column or columns
should be unique, 116

UNSAFE control level, designating for your
SQL Server code, 463–464

Unspecified type value, possible in
ADO.NET IsolationLevel
enumeration, 372

UP_ANIMALINSERT stored procedure
used to insert a new row and send back

autogenerated values, 291
using vs. DataAdapter.RowUpdated event

for adding a new row, 292–293
UPDATE command

examining text after changes, 265
using to manipulate database data, 78

Update(DataSet) method, for updating
database with data specified in the
DataSet, 456

UpdateBatchSize property, using on the
SqlDataAdapter to update DataTable
in Exercise 9.3, 274

UpdateComboBox method
for keeping the combo box and DataSet in

sync, 195
UpdateCommand

calling for updating hierarchical data,
347

UpdateCommand.CommandText, code
example showing inefficient SQL
query code for, 263

UpdateGram, updating data with, 454–456
UpdateRule attribute, of msdata namespace,

170
Updating, hierarchical data, 347

efix, using, 455

■INDEX558

5122chIDX.qxd 8/23/05 5:03 PM Page 558

use attribute, in <attribute> element in XSD,
144

user-defined aggregate, developing one
called Concatenator, 488–490

User-Defined Functions (UDFs). See also
UDFs (User-Defined Functions)

adding new called NameToAscii to
SQLServerTVF project, 476

User-Defined Types (UDTs)
creating in Microsoft SQL Server 2005,

100
pragmatic use of, 106–107
querying for data using SQL, 105
retrieving data in a connected fashion

from a database, 105–106
vs. sp_addtype stored procedures, 100
in XML schema, 146

UserDefinedFunctions class, wrapping
inside the HandWrittenUDF
namespace, 465–467

userTable
code for filling programmatically,

186–187
UserTable, getting contents of in a

disconnected fashion, 180–185
using blocks, using to ensure your

connections are disposed of
properly, 75

■V
VB.NET. See Visual Basic .NET (VB.NET)
Visual Basic .NET (VB.NET), 54

adding code in the Form1_Load event
handler in, 228

adding the UpdateBatchSize property in,
274

AnimalsTableAdapter.Fill method in, 255
AnimalsTableAdapter.InitCommandColle

ction method in, 256
binding the DataGridView with the right

table in Exercise 7.3, 196
BookDataSet class definition of the Books

property in, 165
changing the CommndText and

dataAdapter.Fill statements in, 195
checking row state of new row in, 271
checking the final row states of the

updated DataTable in Exercise 9.3, 274
command text for querying for a result set,

85
constructing the DataRelation object and

adding to the Relation collection, 127
constructor of DataViews allowing you to

specify information in one code line,
233

constructor that directly ties the DataView

correct way to order exception-handling
blocks in, 28

creating a calculated column in, 223
creating a data adapter to retrieve records

from a database in, 205
creating a DataView without specifying

any information, 232
creating an event handler for DataBind

button click event, 187
creating a new XmlDataDocument

instance called xdd in, 242
creating a ready-to-use SqlConnection

object, 55
creating connection objects in, 54
data loaded, sorted, and databound to a

DataGridView control in, 235
defining a connection object in Exercise

7.5 in, 205
DeleteCommand in, 258
displaying the contents of a DataSet in, 200
displaying the contents of one row in, 218
enumerating through available providers

in, 11
filling a DataSet in for Exercise 7.4, 198
filling a DataSet programmatically in, 191
filling a DataSet schema in Exercise 7.4,

199
filling a DataSet with the UserTable in, 194
filling a DataTable and displaying the row

states in, 269
filling the productsTable in, 118
finding child rows for a given selected row

in, 229
finding parent rows for various rows in, 230
function of Add(DataColumn(),

DataColumn()) method in, 126
function of Add(String, DataColumn(),

DataColumn()) method in, 126
function of Add(String, DataColumn(),

DataColumn(), Boolean) method in,
126

going through rows one by one and
printing values to Console, 206

incorrect way of ordering exception-
handling blocks in, 27

indexing through BooksRow objects in
strongly typed Books.Rows
collection, 163

InitAdapter in, 260–261
invocation of GetChildRows() through the

GetBookReviewsRows() method in,
166

looking at the Title property of BooksRow
class in, 166–167

making changes to the DataTable in, 270
modifying code to include only a subset of

rows based on a condition in, 226

■INDEX 559

5122chIDX.qxd 8/23/05 4:41 PM Page 559

proving DataSet relationship has same
name as <keyref> element in XSD file
in, 157

putting ProviderBase model to work in,
12

refreshing the contents of XmlViewer,
243

selecting a number of rows in a DataTable
in, 219

serialization and deserialization of a
DataSet in, 137–138

setting up the DataSet in, 215
setting up the productsTable in, 117
setting various commands with

SqlCommandBuilder in, 272
sorting data on FirstName column in

ascending order, 235
specifying DataType property on a basic

DataColumn in, 223
specifying parameters of

OracleType.Cursor type to
SelectCommand on the
OracleDataAdapter, 192

specifying parameters using the
ConnectionString property, 55

vs. T-SQL, 461–462
update command in CommandBuilder

object, 264
using DoDataMappings method to add

table mapping to the data adapter,
209

using DoDataMappings method to create
the usersMapping object, 208–209

using Find method to identify one DataRow
using a basic DataTable in, 218

using GetString method to retrieve textual
representation of the UDT, 106

using Select method to find multiple rows
matching a criterion in, 220

using Select method to find rows and
specify a sort in, 221

using SqlDataReader object to query for a
result set in, 85

using TableMappings in ADO.NET using,
207

using the Compute method in, 225
using the DoDataMappings method for

declaring DataColumnMapping
objects, 208

using the Fill method to fill the DataTable,
189

various methods in AnimalsTableAdapter
in, 255

working with a connection object in, 56
working with a strongly typed DataSet in, 163
writing a batch file to build a strongly

Visual Studio 2005
creating a new Console Application

project in, 79–81
creating a new website in, 33–39
creating a UDT in, 101–105

Visual Studio .NET, building strongly typed
DataSets in, 160–167

volatile enlistment, use of by RMs, 402

■W
WebBrowser control (xmlViewer), adding to

the XmlDataDocument, 241
website address

for Apress Source Code section, 55
for downloading CreateDataSet class

library project, 214
for downloading Microsoft Data Access

Application Block, 74
for downloading SqlXml 3.0 for working in

.NET 1.1, 446
for work-around for

SerializationFormat.XML problem, 140
whiteSpace constraining facet, function of, 146
Windows Forms application

autogenerated code in, 44
code for the connection string in the

App.Config file, 43
creating a data-driven with drag-and-drop

approach, 39–45
creating and naming Exercise 7.2, 185
for creating Exercise 9.1, 248
example 6.3’s user interface, 129
showing Example 6.3 in action, 132
various controls added in the component

tray, 43
WITH SchemaDeclaration clause, specifying

with OPENXML, 438
WITH TableName clause, specifying with

OPENXML, 438
“Write Code Yourself” approach, for ADO.NET

Hello World application, 48–51
WriteXML method, new in .NET 2.0, 117

■X
XML

and ADO.NET, 413–459
code for productsTable in, 119–120
importance of for working with

disconnected model, 110
leveraging to work with disconnected

data, 240–244
as the lingua franca of the computer

world, 413
using GetXml to show DataSet contents

as, 131
XML columns, reading in ADO.NET,

444–446

■INDEX560

5122chIDX.qxd 8/23/05 4:41 PM Page 560

XML data type
included in SQL Server 2005 only, 443–446
new in SQL Server 2005, 414
reading out the contents of the column as

a string, 445
script for creating MyXmlTable, 443
using various new methods in the T-SQL

syntax to query and work with, 444
XML diffgram

extracting DataSet changes as in
ADO.NET, 299–300

viewing the changes as, 300
xml directive, using in a SQL query, 427
XML document, a portion of one generated

by a query (including the schema),
419–420

XML Schema Definition (XSD) language. See
also XSD; XSD schemas

defined, 142
XML schemas

function of complex types in,
147–150

how they are translated, 151–152
ways of annotating a schema, 150–151

XMLDATA argument, for generating a schema
for XML document generated by the
FOR XML query, 419

XmlDataDocument object
creating in Exercise 8.9, 241
example examining how it works,

241–244
for working with disconnected data and

XML, 241–244

XmlDocument, keeping in sync with the
DataSet, 244

XmlReader, code for reading up, 436
XmlReader instance, modifying code to load

result into instead of <Root>
element, 454

xmltext directive, using in a SQL query,
428

XSD
generating tables and columns with, 152–154
important attributes of the <attribute>

element in XSD, 144
overview of, 141–151
syntax for declaring an attribute in, 144
types that may appear in content of an

associated XML document, 142–145
user-defined types, 146
using <simpleType> element to create an

enumeration, 145
XSD annotation, 150–151
XSD elements, how they apply to DataSet

objects, 151–159
XSD schemas

for controlling DataSets, 141
valid data types in, 143

XSD.exe tool, using to manually build
strongly typed DataSets, 167–168

XslPath property, for SqlXmlCommand
object, 448

■Y
yield keyword, using instead of implementing

the NameSplitter class, 477

■INDEX 561

5122chIDX.qxd 8/23/05 4:41 PM Page 561

CONGRATULATIONS!
You are holding one of the very first copies of

Pro ADO.NET 2.0.

We believe this complete guide to ADO.NET 2.0 will prove so indispensable that

you will want to carry it with you everywhere. Which is why, for a limited time,

we are offering the identical eBook absolutely free—a $25 value—to customers who

purchase the book now. This fully searchable PDF will be your constant companion

for quick code and topic searches.

Once you purchase your book, getting the free eBook is simple:

1 Visit www.apress.com/promo/free.

2 Complete a basic registration form to receive a randomly

generated question about this title.

3 Answer the question correctly in 60 seconds, and you will

receive a promotional code to redeem for the free eBook.

For more information about Apress eBooks, contact pr@apress.com.

2560 Ninth Street • Suite 219 • Berkeley, CA 94710

512-2 BOB_eBook_7x9.25Q6.qxd 8/23/05 4:43 PM Page 1

	Pro ADO.NET 2.0
	Table of Content
	Chapter 1 An Introduction to ADO.NET
	Chapter 2 The ADO.NET Object Model.
	Chapter 3 ADO.NET Hello World!
	Chapter 4 Connecting to a Data Source
	Chapter 5 Retrieving Data in a Connected Fashion
	Chapter 6 DataSets
	Chapter 7 Fetching Data: The DataAdapter
	Chapter 8 Sorting, Searching, and Filtering
	Chapter 9 Updating Data
	Chapter 10 Updating Data: Advanced Scenarios
	Chapter 11 Transactions
	Chapter 12 XML and ADO.NET
	Chapter 13 The CLR in SQL Server
	Chapter 14 ADO.NET Best Practices
	Index

